
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

NORBERT ASCHEUER MATTEO FISCHETTI

MARTIN GRÖTSCHEL

Solving the

Asymmetric Travelling Salesman Problem

with Time Windows

by Branch-and-Cut

Preprint SC 99-31 (August 1999)

Solving the Asymmetric Travelling Salesman

Problem with Time Windows by Branch-and-Cut

Norbert Ascheuer ∗ Matteo Fischetti † Martin Grötschel ‡

Berlin, August 1999

Abstract

Many optimization problems have several equivalent mathematical models. It is often
not apparent which of these models is most suitable for practical computation, in particu-
lar, when a certain application with a specific range of instance sizes is in focus. Our paper
addresses the Asymmetric Travelling Salesman Problem with time windows (ATSP-TW)
from such a point of view. The real–world application we aim at is the control of a stacker
crane in a warehouse.

We have implemented codes based on three alternative integer programming formula-
tions of the ATSP-TW and more than ten heuristics. Computational results for real-world
instances with up to 233 nodes are reported, showing that a new model presented in a
companion paper outperforms the other two models we considered — at least for our
special application — and that the heuristics provide acceptable solutions.

Keywords : Asymmetric Travelling Salesman Problem, Time Windows, Integer Programs,
Branch&Cut-Algorithm, Heuristics, Control of Stacker Cranes

MSC : 90C10, 90C27, 90C35

1 Introduction

This paper presents a computational study of the following time-constrained version of the
asymmetric travelling salesman problem (ATSP): Consider a directed graph D := (V ∪{0}, A)
on n+1 nodes. Node 0 is the starting node (depot) for a salesman. With each arc (i, j) ∈ A, an
arc duration cij > 0 is associated. Furthermore, assume that for each node i ∈ V , a processing
time pi ≥ 0, a release date ri ≥ 0, and a due date di ≥ ri are given. The release date ri
denotes the earliest possible (and the due date di the latest possible) starting time for visiting
(processing) node i ∈ V . For the depot node 0 we assume r0 = d0 = 0. The processing time
pi represents the elapsed time between the arrival and the departure at node i. Throughout
this paper we assume that arc durations, processing times, release dates, and due dates are
nonnegative integer values. For due dates we also allow di = ∞. The interval [ri, di] is called
the time window of node i, the width of the time window is given by di−ri. The time window
for node i ∈ V is called active, if ri > 0 or di < ∞. A time window [0,∞) is called relaxed.

∗Intranetz GmbH, Bergstr. 22, 10115 Berlin, Germany, http://www.intranetz.de
†Dipartimento di Elettronica ed Informatica, University of Padova, Italy (work supported by C.N.R.,Italy)
‡Konrad–Zuse–Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, 14195 Berlin–Dahlem, Germany,

http://www.zib.de

1

The problem is to find a sequence of the nodes (starting at the depot node 0 at time 0 and
ending at node 0) with minimal cost such that for every node i ∈ V the arrival time ti at
node i ∈ V lies within the given time window [ri, di]. In our case waiting times are allowed,
i.e., one may arrive at a node i ∈ V earlier than ri and wait until the node is “released” at
time ri.

The ATSP-TW reduces to the ATSP if pi = 0, ri = 0, and di = +∞ for every i ∈ V .
Therefore, the ATSP-TW with general time windows is NP–hard. Indeed, it is strongly NP–
complete to find a feasible solution for the ATSP-TW [38]. Furthermore, Tsitsiklis [43] showed
that the symmetric version TSP-TW with general time windows is strongly NP–complete,
even if the underlying graph G is a path and all processing times equal 0.

It is apparent that the ATSP-TW can be formulated as a dynamic program and that it
can be attacked by various branch–and–bound and other enumerative techniques of integer
programming. We have choosen a polyhedral approach. In this case, the ATSP-TW is
formulated as an integer linear program that is solved by a cutting plane algorithm. The
cutting plane algorithm is based on cuts derived from the investigation of an associated
polytope.

The reasons for this line of approach were threefold. First, the polyhedral approach to the
symmetric TSP, see [1, 28, 36], and the ATSP, see [23], has been extremely successful and we
hoped that this “positive behaviour” might also show up in our ATSP variant. Second, we
could make use of separation algorithms that had been developed in related projects. Third,
the application we focus on here, was part of a larger project where LP based techniques were
the work horse of the algorithmic approach.

