
1

ADAPTIVE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS
WITH APPLICATION TO HYPERTHERMIA TREATMENTS

Bodo Erdmann, Jens Lang, Martin Seebaß
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustraße 7
14195 Berlin - Dahlem, Federal Republic of Germany

erdmann@zib.de

ABSTRACT. We present a self-adaptive finite element method to solve nonlinear
evolution problems in 3D. An implicit time integrator of Rosenbrock type is coupled
with a multilevel approach in space. The proposed method is applied to hyperthermia
treatments to demonstrate its potential for the solution of complicated problems.

INTRODUCTION

Many phenomena in biology, chemistry, physics, and engineering are set up by time-
dependent systems of PDEs which have to be solved numerically under increasingly
complex conditions. Typically, the solutions have a dynamic behaviour in space and time.
In such a situation only adaptive methods are able to control efficiently discretization
errors with respect to required tolerances and computational work.

Adaptive hierarchical finite element methods have been developed by the authors to solve
problems with highly non-uniform solutions1,2,3. The proposed methods are essentially
based on the repeated application of solving discretized equations, error estimation, and
local refinement. The final spatial grids are well adapted to the required solution. The
reliability of the algorithm has been demonstrated for a variety of chemical problems
known to range among the most demanding for spatial adaptivity when thin flame fronts
are to be resolved numerically4.

To include more challenging practically relevant problems we extended the above
techniques to three-dimensional problems using Finite Elements in space and Rosenbrock
methods for temporal discretization5. Error estimates utilize embedding in time and
hierarchical bases in space. Dynamic tree structures are employed to manage grid
enhancement and robust coarsening as well.

We apply our method in the field of medical planning for simulation of hyperthermia
treatments. Hyperthermia, i.e. heating of tissue, is a method of cancer therapy. In most
cases electromagnetic waves are used as heat source. Our model of heat transfer within the
human body is Pennes' bio-heat-transfer equation (BHTE)
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ρ c ∂T/∂t = ∇(κ ∇T ) -  cb W (T-Tb) + ARD  (1)

with the density ρ, the specific heat c, the thermal  conductivity κ, the blood perfusion
W, and the temperature T. The index  b is related to blood. The source term ARD
describes the absorbed power per volume of the electric field. Boundary conditions are
obtained from

κ ∂T/∂n = h (Tout - T),  (2)

where Tout is the environmental temperature, and h is the heat transfer coefficient. The
main assumption of this model is that the blood enters the local tissue with the body core
temperature and leaves it with the local tissue temperature. Hence, convective heat flow
can be described by the temperature difference T-Tb and an empirical transfer coefficient
cb W.

For a patient-specific simulation we generate a three-dimensional finite element mesh in
which the relevant tissue compartments are represented. Mesh generation is based on a
set of computer tomographic scans of the patient7. A discretized part of a patient lying in
a radiofrequency hyperthermia applicator is shown in Fig. 1.

Fig.1: Finite element model for a patient.

We compare a linear temperature model of the BHTE (constant perfusion W within each
tissue compartment) with a nonlinear version (temperature-dependent perfusion). Several
simulations reveal that the temperature at the steady state is significantly higher with a
temperature-dependent perfusion. This observation is comparable with the results
reported for a 2D-simulation of hyperthermia induced by ferromagnetic seeds8 .



3

Furthermore, spatial adaptivity allows us to get efficiently more accurate solutions
necessary for reliable decisions in medical planning.

Besides the study of the stationary solution, we are interested in gaining an insight into
the evolution of  body heating.

The implementation of finite element codes in three space dimensions employing adaptive
mesh refinement and multilevel techniques requires modern software design and
programming languages as C or C++. Our code KARDOS is based on the programming
environment KASKADE1. Additionally, a comfortable visualization tool is invaluable. We
used the graphical system HyperPlan10 for the presentation of our numerical results.

MATHEMATICAL MODELLING OF BLOOD PERFUSION

Studies that predict temperatures in tissue models usually assume a constant-rate blood
perfusion within each tissue. However, several experiments have shown that the response
of vasculature in tissues to heat stress is strongly temperature-dependent8. When heated
the blood flow in normal tissues, e.g., skin and muscle, increases significantly. In contrast,
the tumor zone often appears to be so vulnerable to heat that the blood flow decreases
upon heating.

