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Fast Generation of Virtual X-ray Images
from Deformable Tetrahedral Meshes

Moritz Ehlke, Heiko Ramm, Hans Lamecker, Hans-Christian Hege, and Stefan Zachow

AVA U AV

Fig. 1. From left to right: Deformable tetrahedral model of the pelvic bone enriched with density information, virtual X-ray projection
of the mean model, two projections of the deformed model showing variation in both shape and density.

Abstract— We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These
meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical
shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic
bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections
are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy
depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral
meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density
distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our
novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with
respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU
scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles
in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach
contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better
planning joint replacements.

Index Terms—Digitally reconstructed radiographs, volume rendering, mesh deformation, statistical shape and intensity models,
image registration, GPU acceleration
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1 INTRODUCTION

Despite the increasing availability of 3D image acquisitimeth-
ods like computed tomography (CT) or magnetic resonancgiiga  The computer-aided reconstruction of a patient’s 3D angptoased
(MRY), traditional 2D X-ray projections (in the followingny called on a single or few X-ray images has therefore received istngdn-
X-ray imagesor X-ray9 are widely used for diagnosis or treatmenterest in recent yeard [21, 23, 24]. Zheng et al. 24] for example

ambiguities are hard to resolvé7).

planning in orthopedics. X-rays are especially suited tiggion the
condition of bony structures, since bone is well distingatse from
surrounding soft tissue in the images. They are mandatarirfag-
ing of weight-bearing situations and are applied for dyraimiaging
of joint motion (fluoroscopy), neither of which can be penfied in
tomographic imaging. In addition, 2D X-ray imaging is wigelvail-
able, rather inexpensive and exposes patients to lesgiced@om-
pared to CT.

The reduction of dimensionality occurring while taking array,
however, can lead to ambiguities in the image. In generabroen-
ing the 3D anatomical structure and pose from a single 2DyXifma
age is an ill-posed problem. There are often uncertaintiesXample
regarding the distance of an anatomy from the X-ray sourckitan
scale (out-of-plane error). Structures project such their torder of
appearance along the beam direction and their separatiom éach
other remains unclear. Even for an experienced human arsénese

* The authors are with the Department Visualization and Datalysis,
Zuse Institut Berlin (ZIB), Berlin, Germany.
» E-mail: {ehlke, ramm, lamecker, hege, zach@zib.de.

showed that by pose estimation of the pelvis from a singleéopes
erative X-ray, its cup orientation with respect to the aotepelvic
plane can be predicted accurately. Their method aims ai&vady to-
tal hip replacement, where the assessment of the cup di@nfdays
an important role in the verification of the surgical outcon@ther
applications include the diagnosis of osteoporosis froml-énergy
X-ray absorptiometry (DXA) 21] or knee-joint motion tracking from
a series of fluoroscopic images without a-priori knowledgewa the
patient-specific anatomy (e.g. CT).

A common concept of many 3D reconstruction approaches is to
project a large amount of variations of a 3D shape onto thegéma
plane, assuming an X-ray acquisition setup, i.e. a relgtosstion of
an X-ray source to a detector of particular size. The primastare
then compared to a patient’s clinical X-ray to find the prtgelcshape
that best represents the 2D information depicted in theente im-
age. This shape is assumed to be the best approximation tiuthe
3D anatomy.

We are developing an anatomy reconstruction frameworketmat
ploys a shape and intensity based registration approahid€a is to
increase the robustness of the reconstruction processisjdesing as
much information about the anatomy of interest in the refegeX-ray
as possible, including the interior density informationapfatomical
structures. For this purpose, we project virtual X-ray ieggoften



Fig. 2. A 3D model of the proximal femur (upper thigh bone) that incor-
porates volumetric density information (a). Compared to a projection of
contour lines (b), a virtual X-ray (c) depicts the internal density structure
of the bone and therefore better resembles the femur in the clinical
X-ray (d).

referred to as digitally reconstructed radiographs (DRRejn many
variations of a volumetric tetrahedral mesh with assodid&nsity in-
formation. The mesh is deformed prior to each projectiorhghat
it represents plausible candidates for a patient-spetiéipes and den-
sity distribution of the anatomy of interest. Our methodrekes for
the best candidate fit by comparing the anatomy’s X-ray atgon in
the clinical X-ray to the pixel intensities of the virtual b&y.
Intensity-based registration methods are known to be piolueal
optima due to the non-convex nature of the similarity meas(see for

approximating bone by a homogeneous material. They coadhet
the evaluation of intensity information improves the restonction but
that thickness images do not sufficiently represent therbgéaeity
of bony structures. One solution is to render high-resofuCT-like
atlases that contain density information of the anatomyntéréest.
In [19] for instance, DRRs are generated from deformable hexahe-
dral grids modeling the proximal femur. These projectioresraore
suitable for intensity-based comparison to clinical Xs;agince they
mimic the X-ray absorption in inhomogeneous anatomicaicstires.
However, a dense sampling of intensity information in tHaesais re-
quired to accurately project bone mineral density, thusat#igg the
performance of the deformation and projection. GPU-basdainve
rendering techniques have been shown to accelerate theatjeneof
radiographs from hexahedral gridg.[

With Fourier volume renderingd], a method has been proposed
to efficiently generate DRRs from datasets of high resautibhese
techniques require a transformation of a deformed CT-ltkesanto
the frequency domain, e.g. through a fast Fourier transf@#rRir).
Since the model is deformed frequently but typically only fpro-
jections (often only one or two) are generated per deformedatn
Fourier rendering becomes impractical for the reconstragirocess.

To overcome the limitations of CT-like atlases, an adapsam-
pling of the interior densities of anatomical structuremgsinstruc-
tured meshes has been suggested. & proposes higher-order
Bernstein polynomials as an efficient way to encode densifyr4
mation on tetrahedral meshes. He represents anatomigells&s as

example 12]). Our framework evaluates many anatomical shape cafieformable point distribution models (PDM) that incorgereensity

didates in order to improve the reconstruction quality bgnitfying
the best among several locally optimal solutions. It conseatly has
to produce large quantities of virtual X-rays (e.g* b® more images).
An essential goal therefore is to quickly compute both defmt volu-
metric geometries and their corresponding projectionadtition, the
virtual X-rays should depict the density information of greatomy of
interest as accurately as possible to allow for intensitgeldl compar-
ison with the clinical X-rays.

values learned from CT data. In addition, Yao suggest a C&iddh
projection algorithm that respects the non-linear dendiggribution
in each tetrahedron and generates virtual X-rays for iitiebsased
reconstruction processes.