This paper reports part of the results of an investigation for Siemens Nixdorf Informa-
tionssysteme (SNI) aiming at the (global) optimization of a semiautomatic PC manufacturing
process, see Ascheuer [3] for details. One of the individual optimization problems arising here
is the task to schedule the stacker cranes of automatic warehouses. In this case the stacker
crane optimization can be formulated as an online ATSP, see Ascheuer et al. [5]. We have
developed several online ATSP heuristics. To check the quality of the solutions of the online
heuristics it is necessary to solve (offline) ATSPs with additional constraints, in particular
with time windows, see [6]. The instances from this stacker crane application, supplied by
SNI, provide the basic data of the present computational study.

One problem with our line of attack was that there is no “natural” IP formulation of the
ATSP-TW. There are many possibilities to model the ATSP-TW as an integer or mixed–
integer linear program; and there is, at least to our knowledge, no way to tell which model
holds the best computational perspectives. We have chosen to concentrate on three different
models, explained in Section 3, and to let “computational experience” decide which to use in
practice.

The paper is organized as follows. In Section 2 we briefly sketch related problems and
work. In Section 3 we introduce the notation used throughout the paper and describe the
three integer programming models we consider. In Section 4 we summarize the classes of valid
inequalities that are used as cutting planes in our implementations. Section 5 is dedicated to
preprocessing routines that aim at tightening the given time windows, decompose the problem
instance, or fix variables. In Section 6 we briefly describe our heuristics to obtain feasible
solutions. Section 7 contains a description of other implementational details of the branch&cut
algorithms. In Section 8 we report extensive computational results. Some concluding remarks
are given in Section 9.

2

2 Related work

Time constrained sequencing and routing problems arise in many practical applications. Al-
though the ATSP-TW is a basic model in many of these applications, not much attention has
been paid to it so far. In most publications, exact algorithms play a minor role; the authors
concentrate on the design of heuristics, often based on local search (see [39], among others).

For the symmetric TSP, to our knowledge, a few attempts have been made to solve
problems with time windows to optimality, most of them based on implicit enumeration
techniques (branch-and-bound, dynamic programming). Christofides et al. [15] describe a
branch-and-bound algorithm in which the lower bound computation is performed via a state–
space relaxation in a dynamic programming scheme. Solutions of problem instances of up
to 50 nodes with “moderately tight” time windows are reported. Baker [8] also describes a
branch-and-bound algorithm where the lower bound computations are reduced to the solution
of a longest path problem on an acyclic network (the dual problem of a relaxation). The
algorithm performs well on problems of up to 50 nodes when only a small percentage of the
time windows overlap. Dumas et al. [20] present a dynamic programming algorithm for the
TSP-TW that is able to solve problems of up to 200 nodes with “fairly wide” time windows.
Here reductions of the state space and the state transitions are performed that are based on
the time window structure. Balas and Simonetti [12] present a new dynamic programming
algorithm that can be applied to a wide class of restricted travelling salesman problems. This
approach yields good results on the ATSP-TW in case that the number of overlapping time
windows is small [40]. Bianco et al. [14] present a dynamic programming algorithm for the
TSP with time windows and precedence constraints and present computational results for
instances up to 120 nodes. For surveys on time constrained routing and scheduling problems
see [18, 19], among others.

Polyhedral approaches to solve problem instances to optimality are known to work well
for the precedence constrained ATSP ([7]). It is unclear whether a polyhedral approach can
also handle time windows.

The ATSP-TW is related to the job–shop scheduling problem (JSSP) where one considers
just one of the machines. Applegate and Cook [2] implemented a cutting plane algorithm for
this problem type based on polyhedral investigations. Their computational results indicate
that JSSP instances are difficult to solve – at least for this algorithmic approach.

Van Eijl [44] computationally compared two different formulations of the Delivery-Man
Problem. As a by-product she obtained a branch&cut-algorithm for the TSP-TW. Computa-
tional test were performed on problem instances up to 15 nodes. She reported high running
times.

It is not easy to compare the different approaches to the TSP-TW as there exist no
standard benchmark problems. The instance sizes (typically expressed by the number of
nodes) that can be solved depend extremely on the structure of the time windows. Moreover,
in all the cases mentioned here, the authors only use randomly generated data. It is not
clear what their findings mean for “real–world instances”. In general, authors reporting
computational experiments with the TSP-TW conclude that the case where the time windows
are active for about 50 % is particularly difficult.

