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1 Introduction

The paper surveys recent progress in a joint mathematical-medical project on
cancer therapy planning. Within so-called regional hyperthermia the computa-
tional task is to tune a set of coupled radiofrequency antennas such that a care-
fully measured tumor is locally heated, but any outside hot spots are avoided. A
mathematical model of the whole clinical system – air, applicator with antennas,
water bolus, individual patient body – involves Maxwell’s equations in inhomo-
geneous media and a parabolic bioheat transfer equation, which represents a
simplified model of heat transfer in the human body (ignoring strong blood
vessel heat transport). Both PDEs need to be computed fast and to medical
reliability (!) on a workstation within a clinical environment. This requirement
triggered a series of new algorithmic developments to be reported here, among
which is an adaptive multilevel FEM for Maxwell’s equations, which dominates
the numerical simulation time. In total, however, the main bulk of computation
time (see Table 3 in Section 4 below) still goes into segmentation – a necessary
preprocessing step in the construction a 3D virtual patient from the input of a
stack of 2D computed tomograms (left out here).

1supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 273

1



2 Linear versus Nonlinear Heat Transfer Model

In a phased array applicator the antennas are grouped into k channels that can
be independently controlled. For each channel j the amplitude aj and phase
delay θj can be set. For convenience we define complex amplitudes

zj = aj exp(−iθj) j = 1, . . . , k (1)

The aim is to determine an optimal set of complex amplitudes for each
individual patient.

Bio–Heat–Transfer Equation. The heat transfer model used in our simu-
lations is the bio–heat–transfer (BHT) equation originally proposed by Pennes
[16]

ρc
∂T

∂t
= div (κ gradT )− cbW (T − Tb) +Qe , (2)

where ρ is the density, c and cb are specific heat of tissue and blood, κ is the
thermal conductivity; Tb is the blood temperature; W is the mass flow rate of
blood per unit volume of tissue, the so-called perfusion; Qe = 1

2 σ | E |2 is the
electromagnetic power density deposited in tissue; σ is the electric conductivity
of tissue, and E is the electric field.

The BHT equation describes the heat transport by blood in a potential flow
under the additional assumption that heat is exchanged between blood and
tissue only through capillaries [20]. In reality, a major part of heat exchange
will occur through stronger blood vessels – a topic, which is presently under
investigation.

A more realistic model is based on a nonlinear version of the BHT equation
taking into account that blood flow depends on tissue temperature. Experiments
[18] have shown that the blood flow in normal tissues, e.g., skin and muscle,
increases significantly when heated up to 41−43◦C, whereas in the tumor zone
the blood flow decreases with temperature. On this experimental basis, we chose
W = W (T ) monotonically increasing in muscle and fat tissue, but monotonically
decreasing in tumor tissue (for details see [13]).

Optimization Algorithm. In the following we focus on the stationary BHT
equation. In a hyperthermia treatment the steady state is typically reached
after 20 - 30 minutes and maintained for 40 - 60 minutes.

Our goal is to control the complex amplitudes zj such that an effective
hyperthermia therapy is achieved. In medical terms, a favorable temperature
distribution is characterized as follows:

• within the tumor a therapeutic temperature level Tth ≈ 43◦C should be
maintained,

• regions of healthy tissue should not be heated above Th ≈ 42◦C,

• temperature in healthy tissue should not exceed certain limits Tlim de-
pending on the tissue type: 42oC for more sensitive tissue compartments
(like bladder, intestine) and 44oC otherwise.
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From this we arrive at the objective function

f(p) =

∫
x ∈ Vtumor
T(x, p) < Tth

(Tth − T (x, p))2 dx +

∫
x �∈ Vtumor
T(x, p) > Th

(T (x, p)− Th)
2 dx (3)

to be minimized subject to the constraint

T (x, p) ≤ Tlim(x) , x �∈ Vtumor .

where p = {� zj,� zj} denote the control parameters.

In the linear heat transfer model superposition of the electric field E into
k modes can be employed, which in Qe ∼ | E |2 leads to k2 basic modes to be
computed in advance, plus one further mode for the basal temperature Tbas.

