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Abstract

We present an algorithm for solving stochastic integer programming
problems with recourse, based on a dual decomposition scheme and La-
grangian relaxation. The approach can be applied to multi-stage problems
with mixed-integer variables in each time stage. Numerical experience is
presented for some two-stage test problems.

Keywords: Stochastic programming, mixed-integer programming, Lagrangian
relaxation, branch-and-bound.

1 Introduction

Stochastic programs with recourse are aimed at finding non-anticipative here-
and-now decisions that must be taken prior to knowing the realizations of some
random variables such that total expected costs (revenues) from here-and-now
decisions and possible recourse actions are minimized (maximized). When some of
the decision variables are required to be integer or binary we speak of a stochastic
integer programming problem.

Stochastic integer programs are challenging from both computational and theo-
retical points of view since they combine two difficult types of models into one.
Until now algorithmic results have been limited to special instances. Laporte &
Louveaux [9] developed an integer L-shaped decomposition algorithm for prob-
lems with binary first stage and easily computable recourse costs. Lokketangen
& Woodruff [10] applied the progressive hedging algorithm and tabu search to
multi-stage problems with mixed 0-1 variables. Takriti, Birge and Long [15]
report about application of progressive hedging to multi-stage stochastic unit
commitment problems in power generation.
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A framework for solving two-stage problems using Grobner bases was proposed
by Schultz et al. [14], but is limited to problems with integer recourse variables
only. For problems with simple integer recourse the expected recourse costs can
be made separable in the first stage variables and special methods which are
treated in detail in van der Vlerk [16] can be applied.

Decomposition methods for stochastic programs generally fall in two groups: Pri-
mal methods that work with subproblems assigned to time stages and dual meth-
ods that work with subproblems assigned to scenarios. Carge & Tind [3] showed
that applying a primal decomposition method like Benders or L-shaped decom-
position to (2) in general leads to master problems that are governed by non-
convex, non-differentiable functions of the same type as the value function of an
integer program. Instead, we will in this paper work with a dual decomposition
method combined with branch-and-bound to achieve convergence. This differs
from [10, 15] where, although not formally justified, progressive hedging was used
for that purpose and proper convergence was empirically observed.

2 Scenario decomposition and Lagrangian re-
laxation

We consider the following two-stage stochastic program with integer recourse
z=max{ct +Q(z) : Az <b, z € X} (1)

where Q(z) = Ecp(h(§) —T(€)z) and ¢ is given as ¢(s) = max{q(§)y : Wy <
s, y € Y}, s € R™. Here ¢ is a known n;-dimensional vector, A and W are
known matrices of size m; X n; and mgy X ng, respectively, and b is a known
ma-vector. The vector £ is a random variable defined on some probability space
(2,8, P) and for each & € =, the vectors ¢(§) and h(§) and the matrix T'(§) have
conformable dimensions. The sets X C R’}* and Y C R’} denote restrictions that
require some or all of the variables to be integer or binary. Finally, E¢ denotes
expectation with respect to the distribution of £&. A scenario is a realization
of the random variable (q(§),h(§), T(§)) corresponding to an elementary event
¢ € =. Typically, the distribution of ¢ is multivariate. To avoid complications
when computing the integral behind EF¢ we assume that we only have a finite
number r of scenarios.

In the following we use the notation (g7, h?, T7) for the jth scenario having prob-
ability p/, 5 = 1,... ,7. When ¢ follows a finite distribution the problem (1) is
equivalent to a large, dual block-angular mixed-integer programming problem.
Defining for j = 1,... ,r the sets

Shi={(z,y7) : Ax<b, x€ X, TV + Wy <k, y €Y}



the deterministic equivalent can be written
z:max{ca:—i-ijqjyj Cwy)e S j=1,...,r} (2)
j=1

We assume that (2) is solvable, i.e., feasible and bounded. Here feasibility means
that there exists a first-stage solution x € X, Ax < b, such that the feasible
regions {y/ € Y : Wyl < W Tz}, j=1,...,r, of all the corresponding second-
stage problems are nonempty or, in other words, Q(z) > —oo. Boundedness is
achieved by requiring feasibility for the dual to the LP-relaxation of (2).