Sadowsky et al.14, 15 build upon the idea of Yao and simulate
X-ray images using a projected tetrahedra (PT) approagh [Their
algorithm makes use of two observations: First, the tettehean be
processed independently from each other and do not have picobe

This paper presents a GPU-only method that achieves thede gdected in visibility order. Second, barycentric coordmaystems can

and thereby enables fast and robust intensity-based ggoneebn-
structions from X-rays. Its main contributions are:

be applied to integrate the Bernstein polynomials in cldset and at
the same time classify the projected outline of the tetresnethe out-
line classification is used to tessellate the projectedtetira and to

« A GPU-algorithm for fast rendering of tetrahedral meshéth w detérmine ray parameters in barycentric and world cootean the

higher-order polynomial density functions. Our approaith-s
plifies the tessellation of tetrahedra and can be implendeoite
the GPU without any explicit branching or looping (Sect#)n

front-facets of the individual tetrahedral cells. In thagment shader
stage of the graphics hardware, a perspective correctiamanésm
is applied to obtain the respective back-facet paramefehg. poly-
nomial density functions are then integrated in closed farmd the

« A method that varies (deforms) both anatomical shape and dé@verall X-ray attenuation is accumulated in the framebudfeeording

sity information on the GPU and concurrently generatesiairt
X-ray images from the deformed anatomy model (Secon

» A comparison to existing projected tetrahedra (PT) apgres.
Our method achieves comparable quality to ground truth
higher frame rates (Sectiaf).

We present first promising results of our novel method withia
developed 3D reconstruction framework in Secim conclusion is
given in Sectior®.

2 RELATED WORK

Existing approaches for the reconstruction of 3D anatoromnfK-ray

images often employ deformable surface models in comhinatith

contour-based distance measurk<2[ 23, 24]. Although contours or
silhouettes of 3D anatomical models can be computed vegiexitly,

their correspondent is often difficult to extract in the wdual pa-

tient’s X-rays. Using contour information only neglectspiontant in-

formation on the interior structures (i.e. bone densityyr iRstance,
cortical (compact) bone that typically forms the outer hafla bony

anatomy has a much higher X-ray absorption than spongy étlans)

bone inside (cf. Figur@).

to the Beer-Lambert law of attenuation (see Equatipn

The implementation presented by Sadowsky et al. perfornis bo
the deformation of the tetrahedral volume as well as thesifles-
tion of its projected outline on the CPU. Consequently, thengetry
ahd density information has to be copied to the GPU memosr aft
the model is altered. Although GPU implementations for sifgs
ing projected tetrahedra existl(, 11], they introduce branching and
looping operations that have a negative effect on the dvenadiering
performance. The method proposed here instead adaptsehenid
cell-based ray casting[20] and relies on efficient ray-tetrahedron in-
tersection tests in barycentric coordinates without priassification.
Moreover, we propose a method to combine both the deformatio
tetrahedral meshes as well as their projection on the GPU.

3 BACKGROUND

The overall attenuation encountered by a monochromatiayeam
p(X) = Win + (Wout — Win) - X passing through tissue is described by the
Beer-Lambert law:

lout = lin- e Jeo AW AW

()

wherelin/lout are the input/output intensities of the beamg, andwoyt

Lamecker et al.g] propose a method for 3D shape reconstructioare the entrance and exit points, gmé- a(w) denotes the linear at-

that generates thickness projections of a deformable curfzodel,

tenuation coefficient of some homogeneous tissue encathbsrthe



Fig. 3. Actual density distribution from CT data (a) and its approxima-
tions with Bernstein polynomial density functions of degree d = 1 (b),

d=2(c) and d = 3 (d). The non-linear gray value distribution of the CT
dataset is better approximated by polynomials of higher degree.

ray at pointw. The functiona is referred to as thdensity distribution
of an anatomical structure.

Following previous work 14, 15], we cast a monochromatic beam
from the X-ray source to each pixel in the image plane. Theiapa

location of the source corresponds to the camera positian per-
spective projection of the anatomy, where each pixel isgassi the
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Fig. 4. Ray parameters on a single tetrahedron. The ray originates at
the source eeye beye intersects the tetrahedron at win,en,bin, traverses
the tetrahedron by length wiength and exits at the point Woyt, €ut, Dout- The
letter w stands for world coordinates, e for normalized eye coordinates,
and b for local barycentric coordinates.

3.2 Statistical shape and intensity models (SSIMs)

An SSIM, as employed in this work, is a statistical model afghand
intensity (or density) that is generated from a set of trgjnineshes
by means of a principal component analysis (PCA). Each itrgin
mesh represents a patient-specific anatomy according tettae-
dral model described in the previous subsection. The SShibawes
the mean shape and density of all training data and theiifgpeari-
ations, which are expressed in the PCA eigenvectors. Wee rigs

intensity loyt of its associated beam after attenuation by the anato
cal structure. Artifacts, however, that may occur due tdtsgag or
beam hardening, are not considered in this attenuation imode

Motation of Yao 22], who describes an SSIM as:

Y=Y+Pr (5)

3.1 X-ray attenuation in tetrahedral meshes Here,Y = [Ys,Y,] denotes an SSIM instance (i.e. a representative
We model anatomical structures using tetrahedral mestesdiog to  of the training set) with tetrahedral vertex positiogsnd coefficients
the proposal of Yao 42]. Each cell in the mesh is associated with on&y to Bernstein polynomial density distributions of a fixed ug Y
Bernstein polynomial function that describes the densigyribution  represents the mean model &ds the eigenvector matrix that holds
at its spatial location in the anatomy. information about the anatomical variation of the traindea. The

A Bernstein polynomial of degresis parametrized per tetrahedronnumber of eigenvectors (and parameters) depends on theenwhb
t by Bernstein coefficients; = {ci j x } with i + j+k+1 = d. Given training data that are incorporated into the SSIM and theerts of
a pointb = (by, by, by, bW)T in local barycentric coordinate spacetpf the eigenvectors are related to the deviation from the geeshape

the corresponding linear attenuation coefficient caleslats and density distribution. The mean model is deformed bycselg
values for the deformation parameterand evaluating Equatiorby.