In the nonlinear case, we construct some (cheap) fixed point iteration in
terms of perfusion iterates Wm corresponding to iterates pm.

optimization algorithm for the nonlinear BHT equation:

k Maxwell solves: Ej(x) per channel j = 1, . . . , k

superposition E(x) =
k∑

j=1

zjE
j(x) , zj ∈ C

control parameters p = {� zj,� zj}

Qe(x) =
1
2σ(x) | E(x) |2= 1

2σ(x)
k∑

j,l=1

γjl(p)E
j
(x)El(x)

γjl(p) ∈ P2(p)

for m = 0, 1, . . . , n : given pm

one nonlinear BHT solve for E(pm)

supplies iterates Tm and Wm = W (Tm)

k2 + 1 linear BHT solves with Wm:

Tm
bas(x), Tm

jl (x) from 1
2σ(x)E

j
(x)El(x) j, l = 1, . . . , k

superposition T (x, p,Wm) = Tm
bas(x) +

k∑
j,l=1

γjl(p)T
m
jl (x)

T (x, p,Wm) ∈ P2(p)

f(p) ∈ P2(T ) ∈ P4(p)

optimization f(p) = min supplies pm+1

The above fixed point iteration exploits the fact that the Maxwell solves
are considerably more expensive than the BHT solves. It converges fast with
an observed contraction factor of θ ≈ 0.3. In the nonlinear case the total
computational cost is then

costtotal = k ∗ costMaxwell +

n ∗ (costnlBHT + (k2 + 1) ∗ costlBHT + costOpt) (4)
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where the notation costMaxwell, costnlBHT , costlBHT and costOpt is self-ex-
plaining. In typical computations we need about n ≈ 6 optimization iterations.
In the linear case the total cost is reduced to

costtotal = k ∗ costMaxwell + (k2 + 1) ∗ costlBHT + costOpt (5)

The Maxwell solver will be described in Section 3 below. For the linear BHT
equation we apply the additive multilevel algorithm KASKADE [4, 8]. For the
nonlinear BHT equation, the algorithm KARDOS [13] has been selected.

Figure 1: Optimized temperature distributions in a frontal section of the pelvic region,
based on the linear model (left) and the nonlinear model (right). Black lines: body
outline and tumor contour. Light grey to dark grey: regions heated above 39�C to
43�C.

Model Comparison. Our simulations show significant qualitative differences
between the temperature distributions predicted by the linear and the nonlin-
ear heat transfer model, as illustrated in Fig. 1. Generally speaking, the self–
regulation of healthy tissue reflected by the nonlinear model reduces ”hot spots“
caused by local maxima of the absorbed electromagnetic fields. This is one rea-
son for a slightly better tumor heating (ca. 0.5◦C) predicted by the nonlinear
model. An analogous result is reported in [19] for ferromagnetic thermoseed
hyperthermia. An important finding is that the nonlinear model has an impact
on the optimal treatment parameters as well. Maximal discrepancies turned out
to be 22◦ for the phases θj and 0.22 for the relative amplitudes aj . See [13] for
a more detailed discussion.
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3 Electromagnetic Field Computations

As mentioned above, the electromagnetic field computations (Maxwell solves)
dominate the numerical work – which, by the way, itself is dominated by the
segmentation work (compare Table 3).

Finite Element Formulation. As the hyperthermia applicator is working
with a fixed angular frequency ω, our field computations are based on the time-
harmonic Maxwell’s equations. The electric and magnetic fields E and H have
the representation E(x, t) = ReE(x)eiωt, H(x, t) = ReH(x)eiωt, where E(x)
and H(x) are complex amplitudes defined on a computational domain Ω ⊂ R3.

In our application we are dealing with linear isotropic dielectric media with-
out free charges. We start with the well-known double-curl equations for the
electric field E

curl
1

μ
curlE− ω2εE = 0 , (6)

where μ is the permeability and ε = ε′ − iσ/ω represents a complex dielectric
constant related to the generic dielectric constant ε′ and the conductivity σ. For
the current density j, Ohm’s law j = σE can be assumed.

Homogeneous Dirichlet boundary conditions for the tangential components
of E define the metallic surfaces of the antennas, where a perfectly conduct-
ing material is assumed. Nonhomogeneous Dirichlet conditions are applied at
the central antenna gaps, representing a prescribed voltage of the power gen-
erators. The computational domain of interest consists of a sphere covering
patient model, water bolus and antenna array. On the surface of this sphere
Sommerfeld-type conditions according to [12] are applied. They preserve both
sparsity and symmetry properties of the finite element matrices.