The fact that (2) is an integer program of block structure leads to decomposition
methods to split it into more manageable pieces. In our approach these pieces
will correspond to scenario subproblems. The idea in scenario decomposition is

to introduce copies z', ... , 2" of the first-stage variable z and then rewrite (2) in
the form
max{3 " p(ea’ +@y) : (@) € ST, j=1,...rat = ="}, (3)
j=1
Here the non-anticipativity conditions ! = ... = 2" state that the first-stage de-

cision should not depend on the scenario which will prevail in the second stage. Of
course, there are several equivalent possibilities for expressing this property. Here,
we assume that non-anticipativity is represented by the equality 25:1 Higi =0
where H = (H',... , H") is a suitable [ X n;r matrix.

The Lagrangian relaxation with respect to the non-anticipativity condition is the
problem of finding x7,47, j = 1,... ,r such that

D(X) = maX{Z Li(a’ .y, A) + (2),y7) € 87} (4)

where A has dimension [ and L;(27,y?, \) = p’(ca? + ¢/y’) + N (HI2?) for j =
1,...,r. The Lagrangian dual of (3) then becomes the problem

ZLp = m/\inD()\). (5)

The following weak duality result is well known and can be found in, e.g.,
Nembhauser & Wolsey [11].

Proposition 1 The optimal value of the Lagrangian dual (5) is an upper bound
on the optimal value of (2). If for some choice X\ of Lagrangian multipliers the
corresponding solution (z7,y?), j = 1,...,r of the Lagrangian relazation (4) is
feasible, then (x7,y7), j = 1,... ,r is an optimal solution of problem (3) and X is
an optimal solution of (5).



The Lagrangian dual (5) is a convex non-smooth program which can be solved
by subgradient methods. A major advantage is that it splits into separate sub-
problems for each scenario,

DN =3 D,

where
D;(\) = max{Ly(a’, 4, \) : (),y) € $7}. (6)

Each of these r subproblems is a mixed-integer programming problem of size
(m1 4+ ma) X (n1 + n2). In contrast, the deterministic equivalent (2) is a mixed-
integer program of size (my + rny) X (ma + rng).

Subgradient methods typically require one function value and one subgradient per

iteration as well as a guess of initial multipliers. By convexity, the subgradient
OD(A) of D at Ais 9D(A) =377, OD;(A) with 0D;(A) the set

0D;(\) = conv {V, L;(z,y,\) : (z,y) solves (6)}.

Thus Y77, H’2/ is a subgradient for D where (z',y'),...(2",y") are optimal
solutions of the scenario subproblems (6).

It is well known that due to the integer requirements in (2), solving (5) will give
an upper bound on z which in general is larger than z. The next proposition
provides some insight into why this duality gap arises.

Proposition 2 The optimal value zpp of the Lagrangian dual (5) equals the
optimal value of the linear program

maX{ij(cxj+qjyj) s (2l y)€conv 7 j=1,...,r,xt =... =2"}
j=1

(7)

Proof: Theorem 6.2 in [11], p. 327, yields

2Lp = max{Zp](ch + ¢y’ : (z,y) € conv X'y SUoat = =2}
j=1

The assertion then follows from the fact that conv x7_, S7 = x’_; conv 7. O
The duality gap occurs because the convex hull of feasible solutions to (3), which
is

conv{(z',... 2"yt ... y") 2 (M) e S j=1, ... 2t = =2"},

in general is strictly contained in the set of feasible solutions of (7). From Propo-
sition 2 it is also clear that the upper bound on z provided by (5) is not bigger
than that obtained by solving the LP-relaxation of (2) which can be written as

max{ij(cxj+qjyj) () €eSly, j=1,...,r 2t =.. . ="}
j=1
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where S}; p arises from S7 by dropping the integer requirements. In fact, our pre-
liminary numerical tests about which we report in Section 5 indicate remarkable
improvements of the LP-bound by solving (5).