To reduce the model’s parameter space, only a subset ofveictens

d
a(b) = " Zl_d[c'=1=k~' B i ki (D) @ canbe regarded during deformation, e.g. those eigeneetiat de-
= scribe the largest variability in the training data. Usihg full set
where of deformation parameters leads to the maximum level ofildtzt
q d! i o instances of the SSIM may exhibit.
Bijki(b) = Tk (bx)' (by)! (b2)"(bw) 3 We apply this type of deformable volumetric model since SSéve

capable of representing a set of anatomical shapes withiatss den-

is the Bernstein basis function of deg:e sities in a compact form and allow for a plausible intergolatvithin
The amount of Bernstein coefficients assigned per tetrahedie- this set. However, SSIMs do depend on the choice of trainaig d

pends on the degree of the polynomial that is used to destribe that are integrated therein. An SSIM cannot represent asgipie

density distribution: || = (94%), with n = 1,4,10,20 for degrees patient-specific anatomy in full detail but will rather be gpeoxima-

d = 0,1,2,3 respectively. By applying higher polynomial degreedjon. Pathologies, for example, are not expressed by theeondless

non-homogeneous density distributions can be expressadsingle
tetrahedron (cf. Figur8).
To accumulate the attenuation encountered by ap(ay passing

they are not explicitly contained in the training data. SSlafe well
suited for application scenarios such as pose estimatidor @n ex-
traction of anatomical landmarks or mechanical axes, wagrerfect

through a tetrahedron (cf. Figu# the Bernstein polynomial density representation of the patient-specific anatomy is not isacgs

distribution is integrated along the ray:

bOUt
JRCICE T Sy Coy O
p(x) i+j+kH=d b

in

We refer you to Yao's work for a detailed closed form solutioin
Equation 4).

4 GPU-BASED ALGORITHM FOR PROJECTING MESHES

According to Equationsl) and @), the total attenuation encountered
by an X-ray depends on the ray traversal lengihgth = ||Wout — Win |
and its entrance and exit points in local barycentric comtdish;, and
boyt for each tetrahedron that is intersected by the ray (cf.reidu In
addition, the Beer-Lambert law states that the total attBon equals
the accumulated contributions of all tetrahedra along dlgeirrespec-
tive of the order they are traversed ("visibility order’)uOGPU-based



Fig. 5. Intersection of an X-ray with a cell (e.g. a triangle). The ray
originates at the X-ray source beye and traverses the cell between bjy
and boyt with direction braydir = Deyedir-S. Our intersection test determines
three candidates for s that correspond to the intersection points with
cell edges. Discarding the entrance point itself, the correct solution for
s=g; is located at minimum distance to the X-ray source.

algorithm for simulating X-ray attenuation in tetrahedna¢shes ex-
ploits these properties by independently processing estciihedron
of the mesh in parallel.

We stream the tetrahedra and corresponding Bernstein quoigh
coefficients through the per-vertex, per-geometry andfiagment
stages of the graphics pipeline. The entrance parametehe ohys
on the front-facets of the tetrahedra, suctbgsare interpolated lin-
early between tetrahedral vertices. The rays’ exit pararabg,: and

their traversal depthsiengnare computed in the fragment stage using

direct ray-facet intersection tests in barycentric cauaités. Both the
entrance and exit parameters are then applied to intedp@i@ernstein
density functions, cf. Equatior), in closed form using per-fragment
operations, as proposed by Sadowsky et al. i#].[ The contribu-
tions of all individual tetrahedra are finally blended tdgatto form
the virtual X-ray image.

4.1 Computing the rays’ entrance parameters

In a first processing steper-vertexoperations transform the tetrahe-
dral vertices into normalized device coordinates and eyedinates
(). The vertex positions are then handed to the per-geometry p
cessing stage together with the Bernstein coefficientseofebpective
tetrahedron.

The per-geometry operations construct the  matrix
M = [ep, €1, €, €3). Its inverse M~1 is a linear transformation
that projects eye coordinates into the local barycentriordioate
space of the respective tetrahedron. The method of Sadogtskly

4.2 Computing the rays’ exit parameters

Given the front-face parametebs, Deyedir and €eyeqir Of @ ray, the
goal is to find the exit parameter in barycentric coordinbggsand the
traversal lengthviengtn (cf. Figure4). In the following,bj j denotes the

jth component of the vectds. Keeping in mind that local barycentric
coordinates of a tetrahedron are non-negative and sum upetone

observe the following:

1. At least one component df, and of boyt equals zero, since
bin andboyt are located on the facet of a tetrahedr@ibin j =
Ovﬂj-boutﬁj =0.

. Inthe “regular”’ case, a ray enters and exits a tetraheaindwo
distinct facets, on opposite edges or on opposite vertitess
implies, that one zero component kaf, has a different index
than the zero component of the correspondigg: 3i.(bouti =
OAbin; > 0).

. As an exception from2), the ray might enter and exit on the
same vertex. In this case the traversal degthgn is zero and
the ray is not attenuated.

We model the ray between the barycentric entrance and exitspo
of a tetrahedron aaygir = bout — bin.  Since the vectordyaygir
and bgyegjr lie on the same ray of sighbyayqir can be calculated by
Praydir = Sheyedir With a positive factos. The barycentric exit coordi-
nates of a ray then compute as

Bout = bin + S beyedir (6)

According to (), we know that at least one componenthgfy is
zero. Consequently, there exist four possible candidates, iven
that the parameteis, andbeyeqir are known:

__bini
beyedi;i

S = (7)

Thes represent solutions for intersecting the ray with all faird-
hedral facets.

To find the correct intersectiog, all results withbeyegiri > 0 or
binj = 0 are ignored. Among the remaining candidates, the smallest

ositives is the correct solution fog (cf. Figure5). If no candidate is
ound, thers= 0 and thereforéj, = boyt. In the following section we
present a shader implementation that compatésusing only three
vector operations.

Once the transformation factsris determined, we use it to com-
pute the actual exit point of the ray on the tetrahedogi accord-
ing to Equation §). Given by, it would now be possible to de-
termineeyyt by applying the transformation matriM and determine

utilizes M1 in order to classify the projected tetrahedral outlina,vlength: ||€out — &n||. However, we propose a more efficient method
We applyM~* to compute four vectorBeyedis €ach pointing from pased on the fact thatalso scales the ray direction vector in normal-
the source (e.g. the eye position) to one of the four tetrahedized eye coordinates to the traversal length of the say gositive):
vertices:beyegir = bi — M-1. €eye An additional processing step then

determines their eye space correspondeBgRsir= Eeye— 6 = —6.