According to the differential operator in (6), an appropriate space for the
desired solution, which accomodates the Dirichlet boundary conditions (stated
as Et = E0

t on ΓD) is given by

HΓD (curl ,Ω) := {w ∈ (L2(Ω))3 ; curlw ∈ (L2(Ω))3, wt = E0
t on ΓD} .

The related space for homogeneous boundary conditions wt = 0 will be denoted
by HΓD ;0(curl ,Ω). In this space, a variational formulation for the desired field
E reads: Find E ∈ HΓD(curl ,Ω) such that for all w ∈ HΓD ;0(curl ,Ω)∫

Ω

{ 1
μ
curlE curlw − ω2εEw} dΩ −

∫
Γext

β(n×E) (n×w) dΓ = 0 . (7)

The second integral describes a contribution on the exterior surface, where β > 0
is related to the wave vector of the outgoing field (see [12]). Observe that for
non-vanishing σ the bilinear form occurring in (7) is coercive and the problem
has a unique solution (cf. e.g. [7]).

To obtain a conforming finite element discretization for (7), we generate a
tetrahedral triangulation Th of our domain and employ Nédélec’s curl –conform-
ing finite elements of lowest order [15], also called Whitney 1-forms or edge
elements [5]. For a vector field E the degree of freedom Ee associated with each
edge e in Th is given by the path integral

Ee =

∫
e

E · t ds (8)
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along the edge e with tangent vector t. The convergence behaviour of such
discretizations for (7) is studied in [14].

Edge elements possess several distinct advantages: they guarantee the de-
sired continuity of the tangential components of the electric field and are well-
suited to suppress unwanted spurious modes [6]. Concave metallic edges and
internal boundaries between materials with jumps in the coefficients can be
incorporated in agreement with the physical continuity relations of the fields.

An outstanding feature becomes apparent with regard to the nullspace of the
curl -operator. In terms of physics, this nullspace comprises irrotational fields
which can be written as gradients of potentials. Whenever a vector field Eh is
given in the Nédélec space NDh on the triangulation Th, then its irrotational
part Ep is the gradient of a discete potential Φh, with Φh lying in the space of
piecewise linear continuous finite element functions Sh on Th. Thus for Eh ∈
NDh we obtain a discrete Helmholtz decomposition

Eh = Ehp +Ehs , Ehp = gradΦh with Φh ∈ Sh ,

where Ehs denotes the solenoidal part of Eh (for a detailed description we refer
to Hiptmair [11] and Beck et al. [2]. This decomposition with directly
accessible potentials Φh is of crucial importance for the construction of efficient
solvers for the arising linear systems.

Linear System Solution and Multilevel Preconditioning. The varia-
tional formulation (7) yields a sparse linear equation system Au = b with
complex symmetric and indefinite matrix A. Due to Nyquist’s theorem, typical
”coarse“ grids in our virtual patient models already comprise approximately
100,000 degrees of freedom.

Considering the bilinear form in (7), it is apparent that the nullspace gradSh

of the curl -operator is shifted to eigenvalues with negative real part. This is
also the case for a certain (typically much smaller) number of modes in its
orthogonal complement ND⊥

h with respect to NDh. Since the dimension of the
nullspace is quite ”large“, an iterative solver should provide means for tackling
the modes within this space, which are inaccessible to standard smoothers.

As a basic solver we use the conjugate residual (CR) method, which is simi-
lar to the well-known conjugate gradient algorithm, but adjusted to symmetric
indefinite systems [10]. For preconditioning we set up a hybrid smoothing pro-
cedure, whose prerequisites are analyzed in detail in [2, 3]. Its basic operations
are Gauss-Seidel sweeps both in the Nédélec space NDh, coping with the ellip-
tic part of A, and in the nullspace. Within this framework, efficient transfer
operators between field representations in Sh and NDh are essential.

If we represent a vector field Ehp in the nullspace by Ehp = gradΦh, then
the representation in NDh can be obtained easily from (8):

Ee =

∫ P2

P1

gradΦh · t ds = Φh(P2)− Φh(P1) .