The gap can only be closed further by grouping together scenarios in larger blocks,
thereby enlarging the size of the subproblems (6). For instance, grouping together
the ith and jth scenario would yield

(d,h,T) =((piqiquj),(Z; ) : ( ? Toj ))

having probability p’ +p’ and a corresponding scenario subproblem of size (m; +
ng) X (77,1 -+ 277,2)

In Birge & Dempster [2] a class of (multi-stage) stochastic programs with integer
requirements is presented where the duality gap caused by Lagrangian relaxation
of the non-anticipativity conditions vanishes as the number of scenarios tends to
infinity. The following formal example shows that for the problems considered in
the present paper this cannot be expected in general.

Example 3 Consider the following two-stage stochastic program with integer re-
course where only the right-hand side h is random

N I , ,
max{—3x+2p72y9 : ;1:—§y92h9,0§;1:§1, y €{0,1},j=1,... r}
j=1

(8)

We assume that the number r of scenarios is even and that p’ = 1/r for all
j=1,...,r. Let & with0 < & < 1/32, j = 1,...,r, be pairwise distinct
real numbers. The right hand sides h/ are given by W = &7 if j is even and
hi = (1/4) — €7, otherwise.

We will show that, independent of the number r of scenarios, the mentioned
duality gap is bigger than 1/16. To this end we first consider problem (7) for
our example. One confirms that (% + max; &, %, 1,... ,%, 1) is feasible for that
problem such that the maximum is bounded below by —3 - max; &/ > —3/32.
To bound the maximum (8) from above let us first consider the case where y7/ = 1
for some j that is odd. Then z > (3/4) — max;¢’, and the maximum in (8) is
bounded above by —(9/4) 4+ 3 - max; €/ 4+ 2 which is less than —5/32.

In case ¢/ = 0 for all j that are odd we first consider the situation where 37 = 0
for all the remaining j. Then z > (1/4) — max;¢’, and the maximum in (8) is
bounded above by —(3/4) 4+ 3 - max; ¢/ which is less than —21/32.

Finally, if 3/ = 0 for all j that are odd, and 3/ = 1 for some remaining j, then
x > (1/2)+min; &/, and the maximum is bounded above by —(3/2)—3-min; e/ 41
which is less than —1/2.

Altogether, the maximum in (8) is thus less than —5/32 and, hence, the duality
gap is at least 1/16. O



When some of the first-stage decisions in the stochastic program (1) are re-
quired to be boolean, then there exists a compound representation of the non-
anticipativity constraints. For notational convenience we assume that all first
stage decisions are required to be boolean, i.e., that X = {0,1}". Then we can
express non-anticipativity constraint by the single constraint

(Z aj)zt = agx® + - a.a" (9)
j=2
where ag, ... ,a, are positive weights. Indeed, the only integer solutions of (9) in

{0,1}™ are («',...,2") = (0,...,0) and (z',...,2") = (1,...,1) for which the
non-anticipativity constraints are satisfied. A special case of (9), see also [2], is
obtained by letting a; = p’ for j =1,... ,r for which (9) can be written

T

(1—phHa! =p*x* +---p'a”.
The Lagrangian with respect to (9) reads

T

Ly ) =) P +fy) + Y aat -2,
=1

j=1 j=2

and the Lagrangian dual
zpp =min Y max{L;(@’,y7,p) : (a7,97) € 57}. (10)
o
j=1

Proposition 4 The optimal value zpp of the Lagrangian dual (10) is greater
than or equal to zrp, and zrp equals the optimal value of the problem

. o J ol ioi=1. ...
maX{Zp](CLIZ]—i-q]y]): ('7: Y ) € conv S? J ’ Ty } (11)
j=1

(X g aj)at = aga® + - apa”

Proof: In the same way as in the proof of Proposition 2 it is established that 2z, p
equals the optimal value of (11). Obviously, the feasible region of (11) contains
that of (7) which yields zp5 > zLp. O
The advantage of (10) is that the number of Lagrangian multipliers is reduced
from [ to n;. The number of multipliers affect subgradient procedures in two
ways. A small number of parameters give less controllability and the duality gap
is increased, viz. Proposition 4. On the other hand, more control parameters
mean that a larger space of parameter settings has to be searched and more
iterations may be needed.