Note thateeye= (0,0,0, l)T- Wiength =  ||€ut— €l
Consecutive operations in the per-geometry stage triatguhe = [IM-(bout — bin)]|
tetrahedron into its four facets. The valuesbpf beyedir and €gyedir —  |IM- (Brav:
X . 3 - H ( raydlr)H
are assigned as parameters of the respective facet'segrfitiey are
linearly interpolated within the front-facets of the tdtearon, thus = |IM-s- (Deyedin |
making the perspective-correct entrance parameters ofyasl inter- S- ||€eyedir|

secting the tetrahedron available in the fragment stageutiliee the
culling functionality of graphics hardware to discard thsterization
of tetrahedral back-facets. The Bernstein coefficientpasted down oy algorithm CcompUteBlengtn according to Equatiors], apply-

the GPU pipeline as non-varying parameters. ing the interpolatecteyedir  Given boyt and Wiength, all parameters

In contrast to PT approaches, the triangulation of the hettea are available to solve the rendering integral, Equati®nif the per-
is view-independent. Our method does not determine a thagkt p fragment stage. The attenuation encountered by the rayers ré
(see [L5]) and avoids computing line intersections or sorting wedi turned as the fragment color and can be summed up (e.g. blende
into rendering order. with the contributions of other tetrahedral cells in the mes

8)



5 GPU IMPLEMENTATION

In this section, we first propose an efficient implementatdrour
algorithm to render static tetrahedral meshes with higider density
functions that was introduced earlier. The rendering jpieeis then
extended to deform the tetrahedral meshes in parallel orG#Pd.
We implemented the rendering pipeline based on OpenGLoress0,
featuring the OpenGL Shading Language (GLSL) as of versiod.4

5.1 Projecting tetrahedral meshes

In the following, we describe the rendering process for glsitetra-
hedral cell in the mesh. To generate the final image, i.e.raatate
the attenuation of all tetrahedra in a 2D texture, we set thenGL
blending functionality t@l Bl endFunc( GL_.ONE, GL_ONE), gl -

Bl endEquat i on( GL_FUNC_ADD) and bhind a framebuffer object
(FBO). Taking the exponential of the summed-up contrimgim the
2D textures is then performed in the post-processing stieg as ad-
ditional rendering pass.

We issue oneaL_PQO NT primitive per tetrahedron. The respec

tive tetrahedral vertex positions in world coordinates treBernstein
coefficients describing the density function are assigrsepagnt ver-
tex attributes. A vertex shader is executed once for evérghedron
(GL_PO NT primitive), and therefore has access to the four vert
coordinates. It performs the transformation into nornaizye and
device coordinate space. The transformed vertices and eéhesiin
coefficients are then streamed further down the renderipgjipk.

In the geometry shader stagd, ! is computed using the GLSL

i nverse() callonM = [ep, €1, e1, e3]. We experienced that under

_tex positions is computed in the vertex shader stage.

consecutively. Additionally, two vertex arrays hold thatst tetra-
hedral indices and the corresponding vertex indices. Tlhwand
height of the 2D eigenvector textures and the number of e&ygars
are handed to the shader stages as uniform parameters.

In the vertex shader stage, the mean values are extracted!ie
sanpl er Buf f er (TBO) using the current tetrahedral and vertex ids.
The normalized texture coordinates for accessing the eggtor tex-
tures are then precomputed, applying the uniform textudthnénd
height. Afterwards, the vertex shader varies both vertesitioms
and Bernstein coefficients according to Equatisn The “deformed”
tetrahedron is then projected in subsequent shader stgggsplying
the projection method introduced in the preceding section.

To avoid multiple deformation of vertices that are sharetivben
tetrahedra, a preliminary rendering pass is issued thatmetforms
the geometric deformation. Here, the OpenGL transform daekl

buffer is utilized to avoid data exchange between CPU and GPU

One primitive is rendered per vertex, and the deformatiothefver-
Théeimp
mentation discards the fragment rasterization using thenGp.gl -

Enabl e( GL_RASTERI ZER DI SCARD_NV) functionality. Rather
than putting the result on the screen, the deformed verécestored

irectly on the GPU. They are then bound to the shader pregyesm

vertex buffer objects in a second rendering pass. A diffevertex
shader program varies the Bernstein coefficients and pisceéth
the projection accordingly.

6 RECONSTRUCTION FRAMEWORK

certain views the matrid becomes nearly singular, for example wheWithin the 3D reconstruction process, the transformatiod defor-

the rendered mesh is located far from the source and cowernsixXels
in the image plane. This is not a problem in the reconstrodtiame-
work, as such situations won't occur in a clinical X-ray setOne
might alternatively use the 64Bit precision inverse operat on the
OpenGLdmat matrix types which eliminate the problem.

We compute-beyeqirin 0One vector operation, exploiting that the
are equal to zero in all but one component. A small offset deddo
the zero components of the afterwards in order to circumvent divi-
sion by zero in the fragment shader stage. The tetrahedaecism-
posed into its four triangle facets and thgh; and—Dbeyegirare linearly
interpolated in between the geometry and fragment shadgest

The fragment program performs the ray-tetrahedron intése

tests by solving fois 1 %b% rather thans. The correct inter-

mation parameters of the SSIM are optimized with respedteésim-
ilarity measure. Our framework utilizes a normalized muinéor-
mation metric (NMI) [L3] between the virtual X-ray projection of the
deformed/transformed SSIM and the clinical X-ray. We chinéél
instead of mean squared differences or other intensitgebasasures
since it is robust against overlapping structures andbatsfin the clin-
ical X-ray images that are not present in the virtual X-rays.

To further increase the robustness of the similarity exanawe
currently segment the anatomy of interest from surroundiof tis-
sue in the reference image and additionally mask out pagfesaand
implants covering the anatomy. The tissue (that does notagvevith
the anatomy in the image) is replaced by a black backgroucidl that
the reference X-ray more resembles a virtual X-ray prajectiThe
masked out regions in turn are ignored for the evaluatiomefsimi-

section ats™! is the maximum of all four possible candidates anghrity measure.

is extracted using tworax() calls. To obtainboyt andWiengtn, We The mean model of the SSIM is positioned roughly in the virtua
divide by s~ instead of multiplying withs;, cf. Equation 6) and X-ray setup to initialize the optimization process. A gexdidescend
Equation 8). Note that the intersection candidates igyi = 0 and method then searches for the best fit between virtual anaaliX-
Deyediri > 0 do not contribute to the overall attenuation singgngtn  ray. Before each optimization cycle, the gradient of theilsirity mea-
becomes (practically) zero or the corresponding' becomes nega- sure in terms of transformation and deformation paraméseprox-
tive and is therefore discarded. Finally, we utilize haodied multino-  imated based on finite-differences. We perform a line sealrig the
mial factors as proposed ift4] to solve the volume rendering integral, direction of the gradient to find an improved model fit, thagiagacts

Equation 4), in the fragment shader stage.