3

3 Notation and modelling

Given a node set W ⊆ V , let

A(W) := {(i, j) ∈ A | i, j ∈ W}
denote the set of all arcs with tail and head in W . For any two node sets U,W ⊆ V let

(U : W) := {(i, j) ∈ A | i ∈ U, j ∈ W}
denote the set of arcs with tail in U and head in W . To simplify notation, we write (W : j)
and (j : W) instead of (W : {j}) and ({j} : W), respectively. Given a node set W ⊂ V , we
define

δ−(W) := {(i, j) ∈ A | i ∈ V \W, j ∈ W},
δ+(W) := {(i, j) ∈ A | i ∈ W, j ∈ V \W},
δ(W) := δ−(W) ∪ δ+(W).

The arc set δ(W) is called a cut. To simplify notation we write δ−(v), δ+(v), and δ(v), instead
of δ−({v}), δ+({v}), and δ({v}), respectively.

For notational convenience, a path P consisting of the arc set {(vi, vi+1) | i = 1, . . . , k−1}
is sometimes denoted by P = (v1, v2, ..., vk). If not stated differently, the path P is always
open and simple, i.e., |P | = k − 1 and vi �= vj for i �= j. Moreover, we let

[P] := {(vi, vj) ∈ A | 1 ≤ i < j ≤ k}
denote the transitive closure of P = (v1, ..., vk).

The minimal time delay for processing node j immediately after node i is given by

ϑij := pi + cij .

In the application that motivated this research the triangle inequality on ϑ is satisfied, i.e.,

ϑij ≤ ϑik + ϑkj, for all i, j, k ∈ V. (3.2)

If not stated differently we will assume throughout the paper that (3.2) holds.
Given a path P = (v1, ..., vk), the earliest arrival time tvi at node vi (i = 1, ..., k) along P

is computed as
tv1 := rv1
tvi := max{tvi−1 + ϑvi−1vi , rvi} for i = 2, ..., k

This formula yields a waiting time wvi := max{0, rvi − (tvi−1 + ϑvi−1vi)} which is positive
whenever a node vi is reached before its release date. If wi = 0 for all i = 2, ...k, the path
is called minimal. We denote by ϑ(P) := tvk the earliest arrival time at the last node of P .
Notice that, for every minimal path P , one has ϑ(P) = rv1 +

∑k−1
i=1 ϑvivi+1. To simplify

notation, we sometimes write ϑ(v1, v2, . . . , vk) instead of ϑ(P) for P = (v1, v2, . . . , vk).
A (Hamiltonian) tour T := (v0, v1, ..., vn) of D starting at node v0 = 0 at time r0 = 0 is

called feasible if each node is visited within its time window, i.e., rvi ≤ tvi ≤ dvi for i = 1, ..., n.
A path P = (v1, ..., vk) with 2 ≤ k ≤ n is said to be infeasible if it does not occur as a subpath
in any feasible tour. Deciding whether a given path P is feasible is clearly an NP–complete
problem, even when P contains only one node, as in this case it amounts to deciding whether
a feasible tour exists. Easily checkable and obvious sufficient conditions for infeasibility are
given in the following lemma.

4

(3.3) Lemma.
A path P = (v1, ..., vk) is infeasible, if at least one of the following conditions holds:

(i) P violates the deadline for its last node vk, i.e., ϑ(P) > dvk .

(ii) The triangle inequality (3.2) on ϑ is satisfied and there exists a node w not covered
by P such that both paths P1 = (w, v1, ..., vk) and P2 = (v1, ..., vk, w) violate the given
deadline on their last node, i.e., ϑ(P1) > dvk and ϑ(P2) > dw.

In case condition (ii) above is satisfied, we say that node w cannot be covered by (an extension
of) path P . If the triangle inequality on ϑ is not satisfied condition (ii) can easily be modified
by considering the ϑ–shortest paths from w to v1 and from vk to w instead of P1 and P2.

Time windows induce precedences among the nodes. For example, whenever the ϑ–short-
est path from j to i is longer than di−rj we can conclude that i has to precede j in any feasible
solution. Then, let i ≺ j denote the fact that i has to precede j in any ATSP-TW solution
and let GP := (V,R) denote the precedence digraph where each arc (i, j) ∈ R represents a
precedence relationship i ≺ j. Without loss of generality we may assume GP to be acyclic
and transitively closed. Moreover, let

π(v) := {i ∈ V |(i, v) ∈ R},
σ(v) := {j ∈ V |(v, j) ∈ R}.

represent the set of the predecessors and successors of a node v ∈ V , respectively. Set
π(X) := ∪v∈Xπ(v) and σ(X) := ∪v∈Xσ(v) for all X ⊆ V .