Our approach can be related to existing techniques in both combinatorial opti-
mization and in stochastic programming. In combinatorial optimization, the idea
of creating copies of variables and then relaxing the equality constraints for these
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variables was introduced as variable splitting by Jornsten et al. [6]. The variable
splitting approach was originally applied to optimization problems with a “hard”
and an “easy” set of constraints as an alternative to the well-known Lagrangian
relaxation approach. The variable splitting method is equivalent to what is called
Lagrangian decomposition of (2), by Guignard & Kim [5].

In stochastic programming, non-anticipativity conditions are “hard” since they
couple constraints for the different scenarios. For linear problems without inte-
ger requirements there exist well developed theory and methodology for relaxing
non-anticipativity constraints. Based on duality results involving augmented La-
grangians, algorithms like the progressive hedging method of Rockafellar & Wets
[12] and the Jacobi method of Rosa & Ruszczyniski [13] were developed and ap-
plied to a variety of problems.

As elaborated above duality gaps occur in the presence of integer requirements
such that the above methods are no longer formally justified. In the next section
we will employ branch-and-bound to close the duality gap. This will also lead to
optimality estimates for the feasible solutions that are generated in the course of
the method.

3 A Branch-and-Bound algorithm

Lagrangian duality provides upper bounds on the optimal value of problem (3)
and corresponding optimal solutions (z7,47), j = 1,...,r, of the Lagrangian
relaxation. In general these scenario solutions will not coincide in their z-
component unless the duality gap vanishes. We now elaborate a branch-and-
bound procedure for (1) that uses Lagrangian relaxation of non-anticipativity
constraints as bounding procedure. To come up with candidates for feasible first-
stage solutions x various heuristic ideas starting from the scenario solutions z7,
7 =1,...,r, can be tried. In the present paper we use the average r = 25:1 P,
combined with some rounding heuristic in order to fulfill the integrality restric-
tions. In the following P denotes the list of current problems and z; is an upper
bound associated with problem P; € P. The outline of the algorithm is as follows:

Step 1 Initialization: Set z = —oo, z1 = 400 and let P = {P;} consist of
problem (1).

Step 2 Termination: If P = () then the solution Z that yielded z = ¢z + Q(%) is
optimal.

Step 3 Node selection: Select and delete a problem P; from P and solve its
Lagrangian relaxation. If the optimal value zyp, hereof equals —oco (infea-
sibility of a subproblem) then go to Step 2.

Step 4 Bounding: If z1.p;, < z go to Step 2 (this step can be carried out as soon
as the value of the Lagrangian dual falls below z).



(i) The scenario solutions xf, j=1,...,r, are identical: If cz! + Q(z]) > z
then let z = cx] + Q(z]) and delete from P all problems with z; < z.
Go to Step 2.

(ii) The scenario solutions a:f ,j=1,...,r differ: Compute the average z;
and round it by some heuristic to obtain Z¥. If ¢zl + Q(ZR) > 2 then
let z = ¢z} + Q(ZR) and delete from P all problems with z; < 2. Go
to Step 5.

Step 5 Branching: Select a component ) of z and add two new problems to
P obtained from P; by adding the constraints xzu)y < [Ziw)| and xg) >
| Ziky | + 1, respectively (if (4 is an integer component) or () < T and
T(k) = Ti(k), respectively.

In LP-based branch-and-bound algorithms for integer programming upper bounds
are obtained by relaxing the integrality requirements and feasibility is obtained
when a relaxation has an integer optimum. Here we relax the non-anticipativity
requirement and feasibility is obtained when the scenario solutions are identical.
With mixed-integer variables, the latter is rarely achieved in early steps of the
algorithm. Therefore Step 4(ii) is added where we try to find a feasible solu-
tion using the above mentioned rounding. In the best case this might lead to
deletion of subproblems from P and speed up the branch-and-bound procedure.
It is convenient to introduce a measure for the dispersion of the components in
the scenario solutions, which takes into account different ranges of variables, e.g.,
boolean and continuous variables. Standard rules for selecting branching vari-
ables and nodes can be adapted to our setting using this dispersion measure, for
instance by branching on the component x () with largest dispersion, selecting
the node with the highest norm of dispersion, etc.