Our method requires less than four vector or matrix opematia
the geometry shader stage to compute all variables forllztse.
Compared to the PT method proposed by Sadowsky et 4. this
significantly reduces the number of per-geometry operatianile in-
troducing at most three additional fragment operations.

5.2 Combining deformation and projection

To deform and project a tetrahedral mesh entirely on the GPthtis-
tical model is varied in the vertex shader stage and thetieguhodel
instance projected in the consecutive stages. We storeShd B

the graphics hardware memory. Our implementation util2penGL

as an initialization for the next cycle. The method is désattiin more
detail in our previous workd].

The gradient descend method is prone to local optima ane teer
no guarantee that a global optimum of similarity is reachiemavoid
local optima in early stages of the optimization, we subdanthe
clinical X-ray images and perform the similarity evaluation a re-
duced image resolution while fitting the model with only a sethof
the deformation parameters. This prevents the optimiadtmm get-
ting stuck due to small and local image details. The resmiuis well
as the number of deformation parameters are increasedeindpti-
mization cycles, where it is important to consider finer imagtails
to enhance the model fit. Once a (local) optimum is found, asehef

TBOs to hold the mean vertex coordinatsand the mean Bernstein Cycles can be triggered to again widen the search windowramease
coefficientsy,,. Their components can be accessed using unique vert8g chance of reaching a better solution.

identifiers and unique tetrahedron identifiers respegtivel
The eigenvector components of the vertex positions and

Integration of the GPU solution

Bl

the Bernstein coefficients are each split in one textureyarr&\e deform and project the SSIM on the GPU after each parameter
(GL_TEXTURE_2D_ARRAY). Every eigenvector maps to exactly onechange and read the virtual X-ray image back to main memary fo
2D texture where the respective eigenvector componentstared similarity evaluation. The deformation parameters aradferred to



Fig. 6. A mesh of approximately 174 tetrahedra generated from the

dragon dataset for performance evaluation (a). Whereas individual
tetrahedra can be identified in virtual X-ray images generated with
density functions of degree d = 0 (b), they are not distinguishable in
d = 2 projections (c) due to a better approximation of the dragon’s
shape by higher-degree density polynomials.

the GPU prior to a deformation/projection of the model usintgx-

ture buffer object (TBO) and by setting the modelview mati¢

cordingly. Three rendering passes are then issued, implémgethe

GPU-processing steps described in SecborfFirst the vertex posi-
tions are deformed and written into the transform feedbadieh then

the density functions are varied and the deformed mesh jeqisal,

and finally the exponential is taken of the result accordathé Beer-
Lambert law.

Note that the SSIM is deformed and projected entirely on tR&/G
For every transformation/deformation cycle, only the defation pa-
rameters, the model view matrix and the rendered image ans-tr
ferred between main memory and GPU memory.

7 EXPERIMENTS AND RESULTS

We evaluated the projection algorithm and the combinedrdetton
and projection method in terms of their rendering speed. ithad
ally, we compared the rendering quality of our projectiopraach
to ground truth DRRs that were generated via ray-castinggdlar
scalar fields, given by CT datasets of high resolution. Tipegments
were performed on two computer systen8ystem-iwas equipped

an example). The spherical shape guarantees a constart@ireage
on the image plane when changing the viewing direction.

We recorded the rendering speed while rotating the camerandr
the data in 12 degree increments. Therefore, in total 3Geptions
were generated per tetrahedral mesh and polynomial degreefill
360° trajectory. The viewport of size 10b8howed a constant pixel
coverage of 75%.

The results are depicted in Figurefor System-land System-2
in terms of rendering time in milliseconds. Both implemeiatas
reach projection rates above 10 frames per second (fps) veineier-
ing meshes of up to 670k tetrahedra. However, our renderigtfoad
scales better with respect to the number of tetrahedre&8y@tem-for
example, the algorithm proposed in this work i5-2.7 times faster
than the PT method when rendering meshes of 468k8#l 2etrahe-
dra and density functions of degregés= 2 andd = 3. Our method
projects meshes of higher resolution, e.g. 1.2M tetrahaddedegree
d = 2, at frame rates above 40 fps.

7.2 Deformation and projection

We evaluated the rendering speed of our GPU-based defametid
projection approach in order to compare its performancerégipus
methods that deform the tetrahedral volume on the CPU. kpth-
pose, we created an SSIM from 47 CT datasets with an appréxima
resolution of 09 x 0.9 x 1mn? that were available from a previous
study [16]. For each dataset, a polyhedral model of the pelvis was
generated with vertex correspondences over all trainingsess. We
then transferred a reference volumetric mesh consistii@ok tetra-
hedra to each individual anatomy. After sampling the CT deéith
density distributions of all four polynomial degrees, weplgd the
PCA on the resulting 47 tetrahedral meshes, incorporatiagiénsity
information as described in SectiBr2

The combined deformation and projection performance ofirour
plementation was recorded @ystem-Iwhile rendering the SSIM
onto a 1008 viewport in anterior (frontal) view. A number of O to
46 eigenvectors were considered and 100 combined defanmsatind
projections issued for every set of deformation parametéfs ran-
domly chose the parameter values equally distributed mwité range
of the minimum and maximum values of the training data. To pro
vide a comparison to CPU approaches, we measured a mdteéad
(eight threads) deformation on the CPU as well as a hybrid /GPU
implementation of Sadowsky’s approach, in which the mosdirst

deformed on the CPU, and then projected on the GPU as dedcribe

with an NVIDIA GTX680 graphics card and a 2.67 GHz Intel Xeorpreviously. We applied the OpenMP framework to parallefiz de-

CPU with four cores (eight threadspystem-2vas featured with an
NVIDIA GeForce GTX 570 graphics hardware and a six-core lrere
threads) Intel Xeon CPU running at 3.47 GHz clock speed.