Our models of temperature-dependent blood perfusion in the muscle and tumor are
derived from special curves propagated by Tompkins8. We fit the curves employing our
constant blood perfusions (Tab.1). Additionally, we apply a nonlinear perfusion model
for fat tissue related to that of muscle. The expressions for evaluating the blood perfusion
W are:

Nonlinear blood perfusion in muscle:

Wmuscle =  4.0 - 1.0723 (T-45.0)4 , 44.0 <= T <= 46.0
Wmuscle =  0.833 + 2.276 exp( -(T-45.0)2/12.0) , T < 44.0, T > 46.0

Nonlinear blood perfusion in fat:

Wfat =  0.72 - 0.0682 (T-45.0)4 , 44.0 <= T <= 46.0
Wfat =  0.36 + 0.317 exp( -(T-45.0)2/12.0) , T < 44.0, T > 46.0

Nonlinear blood perfusion in tumor:

Wtumor =  0.833, T < 37.0
Wtumor =  0.833 -  (T-37.0)4.8/6.21e+3, 37.0 <= T <= 42.0
Wtumor =  0.468, T > 42.0.0

Two different simulations are performed. Firstly, we assume that blood perfusion is
independent of temperature. Then we incorporate the temperature-dependent models for
muscle, fat, and tumor, while the other blood perfusions remain unchanged.
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Tissue Thermal
conductivity κ

[W/m/oC]

Density
ρ

[kg/m3]

Specific heat
c

[W s/kg/ oC]

Constant
 perfusion W

[kg/s/m3]

Nonlinear
perfusion W

[kg/s/m3]

Fat 0.210 900 3,500 0.720 Wfat

Tumor 0.642 1,000 3,500 0.833 Wtumor

Bladder 0.600 1,000 3,500 5.000 5.000
Kidney 0.577 1,000 3,500 66.670 66.670
Liver 0.640 1,000 3,500 16.670 16.670
Muscle 0.642 1,000 3,500 4.000 Wmuscle

Bone 0.436 1,600 1,000 1.333 1.333
Aorta 0.506 1,000 3,500 83.330 83.330
Intestine 0.550 1,000 3,500 3.333 3.333

Table 1:  Material properties of tissues.

The material properties of the involved tissues are summarized in Table 1. In the
temperature-independent case they are assumed to be independent of temperature over
the hyperthermic temperature range and are considered uniform throughout each tissue
type. For the simulation we further set Tb = 37oC, cb = 3500 Ws/kg/oC, h = 45 W/m2/oC,
and Tout = 25oC.

ADAPTIVE TIME AND SPACE DISCRETIZATION

The principle difficulties in numerically solving the bio-heat transfer equation are the
nonlinearity due to the perfusion term and the different material properties of the tissues.
Using a linearly implicit method of Rosenbrock type for the time discretization, we are
able to integrate the heat equation efficiently. Within this approach, the approximate
temperature Tn at time tn is constructed by a linear combination of the previous
temperature Tn-1 at time tn-1 and different intermediate values ΔTn

j, j=1,2,3, namely

Tn  = Tn-1  + Σj=1(1)3 bj ΔTn
j . (3)

These values ΔTn
j  are determined by the following linear elliptic boundary value

problems:

ρ c / (γ Δtn) ΔTn
j  - div(κ grad ΔTn

j) + cb JF[Tn-1] ΔTn
j  =

div(κ grad Tn
j) - cb F[Tn

j] + ρ c / Δtn  Σi=1(1)j-1 cji ΔTn
i   + ARD  in Ω, (4)

κ ∂(ΔTn
j )/∂n = h (Tout - ΔTn

j)  on ∂ Ω (5)

with

Tn
j := Tn-1 + Σi=1(1)j-1 aji ΔTn

i , Δtn := tn - tn-1,
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F := W(T - Tb), JF := ∂ F/∂Τ.

The solution process for the intermediate temperatures ΔTn
j can be done successively

because the sums in the right-hand side of  (4) extend to j-1 only. The coefficients γ, aji, cji,
and bj are chosen such that the method reaches order three and has good stability
properties6.

The special structure of the employed Rosenbrock method (3) allows us to define a
solution of second order Tn

* only using a different set of coefficients bj
*
  in (3). The

difference between the two solutions || Tn- Tn
* || =: ∈n satisfactorily estimates the local

error of the time discretization, and can be utilized to propose a new time step

Δtn+1 = (TOLt/∈n)
1/3 Δtn.

This step size selection guarantees that the stationary solution is reached in a few steps
with respect to a desired tolerance TOLt.

The linear elliptic problems (4) have to be solved for each intermediate value ΔTn
j.

Employing directly our tetrahedral grid, a natural choice is a continuous finite element
discretization in space. This method ensures automatically the continuity of the
temperature and its fluxes at the inner tissue boundaries.

The starting point of the finite element method is the weak formulation of (4). Let Sh
1

consist of all continuous functions which are polynomials of first order on each finite
element, then the finite element solutions ΔhTn

j  ∈ Sh
1  have to satisfy the equations

(An ΔhTn
j,φ) = (rn

j, φ)     ∀ φ ∈ Sh
1,  j = 1,2,3.