In the sequel we introduce three different integer programming models of the ATSP-TW,
each defined on a different variable set. The first model involves binary arc variables xij as
well as node variables ti. The second model uses only binary arc variables xij, whereas the
third one uses binary arc variables xij as well as integer arc variables yij. For all the models,
the binary variables xij for each arc (i, j) ∈ A can be interpreted as follows:

xij :=

{
1, (i, j) ∈ A is used,
0, otherwise.

A formal definition of the other variables will be given in the appropriate section.

3.1 Model 1

Miller, Tucker, and Zemlin [33] proposed to substitute the subtour elimination constraints for
the TSP by a smaller class of inequalities and by introducing extra variables ti, i = 1, ..., n.
These inequalities offer the advantage that they can easily be modified to take further side
constraints into account (see [17]). For the ATSP with time windows, the t–variables are
interpreted as time variables representing the arrival times at nodes, and the corresponding
MTZ–inequalities can be written as

ti + ϑij − (1 − xij) ·M ≤ tj i, j = 1, ..., n, i �= j
ri ≤ ti ≤ di i = 1, ..., n.

(3.4)

where M is a large real value. The ATSP-TW can therefore be formulated as an integer linear
program as follows:

5

min cTx
s.t. (1) x(δ+(i)) = 1 ∀ i ∈ V ∪ {0}

(2) x(δ−(i)) = 1 ∀ i ∈ V ∪ {0}
(3) ti + ϑij − (1 − xij) ·M ≤ tj ∀ (i, j) ∈ A, j �= 0
(4) ti ≤ di ∀ i ∈ V
(5) ti ≥ ri ∀ i ∈ V
(6) ti ∈ � ∀ i ∈ V ∪ {0}
(7) xij ∈ {0, 1} ∀ (i, j) ∈ A.

(3.5)

Here � := {0, 1, 2, . . .} denotes the set of nonnegative integers.

We will denote by

P TW
1 := conv{(x, t) ∈ �

A×V | (x, t) satisfies conditions (1)–(7) in (3.5)}

the ATSP–TW polytope based on Model 1. Note that instead of a global “big M”, an
individual “big Mij” may be defined for each inequality in (4), satisfying

Mij ≥ di + pi + cij − rj .

It is easy to see that, for every feasible solution (x, t) of (1)–(7), x is the incidence vector of
a feasible tour satisfying all given time windows.

This model has some disadvantages. First the MTZ–inequalities (3.4) are not very strong
and they can be lifted in several ways (see Section 4). Furthermore, it is known from practical
experience that a “big M”–modelling will cause computational problems. Our computations
reported in Section 8 confirm this observation, even if some effort is spent on trying to reduce
the big–M values involved. Even more important is that the x– and t–variables are only
weakly linked via the MTZ–inequalities, i.e., the structure of the time windows has only very
limited influence on the tour described by the x–variables.

3.2 Model 2

In a companion paper [4] we introduced a new model that is defined on binary arc variables
only. In this model the time window restrictions are modelled by an additional class of
inequalities, the so–called infeasible path elimination constraints. Let x(P) denote the sum
of the variables corresponding to a path P , i.e., x(P) :=

∑k−1
i=1 xvivi+1 .

min cTx
s.t. (1) x(δ+(i)) = 1 ∀ i ∈ V ∪ {0}

(2) x(δ−(i)) = 1 ∀ i ∈ V ∪ {0}
(3) x(A(W)) ≤ |W | − 1 ∀ W ⊂ V ∪ {0}, 2 ≤ |W | ≤ n
(4) x(P) ≤ |P | − 1 = k − 2 ∀ infeasible path P = (v1, v2, ..., vk)
(5) xij ∈ {0, 1} ∀ (i, j) ∈ A

(3.6)

Inequalities (3.6)(4) forbid infeasible paths, i.e., paths violating the given time windows.
Therefore, each solution x of (3.6)(1)–(5) is the incidence vector of a feasible Hamiltonian
tour, and vice versa. The formulation of the infeasible path elimination constraints as stated

6

in (3.6)(4) can be very weak. In Section 4 we present several inequalities stronger than those
of type (3.6)(4).
In analogy with Model 1, we denote by

P TW
2 := conv{x ∈ �

A | x satisfies conditions (1)–(5) in (3.6)}
the convex hull of all feasible solutions of Model (3.6).