7.1 Rendering performance

Our goal in the rendering performance evaluation was to esenfhe

method of Sadowsky et allf] to our approach in terms of projec-

tion speed on the GPU. In the original implementation pregdosy
Sadowsky, the classification of the projected tetrahedrdine is per-
formed on the CPU, making a direct comparison of the two agugves
difficult. For that reason, we reimplemented the classificeas GPU
geometry shader programs, following the hardware-assiBiE ap-

proach presented irl]]. This way, Sadowsky’s original algorithm,

including the outline classification based on barycentodordinates,
was not altered and ported directly to the GPU. We employed QR
timizations such as hardware-accelerated vector and copsations
wherever applicable.

We tested the rendering performance on tetrahedral mesities
varying number of cells. The Stanfodilagort surface was first con-
verted into an artificial high-resolution voxel datasetrriggein poly-

formation such that each thread independently varies orteehoom-
ponent, e.g. a vertex position or Bernstein coefficient,taha.

The results of the evaluation are given in Fig8ra terms of du-
ration in milliseconds per deformation/projection cyadleférred to as
the rendering time). Our GPU-based approach deforms anecpso
the tetrahedral meshes more than 45 times per second inpatiex
ments. The CPU-based deformation time increases sigrtifidaster
with respect to the number of deformation parameters agppiehe
model. Note that the number of deformation parameters sporeds
to the number of linear combinations performed with the igetors
in Equation §). When regarding more than 40 deformation parame-
ters and higher polynomial degrees of the density functiba @ and
d = 3), our GPU approach is 6 to 7 times faster than a multi-ttedad
deformation on the CPU that does not account for the prajedime.

A comparison of the GPU approach to the hybrid implemematés
veals a performance gain of even 8 to 9 times in the same soenar

7.3 Comparison to DRR from CT

w

To assess the rendering quality, we compared our projeapproach
to ground truth images that were generated from clinical @ af

nomials of degreel = 0 to d = 3 were sampled from the voxel data@ Pelvis (resolution 512 5125 531). We first segmented the pelvis

onto spherical volume meshes with equal diameter but vgryiesh
resolution between 17k tetrahedra and 4M tetrahedra (sredd for

1Source: Stanford University Computer Graphics Laborafbhg Stanford
3D Scanning Repository

and extracted tetrahedral meshes of four resolutions @8k, 252k
and 731k tetrahedra) with density functions sampled froerottiginal
CT data. The meshes served as input data to our projectidmochet
Ground truth images were then projected from the CT data lgnse
of a ray-casting approach, masking out the surroundingéiss the
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Depicted here are the rendering times of both Sadowsky’s projected tetrahedra (PT) method as well as our approach, recorded for tetrahedral
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Fig. 8. Rendering time (in milliseconds, averaged over 100 experiments) of our GPU-based deformation and projection method. The experiments
were performed on System-1 using a pelvis SSIM that incorporates density functions of polynomial degrees d = 0to d = 3. The CPU measurements
(blue) account for multi-threaded deformations on the CPU only and do not include the time required to project the model. Also shown is the
performance of a hybrid CPU (deformation) and GPU (projection) method that was implemented based on previous work.

d=0 d=1 d=2 d=3
20krms  0.085 0.072 0.070 0.068
abs 0.058 0.048 0.047 0.044
58krms  0.058 0.046 0.042 0.038

with higher degrees of the polynomials on a fixed mesh resolut
We repeated the experiments and evaluated the projectemer-g
ated with the GPU implementation of Sadowsky’s method. Teie r

abs 0042 0034 0030 0.026 sults arSe almostidentical to those of our approach, difteby at most
252krms _ 0.043 0.035 0.030 0.027 7 x 107> in terms of RMS distance.

abs  0.031 0025 0020 0.017
73lkrms  0.035 0029 0025 0.024 8 DiscussIioN

abs 0025 0020 0015 0014 The performance of our approach (in terms of rendering gpeed

ceeds those of the PT method when increasing the resolutitreo
rendered tetrahedral mesh to more than 335k cells. We wattrihis
to the reduced number of per-geometry operations and thedhc
branching and looping in our approach. The per-geometryatipas
are executed for every tetrahedral cell and consequenthe roper-
ations are performed the more tetrahedral cells are pegecdiVhen
large numbers of tetrahedra are rendered, our GPU-apphmamdfits
from executing fewer operations compared to PT. This is wieavere
pelvis. The ray-caster is a GPU implementation of the algoride-  aiming for in order to apply anatomical models of high retioluin
scribed in p] that accurately solves the Beer-Lambert law for evenhe optimization process. From Tallewe conclude that increasing
pixel in the image plane. the tetrahedra count, e.g. to 700k tetrahedra for a pelvidemaloes
During experiments, the viewport was set to a resolution0ffd  have a positive influence on the projection quality and is thesirable
pixels with the projected pelvis covering 38% of the viewgaxrels in  for future SSIMs.
anterior view. Similar to14], we measured the quality of the projec- On smaller mesh resolutions, per-fragment operations nimeihe
tions generated with our method in terms of RMS distance a@a@nm computation of virtual X-rays and the two methods performadly
absolute error to the ground truth. Only those pixels weganged in  well. Note that only three additional per-fragment openagiare exe-
the distance measures that were either covered by the f@adjpelvis cuted by our approach compared to Sadowsky’s method. Tliee a
in the ground truth or in the virtual X-ray image comparectto i tional operations did not impose a drawback in terms of perémce
Table1 summarizes the results and Fig@provides example pro- compared to PT.
jections and difference images. Note how the image qualityeiases  With density distributions of higher degred £ 2 ord = 3), the

Table 1. Root mean square and mean absolute error between X-rays
from model instances and ground truth projections from the segmented
pelvis CT (depicted in Figure 9). The maximum pixel intensity in the
ground truth image is 0.993.



(e) )

Fig. 9. Comparison of virtual X-ray images to ground truth data. The projections (a) and (b) show close-ups of the right ilium (pelvis) and were
generated by applying our method to a tetrahedral mesh of 25 tetrahedra and density function degrees d = 0 and d = 3 respectively. A ground
truth projection from CT (c) and a clinical X-ray image (d) of the same pelvis are given for reference. Images (e) and (f) depict the differences of

the virtual X-rays (a) and (b) to the ground truth (c) with red indicating positive error, blue negative error.

performance of both rendering methods is decreasing. Thishas
well with the investigation of Sadowsky et al. inl4]. They argue
that the decrease is caused by the Bernstein density fantions
integrated in the fragment shader, which show a “trend t@egptial
growth”. However, our method still reaches interactiveesatven for
d = 3 and more than 1 million tetrahedra.

There are only minor differences in speed when projectitrgtie-
dral meshes with up to 750k tetrahedra and density funciibasd

formed mesh and density information between CPU and GPUdsut d
forms and projects the SSIM in parallel on the GPU.