Here, (. , .) represents the usual inner product, An is the weak representation of the
differential operator at the left-hand side in (4) and includes the boundary conditions. The
function rn

j stands for the whole right-hand side of the j-th equation in (4). The operator
An is independent of j, so that the method requires ist calculation only once within each
time step.

To get a posteriori error estimates for the spatial discretization, we solve local Dirichlet
problems on small subdomains. Let Qω be the set of all quadratic polynomials over ω
which is the union of all tetrahedra having one common edge. Because we solve our
elliptic problems (4) using linear elements, the local approximation of the spatial errors
ΔTn

j - ΔhTn
j  should be computed with at least the basis functions of Qω. Imposing

homogeneous  Dirichlet boundary conditions, the local approximate errors related to all ω
are represented by one degree of freedom at the midpoint of the corresponding edge.
These local a posteriori error estimates are employed to decide which elements to refine
or to unrefine. The aim of our mesh adaptation is to equilibrate the error until a final mesh
is created in which all elements have approximately the same error, and a global prescribed
tolerance TOLx is reached.
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Fig. 2: Regular refinement of a tetrahedron.

For local mesh refinements we use regular partitions of tetrahedra. By connecting the
midpoints of the edges of a given tetrahedron, as shown in Fig.2, we obtain four new
tetrahedra each of which corresponds to a vertex. The remaining octahedron is splitted
into four more tetrahedra. Special closures are applied to ensure conforming
triangulations2.

RESULTS

1. Constant model versus nonlinear model. Results from a simulation with constant-rate
blood perfusion are compared with those of  temperature-dependent blood perfusion
applying no grid improvements. The maximum tissue temperatures at the steady state are
up to 2.7oC higher in the nonlinear case. In contrast, the minimum tissue temperatures are
slightly lower except for tumor and bone. It can clearly be seen that the tumor
temperature rises higher than temperatures in normal tissue when the blood flow in
normal tissue becomes greater than that in the tumor (Tab.2).

Tissue Tmax Tmin

Linear
Coarse

Nonlinear
Coarse

Nonlinear
Adaptive

Linear
Coarse

Nonlinear
Coarse

Nonlinear
Adaptive

Fat 44.7 46.6 46.8 26.9 26.7 27.1
Tumor 45.9 48.6 48.8 38.3 40.0 40.2
Bladder 43.1 43.9 44.9 37.3 37.3 37.4
Kidney 37.3 37.5 37.7 37.0 36.9 36.9
Liver 37.3 37.2 37.2 36.9 36.7 36.6
Muscle 44.7 45.4 45.0 30.5 29.1 28.9
Bone 43.9 44.9 44.7 36.9 36.3 35.8
Aorta 39.0 39.7 40.3 36.7 36.5 36.5
Intestine 42.9 43.3 43.8 36.9 36.1 36.0

Table 2: Maximum and minimum temperatures of tissues.
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2. Coarse grid versus adaptive grid. The stationary temperature distribution from a
simulation with temperature-dependent blood perfusion using the coarse grid is compared
with the stationary temperature field computed with an adaptively improved spatial grid.
We observe significant differences in the tissue temperatures.  For example, the maximum
temperature increases by 1oC in the bladder and decreases by 0.4oC in the muscle tissue.

        

Fig.3: Coarse and refined grid with tumor boundary.

Fig.3 shows two cuts through the computational domain involving the tumor boundary to
give an impression of the local refinement process. The whole solution of the coarse grid
is evaluated with 8,416 degrees of freedom, while the refined grid has 103,233 degrees of
freedom. Starting with the coarse grid three refinement steps are necessary to reach a
tolerance of 2%. The corresponding uniform grid would have about 3,000,000 degrees of
freedom which demonstrates the power of the proposed adaptive method. We note that
local refinement controlled by a posteriori error estimates leads to a better resolution of
the solution in regions with high temperature gradients and material transitions.

Fig.4: Evolution of temperature along a line.

3. Evolution of temperature. To give an impression of the unsteady solution process, we
have plotted the temperature distribution along a special line through the body at several
times, see Fig. 4. The results are obtained employing the nonlinear perfusion model solved
by our adaptive approach. The computation starts with T = 37oC and reaches the steady
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state after approximately two hours. The local maximum near the left boundary (located
in the hip bone) appears rapidly while the heating of the tumor (in the middle of  the
picture) takes more time.

Fig.5: Optimized temperature distribution.

The proposed numerical method is used to optimize the electric field in order to ensure an
effective cancer therapy. The solution of such an optimized problem is shown in Fig.5.
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