Here P1 and P2 denote the positions of the endpoints of the edge e.
In the follwing PSh

denotes the transfer operator from the potential space
Sh into the Nédélec space NDh on Th. P ∗

Sh
will denote the adjoint operator,
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defining the canonical restriction. Then the smoother AS for the nullspace is
constructed by the Galerkin product AS = P ∗

Sh
APSh

. The following hybrid
smoothing algorithm for a given right hand side vector r ∈ NDh will provide an
updated solution vector u ∈ NDh via the following steps:

(1) One Gauss-Seidel step for Au = r
(2) r̃← r −Au
(3) rS ← P ∗

Sh
r̃

(4) uS ← 0
(5) One Gauss-Seidel step for ASuS = rS
(6) u← u+ PSh

uS

In order to obtain a symmetric preconditioner, a subsequent step of the adjoint
procedure has to applied. Note that both spaces are treated in a “multiplica-
tive” fashion (speaking in terms of domain decomposition methods). As an
alternative, we propose a symmetric additive version:

(1) One symmetric Gauss-Seidel step for Au = r
(2) rS ← P ∗

Sh
r

(3) uS ← 0
(4) One symmetric Gauss-Seidel step for ASuS = rS
(5) u← u+ PSh

uS

If we employ adaptive mesh refinement, thus creating a sequence of nested
triangulations T0 ⊂ T1 ⊂ . . . ⊂ Th, the extension to a multilevel solver is
quite straightforward. Taking into consideration that the associated sequence
of Nédélec spaces is nested, i.e. ND0 ⊂ ND1 ⊂ . . . ⊂ NDh, we may adopt the
classical multigrid idea [9] by using canonical grid transfer operations between
these spaces, but employing a hybrid smoother on each level. Now the basic CR
algorithm is preconditioned by one multiplicative V-cycle within each iteration.
For detailed examinations of its convergence behaviour we refer to [2].

To assess the efficacy of our algorithmic concept, we present an example from
our applications. As Table 1 shows, the solvers with hybrid smoothing exhibit
a superior performance and do not deteriorate with increasing refinement level.
Note that we have no direct factorization available on the coarse grid, thus facing
comparatively large iterations counts. A proof of optimal multigrid complexity
of this type of algorithm can be found in [2, 11].

Ref. Nodes #Iter CPU [min]

Depth Std M-Hyb A-Hyb Std M-Hyb A-Hyb

0 128 365 4250 354 413 150 24 20
1 373 084 4832 265 277 800 76 60
2 1 085 269 > 10000 186 194 > 2000 215 160

Table 1: Convergence history for multilevel solvers with standard Gauss-Seidel (Std),
multiplicative (M-Hyb), and additive (A-Hyb) hybrid Gauss-Seidel smoothing on each
level. The iteration is terminated if the ratio of the euclidian norms of residual and
right hand side is below 105.
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Adaptive Mesh Refinement. Due to the complex geometrical structure and
strongly varying material properties of our finite element models, we consider
adaptive mesh refinement to be of crucial importance to ensure both efficiency
of our algorithm and reliability of our computational results.

For steering the local refinement, we employ a hierarchical local error indi-
cator in the spirit of [8] which renders asymptotically correct error estimates
in the case of self-adjoint problems [2]. As we are dealing with equations of
partly hyperbolic nature in this context, it is clear that a local estimator cannot
capture far-reaching field contributions so that we prefer here the term error
indicator ([1]).

In order to obtain a hierarchical extension of the lowest-order edge element,
we use basis functions as described in [17], including polynomials up to second
order. If λi denotes the barycentric (i.e. linear Lagrangian) shape function
associated with vertex i, then the vector basis function of the lowest order
Nédélec space associated with edge {ij} may be written as

wL
{ij} = λigradλj − λjgradλi .