3.3 Model 3

Maffioli and Sciomachen [32] and van Eijl [44] proposed a different model avoiding the need
of “big M” terms. They introduced |A| additional integer arc variables yij with the property
that xij = 0 implies yij = 0. If xij = 1 then yij denotes the time when the processing of
node i is started and indicates that node j is processed after node i. ATSP-TW can then be
formulated as follows:

min cTx
s.t. (1) x(δ+(i)) = 1 ∀ i ∈ V ∪ {0}

(2) x(δ−(i)) = 1 ∀ i ∈ V ∪ {0}
(3)

n∑
i=1
i�=j

yij +
n∑

i=0
i�=j

ϑij · xij ≤
n∑

k=0
k �=j

yjk ∀ j ∈ V

(4) ri · xij ≤ yij ≤ di · xij i, j = 0, . . . , n, i �= j, i �= 0
(5) xij ∈ {0, 1} ∀ (i, j) ∈ A

(3.7)

As for the previous models we denote by

P TW
3 := conv{(x, y) ∈ �

AxA | x satisfies conditions (1)–(5) in (3.7)}
the convex hull of all feasible solutions of Model (3.7).

Of course, the projection of PTW
1 and PTW

3 on the x-variables is the polytope PTW
2 .

However, we do not have a description of any of these polytopes by linear equations and
inequalities. Our goal is to find out how the LP relaxations of these polytopes that we know
help to solve the ATSP-TW computationally.

4 Classes of valid inequalities

We summarize those known classes of inequalities for PTW
1 , P TW

2 , and for PTW
3 , that are

used in at least one of our implementations.

Infeasible Path Elimination Constraints. Inequalities of this type forbid certain sub-
path that are infeasible, i.e., violate the given time windows. For a given infeasible path
P = (v1, . . . , vk) the basic version of these inequalities is x(P) ≤ |P | − 1. There exist, how-
ever, several possibilities to strengthen these inequalities, some of which were introduced in
our companion paper [4]. Here are those we use in our actual implementation.

For every infeasible simple paths P = (v1, . . . , vk), the tournament constraint

x([P]) :=
k−1∑
i=1

k∑
j=i+1

xvivj ≤ k − 2 (= |P | − 1) (4.8)

7

is valid for P TW
i , i = 1, 2, 3. Obviously, if A({v1, ..., vk}) does not contain any feasible path

the inequality can be strengthened to

x(A({v1, ..., vk}) ≤ k − 2. (4.9)

Given a node set W ⊆ V , let Φ[W] denote a generic permutation of the nodes in W . For
each node set Q := {v1, ..., vk−1} ⊂ V and each node vk ∈ V \ Q such that all the paths of
the form (Φ[Q], vk) are infeasible, the inequality

x(A(Q)) + x(Q : vk) ≤ k − 2 (= |Q| − 1) (4.10)

is valid for P TW
i , i = 1, 2, 3. Note that a similar inequality can be defined for the case in

which all the paths of the form (v1,Φ[Q]) are infeasible, namely

x(v1 : Q) + x(A(Q)) ≤ k − 2 (= |Q| − 1). (4.11)

Moreover, for each node set S := {v2, ..., vk−1} ⊂ V and for any two nodes v1, vk ∈ V \ S,
v1 �= vk, such that all paths of the form (v1,Φ[S], vk) are infeasible, the inequality

x(v1 : S) + x(A(S)) + x(S : vk) + xv1vk ≤ k − 2 (= |S|) (4.12)

is valid for P TW
i , i = 1, 2, 3. Note that inequalities (4.9),(4.10) and (4.11) are strengthenings of

the subtour elimination constraint x(A(Q)) ≤ |Q|−1 as well as of the tournament constraints
(4.8). However, it is not easy to decide whether all the paths of the form (Φ[Q], vk), (v1,Φ[Q]),
and (v1,Φ[S], vk) are infeasible, as required for the validity of inequalities (4.10) – (4.12).
Easily checkable sufficient conditions are given by the next lemma.

(4.13) Lemma. Assume that the triangle condition (3.2) holds.

(a) Take any Q ⊂ V and vk ∈ V \Q. If

min
vi∈Q

{rvi} +
∑
vi∈Q

min{ϑvivj | vj ∈ Q ∪ {vk}} > dvk

then every path of the form (Φ[Q], vk) is infeasible.

(b) Take any Q ⊂ V and v1 ∈ V \Q. If

rv1 +
∑
vj∈Q

min{ϑvivj | vi ∈ Q ∪ {v1}} > max
vi∈Q

{dvi}

then every path of the form (v1,Φ[Q]) is infeasible.