8.1 Reconstruction performance

To show the advantages of our GPU-only approach, we recmtstt
five pelvic bones from standard X-ray images (see Fig@je On av-
erage, approximately 6000 projections (and deformatiomese exe-
cuted for every experiment while fitting our pelvis SSIM (48a'ma-

andd = 1. We believe this is due to hardware-accelerated vector ofjon parameters, density function degrke: 2) to the X-ray images.

erations, which allow to process one Bernstein coefficidrt Q) just
as efficiently as four coefficientsl & 1) stored in a vector.

The quality evaluation indicates that our method genenrdtésal
X-rays similar to ground truth images from CT. We confirm the o
servation of previous worklf4, 15, 22] that projections from higher-
order density functions increase the similarity of virtd&rays to
ground truth data compared to those from lower degrdes Q@ and
d = 1). Our implementation renders identical results as Sakiga/s
approach since it solves the same volume rendering integceddopts
the closed-form integration of higher-order density disttions.

The difference images to ground truth data show discrepared
the boundaries of the projected pelvic bone (cf. Fig@eand f). We
attribute this to the geometric simplification that occulsew approx-
imating the curvature of the pelvis with tetrahedral meshé tetra-
hedra fail to represent the thin, high-density corticallstfethe bone.
This has to be considered for model generation in futureiesud

In spite of this large number of virtual X-ray images that hadbe
generated, we were able to reconstruct a pelvic bone in liddtes
average time using our GPU method. In contrast to that, @g&kto
10 minutes to perform the same reconstructions with theitiytafor-
mation/projection approach. Our GPU-based method gersedato 6
times more virtual X-rays in the same time frame. These &t
samples can be utilized to avoid local optima during optation, e.g.
by executing the optimization process several times usffeyent ini-
tialization parameters of the anatomical model.

From the performance evaluation in Sectibit becomes obvious
that by applying our GPU-only approach in theory a speediugdon-
struction performance of a factor 9 and more is possible. clineent
implementation of the reconstruction framework reads khekvir-
tual X-ray image from the GPU and evaluates the distanceuneas
the CPU, which leaves the GPU idle and thus slows down theativer
process. This issue will be addressed in future work.

Compared to a CPU-based deformation of SSIMs, our GPU-based/Ve are in the process of evaluating the reconstruction frarie

deformation and projection approach benefits from highhaltel ex-
ecution of the linear combination, fast texture access ardviare-
accelerated vector operations. It is important to note thatCPU
measurements do only account for a multi-threaded defoomaif
the model and not for projecting a virtual X-ray image. Wesider
them to reflect the upper bound of possible performance ofique
hybrid CPU/GPU methods, since the deformation step renzabu-
tleneck when rendering SSIMs with higher-polynomial dgng&inc-
tions and when regarding larger parameter spaces (e.g.theomel0
parameters). The rendering time of the CPU implementatiowg
non-linearly with approximately the first 5 parameters du¢hread
management overhead that outweighs the actual computation

If a CPU-based deformation is applied, additional resaigce re-
quired to push the deformed model to the GPU and to projectéral-
ingly. The measurements of the hybrid solution give an exarhpw
these operations further decrease the overall renderirigrpgnce.
It would be possible to deform the model in parallel on the Gifid
concurrently project the deformed elements on the GPU. Whigd,
however, also introduce additional overhead through thesachro-
nization. Our GPU-only approach in contrast does not copydis-

with regard to measuring pelvic tilt and orientation of tletbulum
(cotyloid cavity) from single X-ray images. Results will pablished
in a separate study.

9 CONCLUSION

We presented a fast and efficient method to generate virtualyXm-
ages from deformable anatomical models. Our approachmesfand
projects volumetric meshes in parallel on the graphicsvaare and
reaches interactive frame-rates while shifting compateti burden
from the CPU to the GPU.

In the context of reconstruction processes, we see sevdral a
vantages of our GPU-only approach compared to previousidcybr
CPU/GPU methods: First, while deforming and projecting the
anatomical model on the GPU, other computations relatebdad-
construction can be performed concurrently on the CPU,te.gon-
trol the optimization process. Second, the combined deftion and
projection on the GPU shows a performance increase over [Gi2ed
methods and accelerates the reconstruction process., ®hircthethod
scales better with respect to the number of deformatiompeters and
the complexity of the underlying model. The GPU-based aggito



Fig. 10. Reconstruction of three pelvic bones from standard 2D X-ray images using our combined deformation and projection approach on
the GPU. Every column depicts a different reconstruction case. From top to bottom: Silhouettes of reconstruction results projected into clinical
reference images, reconstructed shape and density distributions (result), reconstructed pose of the pelvis in front of the image plane. In average,
54 deformations and projections were performed per second, with an average reconstruction time of 1:41 minutes.

allows for processing anatomical models with larger degafdree-

dom and higher accuracy, both in terms of mesh resolutiordandity
function. Future work will take advantage of those modelmtoease
reconstruction accuracy while keeping reconstructioretas low as
possible. This will include an in-depth evaluation of thelgation of

our projection method to the problem of reconstructing a 8BX@mi-

cal model from clinical X-ray data.

In principle, our method supports different polynomial degs on
different tetrahedra in the same mesh, by issuing a sepanadering
pass for each polynomial degree. This allows tetrahedraheseto be
tailored for certain anatomical structures and applicetiand will be
investigated in the future.

Due to the feed-forward nature of the proposed pipelinenmthod
might be coupled with other deformation techniques on th& GP
is possible that after a match is established between agatooael
and X-ray, slight deformations of the mesh, for example bglap

ing green coordinates], might further enhance the reconstruction re-

sult. We will investigate whether such techniques can teebpproxi-
mate patient-specific anatomies that are not expressed stdtistical
model applied for reconstruction.

Our reconstruction method utilizes similarity measureshsas mu-
tual information to compare virtual X-ray images and claidata.
Currently, the virtual X-ray images are read back from GPde-
buffer memory to evaluate the similarity measure on the GRlthe
future, the similarity measure could instead be evaluatethe GPU

as well. We expect that in combination with existing methéals
GPU-based image-registratio8] [ our projection method further in-
creases both speed and accuracy of the 3D reconstructioags.o

ACKNOWLEDGEMENTS

This work was in part supported by the EU-FP7 Project MXL ACT
2009.5.2), the Berlin-Brandenburg School for Regenegdfiverapies
and the DFG Research Center Matheon. We would like to thank
Markus Heller (University of Southampton) and the Chalgigzlin for
providing clinical CT data and X-ray images. Sincere thaalk® go

to the reviewers for their valuable comments.