When adding the hierarchical surplus, we have one more degree of freedom on
each edge

wH
{ij} = λigrad λj + λjgradλi

and two additional ones on each face (with vertices i < j < k) of the triangula-
tion:

wH,1
{ijk} = λiλjgradλk − λiλkgradλj , wH,2

{ijk} = λiλjgrad λk − λjλkgradλi

For the discrete global problem we obtain an extended system

(
ALL ALH

AHL AHH

)(
EL

EH

)
=

(
bL

bH

)
, (9)

where the superscript H denotes components of the hierarchical surplus. For the
mere purpose of error indication, we solve (9) only approximately via a defect
equation for the hierarchical components:

AHH EH = bH − AHL EL . (10)

An approximate solution of (10) may be obtained via one block-Jacobi step
only (!), where it is essential to keep the 2 × 2-block-entries of both functions

wH,l
{ijk}, l = 1, 2 , attached to each face of the triangulation (see [2]) for details).

At first glance, this block-Jacobi sweep appears critical, as the matrix contains
negative eigenvalues and the related eigenmodes may be amplified. However,
the modulus of all negative eigenvalues being comparatively small, these modes
can be expected to give only minor contributions.

For the purpose of measuring field energy and discretization error, we define
the following norm (asterisks ∗ denote complex conjugates):

‖v‖2E :=

∫
Ω

{ 1
μ
curl v curl v∗ + ω2εv v∗} dΩ +

∫
Γext

β(n× v) (n × v∗) . (11)

8



Table 2 gives the percentage of the relative discretization error

η = 100 ·
‖
(
EL

EH

)
−
(
EL

0

)
‖2E

‖EL‖2E

for the different refinement levels.

Ref. Level Nodes η

0 128 365 10.1 %
1 373084 4.96 %
2 1 085269 2.54 %

Table 2: Estimated discretization errors.

4 Old versus New Hyperthermia Applicator

During the past ten years the applicator most frequently used for regional hy-
perthermia was the Sigma-60 applicator of BSD Medical Corp., Salt Lake City,
Utah (see Fig. 2). This applicator consists of eight antennas arranged on a ring
with 60 cm diameter. The antennas are grouped into k = 4 channels which
can be independently controlled. The space between the antenna ring and the
patient’s body is filled with a so-called water bolus containing de-ionized water.

The new Sigma-Eye applicator (see Fig. 2), partly based on results of our
simulations, was introduced in the beginning of 1998. It has 24 antennas (hence
k = 12 channels) arranged in three parallel rings thus allowing for an additional
power steering along the patient’s axis. The much smaller bolus volume has an
”eye“-shaped cross-section.

Figure 2: Sigma-60 applicator (left) and Sigma-Eye applicator (right).

In what follows we document some comparative results for both the old
and the new applicator. Table 3 shows the computation times for the whole
simulation process, based on the linear BHT as heat transfer model. Note that
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the field calculation time per channel of the Sigma-Eye is about 10 minutes
compared to about 20 minutes for the Sigma-60, essentially due to the smaller
bolus volume. As explained in Section 2, the temperature calculation times
roughly depend on k2.

Sigma-60 Sigma-Eye

k = 4 k = 12

Segmentation 2 - 4 hours∗

Grid Generation 15 min∗∗

Field Calculation 80 min∗∗ 120 min∗∗

Temperature Calculation 2 min∗∗ 20 min∗∗

Optimization 6 sec∗∗ 1 min∗∗

∗ interactive

∗∗ CPU time (SUN UltraSparc)

Table 3: Computation times for the whole simulation process.

Table 4 summarizes simulation results for three patients with typical tumor
locations. Obviously, the new applicator significantly improves tumor heating
in all cases while keeping ’hot spots’ in healthy tissue at a constant level or
slightly reducing them. The second location is the most difficult one since the
tumor is to a large extent enclosed by bony structures.

part of tumor volume

heated to above 43�C

Sigma-60 Sigma-Eye

(old) (new)

distal (supraanal) 17.5% 62.5%
rectal carcinoma

highly presacral 0.7% 18.4%
rectal carcinoma

cervical carcinoma 24.8% 49.1%
at pelvic wall

Table 4: Comparison of old and new applicator for three patients with different tumor
locations.
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5 Conclusion

The simulations reported herein are based on a virtual patient model that in-
volves detailed individual geometry (patient, applicator, antennas) and correct
electrical material properties, but only average values for the biological param-
eter perfusion. Even with this restriction, our simulations seem to be already
helpful in the decision, whether regional hyperthermia is a promising modality
for an individual patient. Beyond that, the developed methods also support the
design of new applicator geometries and of new special purpose antennas.
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