In the case of mixed-integer variables some stopping criterion is needed to avoid
endless branching on the continuous components. For instance, if we assume that
X is bounded and we branch parallel to the coordinate axes, then one may stop
after the maximal [..-diameter of the feasible sets of the subproblems has fallen
below a certain threshold.

Proposition 5 Suppose that {x € X : Az < b} is bounded and that some stop-
ping criterion for the continuous components is employed. Then the branch-and-
bound algorithm above terminates in finitely many steps.

The implementation of the node selection and branching rules as well as the
stopping criterion will depend on the application at hand. Some preliminary
experience is presented in Section 5.

4 Extensions to multi-stage stochastic programs

Expanding the two-stage decision process behind the stochastic programs in Sec-
tion 2 to finite discrete time horizons with arbitrary length leads to multi-stage
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stochastic programs. In this section we show that, from a formal viewpoint, the
above approach can be readily extended to multi-stage stochastic programs with
integer requirements. From the implementation point of view, however, some
work still remains to be done, since problem sizes increase dramatically. As a
prototype example we consider the problem

max{ci(&)r1 + Qi(z1) © Wizn < hi(&), v1 € Xa} (12)
where

Qi(w1) = Eeypyjgymax{cip1 (§e1)Tes1 + Qura(es1)
Tiv1(&pr)re + Wapn < hyg1 (&), T € Xea } (13)

fort =1,..., 7 —1 with Qr = 0. Here £ = (&,...&) is a random variable on
some probability space (Z,§, P) and Eg,, ¢, denotes expectation with respect to
the distribution of &1, conditional on &. We assume that & is known at time
t = 1. For all realizations of £ and time stages, T3(&;) and W; are m x n matrices
and h:(&) and ¢(&) are vectors in R™ and R™, respectively. For convenience we
assume that the dimensions are the same for all . The dynamics of the system
as represented in the definition (13) of the expected recourse functions is the
simplest possible and can be generalized considerably. Finally, the sets X; C R,
t =1,...,T include integrality restrictions on the decision variables. We assume
that the random vector £ has finite support = = {¢!,... ,£"} and corresponding
probabilities pt,... ,p".

In the multi-stage setting scenarios are realizations corresponding to the elemen-
tary events in = of the random variables

s(€) = (s1(8), - s 57(6))

where
st(§) = (ce(&), Te(&), (&), t=1,... . T.

With each scenario vector s(£7) we associate a vector of indeterminates (&%) =

(xl(fj)> cee 7-1'T(€j)), j = 1, Lo, T
Problem (12) can now be restated as a large-scale structured mixed-integer pro-
gram:

max Zp][ﬁ(f{)xl(f]) + o CT(f%)xT(fj)]

st Wiz (&) < h(8),
Tirn(€4)ae(&) + Wenzean (€) < hi(€1), (14)
(&) € X,
for y=1,...,7r and t=1,...,T



and the non-anticipativity constraints
T (E0) = 34(€72) if 5, (&) = 5,(€2) for all T =1,... ,t. (15)

These conditions state that two scenarios with the same history until the ¢th stage
should result in the same decisions until this stage. In other words, decisions are
only allowed to depend on the past, not on the future. For problems where
uncertainties occur at successive time stages the number of scenarios and thereby
the number of variables in (14) grows exponentially with the time horizon. As
in the two-stage case we can represent the non-anticipativity conditions (15) by
> iy H2? = 0 with a suitable matrix H = (H',..., H"), now of dimension
I xnr(T —1), if we assume that (15) altogether comprises [ equations. We define
the Lagrangian for (14) as

D Li@ N =D 0D al€)n(€) + N ()

where A has dimension I, and L;(z7,\) = p/ 331 ¢,(&)a4(&7) + N (H27). Thus
the Lagrangian is again separable with respect to scenarios. The Lagrangian dual
is then obtained in the same way as in Section 2. It becomes a convex non-smooth
minimization problem with a total of [ variables.