(c) Take any S ⊂ V and v1, vk ∈ V \ S, v1 �= vk. If

rv1 +min{ϑv1vj | vj ∈ S} +
∑
vi∈S

min{ϑvivj | vj ∈ S ∪ {vk}} > dvk

then every path of the form (v1,Φ[S], vk) is infeasible.

8

A more involved generalization of tournament constraints can be obtained along the fol-
lowing lines. Suppose we are given a familyP := {P1, P2, ..., Pk} of node–disjoint simple paths,
and let ω be any permutation of the indices of P. The path P = (Pω(1), Pω(2), ..., Pω(k)) is
called a concatenation of the paths in P. Now it may happen that the paths P1, P2, ..., Pk are
feasible in themselves but that there is no way to concatenate them in a feasible way. In this
case the inequality

k∑
i=1

x([Pi]) ≤
k∑

i=1

|Pi| − 1 (4.14)

is valid for P TW
i , i = 1, 2, 3.

Lifted t-bounds. It was observed in [17] that the bounds on the t–variables ri ≤ ti ≤ di can
be strengthened by taking other arc combinations into account. Indeed, let aji := max{0, rj−
ri + ϑji} and bij := max{0, di − dj + ϑij}. Then the inequalities

(i) ri +
∑n

j=1
i�=j

ajixji ≤ ti ∀ i ∈ V

(ii) di −∑n
j=1
i�=j

bijxij ≥ ti ∀ i ∈ V
(4.15)

are valid for PTW
1 .

Two–job cuts. The ATSP-TW is related to the one–machine scheduling problem with time
windows, i.e., the problem of sequencing n jobs on a single machine subject to a given set of
time windows. Balas [9] and Dyer and Wolsey [21] considered the case where only release dates
are present. The inequalities they derived can be used for the ATSP-TW too. At present, we
only use the so-called two–job cuts (introduced by Balas [9]) in our implementation.

Suppose rj < ri + pi and ri < rj + pj . The two–job cut involving order–dependent
processing times can be written as

(ϑij + ri − rj) · ti + (ϑji + rj − ri) ≥ ϑij · ϑji + ri · ϑji + rj · ϑij. (4.16)

Violated inequalities of this class can be found by enumeration of all i and j satisfying
rj < ri + pi and ri < rj + pj.

TSP inequalities. Obviously, all valid inequalities for the (asymmetric) travelling salesman
polytope PT

n are also valid for the ATSP-TW. The classes of inequalities that we use in our
implementation are:

• D−
k –inequalities [25, 27, 22]

k−1∑
j=1

xijij+1 + xiki1 + 2
k∑

j=3

xi1ij +
k∑

j=4

j−1∑
h=3

xij ih ≤ k − 1 (4.17)

• D+
k –inequalities [25, 27, 22]

k−1∑
j=1

xijij+1 + xiki1 + 2
k−1∑
j=2

xij i1 +
k−1∑
j=3

j−1∑
h=2

xijih ≤ k − 1 (4.18)

9

• SD-inequalities [10]
Given a handle H ⊂ V , disjoint teeth T1, ..., Tt, t odd, such that |Ti ∩ H| = 1 and
|Ti \ H| = 1, and (possibly empty) disjoint node sets S and D, where (S ∪ D) ⊂
V \ (H ∪ T1 ∪ ... ∪ Tt) and |S|+ |D| = t is odd, the SD-inequalities have the form:

x((S ∪H) : (D ∪H)) +
t∑

i=1

x(A(Ti)) ≤ |H|+ |S|+ |D|+ t− 1

2
. (4.19)

• 2–matching constraints [27]
Given vertex sets H,T1, T2, ..., Tk ⊂ V, k ≥ 3 and odd satisfying

(i) |H ∩ Ti| = 1 for i = 1, ..., k,
(ii) |Ti \H| = 1 for i = 1, ..., k,
(iii) Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,

the 2–matching constraint is given by

x(A(H)) +
k∑

i=1

x(A(Ti)) ≤ |H|+ k − 1

2
.

SOP–inequalities. The precedence–constrained ATSP, also known as Sequential Ordering
Problem (SOP), is a relaxation of the ATSP-TW. All valid inequalities for the SOP are
therefore valid for the ATSP-TW. We summarize the classes of inequalities actually used in
our implementation.