REFERENCES

[1] N.Baka, B. L. Kaptein, M. de Bruijne, T. van Walsum, J. Bp@art, W. J.
Niessen, and B. P. F. Lelieveldt. 2D-3D shape reconstmicifdhe distal
femur from stereo X-ray imaging using statistical shape elmd/edical
Image Analysis15(6):840-850, Dec. 2011.

[2] J. Dworzak, H. Lamecker, J. von Berg, T. Klinder, C. Lazen

D. Kainmuller, H. Seim, H.-C. Hege, and S. Zachow. 3D retas

tion of the human rib cage from 2D projection images usingatissical

shape modellnternational Journal of Computer Assisted Radiology and

Surgery 5(2):111-124, Mar. 2010.

O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, and R. féemann.

A survey of medical image registration on graphics hardw@amputer

Methods and Programs in Biomedicijri4(3):e45-e57, Dec. 2011.

(3]



(4]

5]

(6]

[7]

(8]
9]
(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

J. Georgii and R. Westermann. A Generic and ScalableliRgpfor GPU
Tetrahedral Grid RenderinglEEE Transactions on Visualization and
Computer Graphics12(5):1345-1352, Sept./Oct. 2006.

J. Kriiger and R. Westermann. Acceleration TechniquessPU-based
Volume Rendering. IMEEE Visualization 2003pages 287-292. |IEEE,
2003.

H. Lamecker, T. H. Wenckebach, and H.-C. Hege. Atlasstd&3D-Shape
Reconstruction from X-ray Images. International Conference on Pat-
tern Recognition 20Q6s0lume 1, pages 371-374. IEEE, 2006.

D. Laney, S. P. Callahan, N. Max, C. T. Silva, S. Langed & Frank.
Hardware-Accelerated Simulated Radiography. IBEE Visualization
2005 pages 343-350. IEEE, 2005.

Y. Lipman, D. Levin, and D. Cohen-Or. Green Coordinate€&M Trans-
actions on Graphics27(3):78:1-78:10, Aug. 2008.

T. Malzbender. Fourier Volume Renderir§CM Transactions on Graph-
ics, 12(3):233-250, July 1993.

R. Marroquim, A. Maximo, R. Farias, and C. EsperancaUdgased Cell
Projection for Interactive Volume Rendering. Bnazilian Symposium on
Computer Graphics and Image Processing 200&ges 147-154. IEEE,
2006.

A. Maximo, R. Marroquim, and R. Farias. Hardware-AssisProjected
TetrahedraComputer Graphics Forun29(3):903-912, Aug. 2010.

S. Ourselin, A. Roche, S. Prima, and N. Ayache. BlockdWatg: A Gen-
eral Framework to Improve Robustness of Rigid Registradiblledical
Images. Ininternational Conference on Medical Image Computing and
Computer-Assisted Intervention 20@&ges 557-566. Springer, 2000.
J. P.W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutdaformation-
Based Registration of Medical Images: A SurveyEE Transactions on
Medical Imaging 22(8):986-1004, Aug. 2003.

0. Sadowsky and J. D. Cohen. Projected Tetrahedra iRalis A
Barycentric Formulation Applied to Digital Radiograph Rastruction
Using Higher-Order Attenuation FunctionEEEE Transactions on Visu-
alization and Computer Graphicd2(4):461-473, July/Aug. 2006.

O. Sadowsky, J. D. Cohen, and R. H. Taylor. Renderingahedral
Meshes with Higher-Order Attenuation Functions for DigRadiograph
Reconstruction. IfEEE Visualization 20050ages 303—-310. IEEE, 2005.
H. Seim, D. Kainmueller, M. Heller, S. Zachow, and H.4dege. Auto-
matic extraction of anatomical landmarks from medical imdgta: An
evaluation of different methods. B0D09 IEEE International Symposium
on Biomedical Imaging: From Nano to Magrpages 538-541. IEEE,
2009.

A. Serrurier, S. Quijano, R. Nizard, and W. Skalli. Rebtemur condyle
disambiguation on biplanar X-raysMedical Engineering & Physics
34(10):1433 — 1440, Dec. 2012.

P. Shirley and A. Tuchman. A Polygonal ApproximatiorDiwect Scalar
Volume RenderingACM SIGGRAPH Computer Graphi4(5):63-70,
Nov. 1990.

P. Steininger, K. Fritscher, and G. Kofler. ComparisdnDifferent
Metrics for Appearance-model-based 2D/3D-registratidth W-ray Im-
ages. IrBildverarbeitung fur die Medizin 200®ages 122-126. Springer,
2008.

M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Bas&/iew-
Independent Cell ProjectionlEEE Transactions on Visualization and
Computer Graphics9(2):163-175, Apr./June 2003.

T. Whitmarsh, L. Humbert, M. De Craene, L. M. Del Rio Baego, and
A. F. Frangi. Reconstructing the 3D Shape and Bone Mineraisibe
Distribution of the Proximal Femur From Dual-Energy X-raypgorp-
tiometry. |EEE Transactions on Medical Imagin@0(12):2101-2114,
Dec. 2011.

J. Yao. A statistical bone density atlas and deformable medicalgiena
registration PhD thesis, The Johns Hopkins University, 2002.

G. Zheng. Statistical shape model-based reconstruatif a scaled,
patient-specific surface model of the pelvis from a singmdard AP
x-ray radiographMedical Physics37(4):1424-1439, Mar. 2010.

G. Zheng, J. Von Recum, L.-P. Nolte, P. Gritzner, Spgaeher, and
J. Franke. Validation of a statistical shape model-baset8RDecon-
struction method for determination of cup orientation ftelA. Inter-
national Journal of Computer Assisted Radiology and Syg&2):225—
231, Mar. 2012.



	Introduction
	Related Work
	Background
	X-ray attenuation in tetrahedral meshes
	Statistical shape and intensity models (SSIMs)

	GPU-based algorithm for projecting meshes
	Computing the rays' entrance parameters
	Computing the rays' exit parameters

	GPU implementation
	Projecting tetrahedral meshes
	Combining deformation and projection

	Reconstruction framework
	Integration of the GPU solution

	Experiments and Results
	Rendering performance
	Deformation and projection
	Comparison to DRR from CT

	Discussion
	Reconstruction performance

	Conclusion