Again Lagrangian relaxation of non-anticipativity constraints can be embedded as
bounding procedure into a branch-and-bound algorithm as described in Section 3.
Since non-anticipativity constraints involve variables from all but the final time
stage, branching in the multi-stage case has to concern the variables x1,... ,z7_1
instead of only x; in the two-stage case. Together with the increased dimension of
the Lagrangian dual this more expensive branching is the main source of increased
computational effort when extending the scheme from Section 3 to multi-stage
models.

5 Numerical examples

We have implemented the branch-and-bound algorithm of Section 3 using NOA
3.0 [7], which is an implementation of Kiwiels proximal bundle method [8] for
non-differentiable optimization. The non-anticipativity condition was represented
using the constraints 2! = 22, ! = 22,... ;2! = 2".

At each node of the branching tree we chose to branch on the component x
for which the dispersion max; :1:{ B min; :1:{ ) Was largest. For node selection we
chose the node with the largest [..-norm of dispersions. To obtain good lower
bounds we used this rule intertwined with the Best-Bounds rule. The mixed-
integer subproblems were solved using the CPLEX 4.0 Callable Library [4]. The
experiments were carried out on a Sun SPARCstation 20 with 160 MB memory.
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Example 1: The following stochastic program was adapted from [14]:
3
max{ g%+ 4o + Q(x1,22) : 0 < z1,29 < 5 and integer} (16)

where Q(x1,z2) is the expected value of the multiknapsack problem

max  16y; + 19y, + 23ys + 28y,
st 2y1 +3y2 +4ys + 5ys < & — 1,
6y1 + o +3ys +2ys < & —wo, y; €{0,1}, i=1,... .4,

and the random variable £ = (&,&2) is uniformly distributed on = = {(5,5),
(5,5.5),...(5,15), (5.5,5),...,(15,15)}. The deterministic equivalent of (16) is
an integer program with 1764 binary variables and 2 integer variables. Attempt-
ing to solve the problem with CPLEX yields an optimality gap of more than
25%, stopping enumeration after 500.000 nodes. Using our branch-and-bound
algorithm the problem could be solved in 136 seconds CPU-time, yielding the
optimal solution = = (0,4) and corresponding value z = 61.32. Notice that
the scenario subproblems are very small, so better runtimes may be achieved by
grouping together scenarios. However, the problem is only meant as a benchmark
for testing algorithms.

Example 2: To compare the behavior of our algorithm with problems from
the literature having larger second stages, we consider a family of two-stage
mixed-integer minimization problems analyzed in [10]. The problems SIZES3,
SIZES5 and SIZES10 have 3, 5 and 10 scenarios, respectively, and the scenario
subproblems have 10 boolean variables, 65 bounded continuous variables and 31
constraints in each stage, with randomness occurring only in the right-hand side
of the second-stage problem.

The computational results are summarized in Table 1. The second column shows
the time after which the best feasible solutions were found and the third column
shows the lower bounds obtained after 1000 seconds of CPU-time, where the test
runs were stopped. Contrary to the method in [10], we can estimate the feasible
solutions found to be within 0.2% of the optimum . The Lagrangian dual provides
considerably better lower bounds than the LP-relaxation. For our test runs we
used 10~% as optimality tolerance in NOA which gave a duality gap at the root
nodes of 0.2% — 0.3%. The LP-relaxation, however, gives a duality gap of 2.0%
~ 2.1%. Notice that a smaller optimality tolerance in NOA will produce better
bounds but is also more time consuming.

It should be noted that the size of the duality gap indicates that the scenario
solutions have almost identical first-stage components. Hence we have calculated
the wvalue of the stochastic solution (VSS), see Birge [1], which measures the
value of using a stochastic model instead of a deterministic model. For all three
problems, the VSS was less than 0.8%, which means that the randomness has
little influence on the optimal first-stage solution.
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Problem ‘ Best solution CPU-time Lower bound

SIZES3 224599.2 127 sec. 224360.0
SIZES5 224680.4 861 sec. 224369.0
SIZES10 224744.3 956 sec. 224311.4

Table 1: Table of results for SIZES-problems
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