• Predecessor inequalities (π–inequalities) [11]
Let S ⊆ V, S := V \ S. Then

x((S \ π(S)) : (S \ π(S))) ≥ 1 (4.20)

is valid with respect PTW
i , i = 1, 2, 3.

• Successor inequalities (σ–inequalities) [11]
Let S ⊆ V, S := V \ S. Then

x((S \ σ(S)) : (S \ σ(S))) ≥ 1 (4.21)

is valid with respect PTW
i , i = 1, 2, 3.

• Predecessor–successor inequalities (π, σ–inequalities) [11]
Let X,Y ⊆ V , s.t. i ≺ j ∀ pairs i ∈ X, j ∈ Y,W := π(X) ∪ σ(Y). Then for all S ⊂ V ,
s.t. X ⊂ S, Y ⊂ S

x((S \W) : (S \W)) ≥ 1 (4.22)

is valid with respect PTW
i , i = 1, 2, 3.

• Precedence cycle breaking inequalities (pcb–inequalities) [11]
Let S1, .., Sm ⊆ V,m ≥ 2, be disjoint node sets such that σ(Si) ∩ Si+1 �= ∅ with
Sm+1 := S1. Then

m∑
i=1

x(A(Si)) ≤
m∑
i=1

|Si| −m− 1 (4.23)

is valid with respect PTW
i , i = 1, 2, 3.

10

• Simple pcb–inequalities
The precedence cycle breaking inequality in its simplest form (m = 2 and |S2| = 1) is

x(A(S1)) ≤ |S1| − 2. (4.24)

• “Special” inequalities [11]
Let S1, S2, S3 ⊂ V \ {1, n} be disjoint node sets, with σ(S1) ∩ S2 �= ∅, σ(S2) ∩ S3 �= ∅.
The following inequalities are valid with respect to PTW

i , i = 1, 2, 3:

2∑
i=1

x(A(Si)) + x(S2 : S1) ≤ |S2|+ |S1| − 2, (4.25)

3∑
i=1

x(A(Si)) + x(S1 : S3) ≤ |S1|+ |S2|+ |S3| − 3. (4.26)

Strengthened (π, σ)–inequalities. In a companion paper [4] we introduced a strength-
ening of the (π, σ)–inequalities originally introduced by Balas et al. [11] for the precedence–
constrained ATSP.

Let X and Y be two disjoint node sets such that i ≺ j for all i ∈ X and j ∈ Y , and define
W := π(X) ∪ σ(Y). Assume that the triangle inequality (3.2) on ϑ is satisfied and define

W̃ := W ∪ {k ∈ V \ (X ∪ Y) | ∃ i ∈ X and j ∈ Y s.t. ϑ(i, k, j) > dj}
and

Q := {(u, v) ∈ δ+(S) | ∃ i ∈ X and j ∈ Y s.t. ϑ(i, u, v, j) > dj}.
Then for all S ⊂ V such that X ⊆ S and Y ⊆ S the inequality

x((S \ W̃) : (S \ W̃)) \Q) ≥ 1

is valid for P TW
1 , P TW

2 , and PTW
3 .

The π– and σ–inequalities introduced by Balas et al. [11] can be strengthened as well (see
Ascheuer [3]). Our computational experience showed, however, that for the problem instances
in our test bed no such strengthenings were possible. Therefore, we omit these inequalities
here.

Strengthened MTZ-Inequalities. Desrochers and Laporte [17] observed that the MTZ–
subtour elimination constraints (3.4) can be lifted by taking the reverse arcs (j, i) ∈ A and
infeasible arc combinations into account. Let aji := max{ϑji, ri − dj}, Mij ≥ di + ϑij − rj .
Then for all i, j = 1, ..., n, i �= j the inequality

ti + ϑij − (1 − xij) ·Mij + (Mij − ϑij − aji) · xji ≤ tj (4.27)

is valid for P TW
1 .

In addition, suppose i, j, k ∈ V are such that rk + ϑki + ϑij > dj , and choose values M
and bki, such that M ≥ maxij{cij + cji} and bki ≤ M − cij − min{dk + cki, di}. Then the
inequality

ti + ϑij − (1 − xij) ·M + (M − ϑij − aji) · xji + bkixki ≤ tj (4.28)

is valid for P TW
1 .

11

In case that precedences are present, the MTZ–inequalities can be further strengthened [3].
Assume i ≺ j. As i must be scheduled before j, we know that ti ≤ tj and, even more, that
the inequality

ti + ϑijxij ≤ tj (4.29)

is valid. Note, that inequality (4.29) can be strengthened to

ti + ϑijxij ≤ rj

in case that di + ϑij ≤ rj holds.

5 Data preprocessing

As for many other combinatorial optimization problems, preprocessing is an important part
of an efficient implementation. Its main aim is to construct a “tighter” equivalent formulation
of the problem, such that no optimal solution of the original problem is lost and each optimal
solution of the tighter problem corresponds to an optimal solution of the original problem.

For the ATSP-TW, preprocessing includes three main steps: tightening the time windows,
constructing precedences among the nodes, and fixing variables permanently. In addition, we
detect paths P = (v1, v2) of length one which are infeasible due to the criteria given by
Lemma (3.3). If such paths are detected, the corresponding arcs (v1, v2) cannot be used in
any feasible solution and are therefore deleted from the feasible arc set.

5.1 Tightening of the time windows

In this section we list some criteria (see, e.g., [16, 19]) that allow us to increase the release
date (resp. to decrease the due date) of certain nodes.

[]

[]
rk

kd

rj d j

[]

(b)

[]
dk

[]

rk

[]
d ir

i

(a)

[]
d

k

[]

rk

[]
dir

i

(c)

[]
rk

k
d

r j dj

[]

[]

(d)

Figure 5.2

5.1.1 Release date adjustment

If the earliest arrival time at node k ∈ V from any of its possible predecessors is bigger than
its release date rk (see Figure 5.2(a)), the release date of k can be increased, i.e.,

rk := max{rk, min
(i,k)∈A

{ri + ϑik}} ∀k ∈ V s.t. δ−(k) �= ∅. (5.30)

In order to avoid waiting times at the possible successor nodes of k ∈ V , the earliest
possible starting time of k, and therefore its release date may be shifted (see Figure 5.2(b)),
i.e.,

rk := max{rk,min{dk, min
(k,j)∈A

{rj − ϑkj}}} ∀k ∈ V s.t. δ+(k) �= ∅. (5.31)

12

5.1.2 Due date adjustment

If the due date dk of node k ∈ V is larger than the latest possible arrival time at node k from
any of its predecessors, the due date may be decreased (see Figure 5.2(c)), i.e.,

dk := min{dk,max{rk, max
(i,k)∈A

{di + ϑik}}} ∀k ∈ V s.t. δ−(k) �= ∅. (5.32)

If the latest possible departure time from node k ∈ V in order to fulfill all time window
constraints for its successors is smaller than its due date, then it can be decreased (see
Figure 5.2(d)), i.e.,

dk := min{dk, max
(k,j)∈A

{dj − ϑkj}} ∀k ∈ V s.t. δ+(k) �= ∅. (5.33)

5.2 Construction of precedences

Whenever the time windows for two nodes i and j are “non–overlapping” we can infer a
precedence. E.g., if rj + ϑji > di we know that node i has to precede node j in any feasible
solution to the ATSP-TW. From time windows, therefore, precedences among the nodes in V
can be derived and the methodology developed for the SOP [7] can also be applied to the
ATSP-TW.

Let i ≺ j denote the fact that node i has to precede node j in every feasible solution, and
let P = (V,R) be the precedence digraph defined on the same node set as D and where an
arc (i, j) ∈ R represents a precedence relationship i ≺ j. Clearly, P must be acyclic and can
be assumed to be transitively closed.

5.3 Elimination of arcs

By construction, if (i, j) is in the arc set R of the precedence digraph, the arc (j, i) cannot be
contained in any feasible Hamiltonian path. So we can delete all arcs (j, i) from A for which
(i, j) ∈ R holds. Furthermore, for any nodes i, j, k ∈ V with (i, j) ∈ R and (j, k) ∈ R, we can
conclude that arc (i, k) cannot be used in any feasible Hamiltonian path as node j has to be
sequenced between i and k. Therefore, those arcs (i, k) arcs are eliminated as well.

For all other arcs (i, j) ∈ A, we start with the feasible path P = (i, j) and try to con-
catenate P with paths formed by nodes in a given node set Q := {v1, ..., vk}. If all these
concatenations result in an infeasible path, we know that arc (i, j) cannot be used in any
feasible solution and it is eliminated from the feasible arc set A. For sets Q of small car-
dinality this can be checked by enumerating all possible paths containing arc (i, j). In our
implementation we only consider the case | Q |≤ 2.

Table 5.2 shows the effect these three preprocessing steps (applied iteratively several times)
have on some of our instances. E.g., about 50 % of the arcs can be fixed or eliminated and
lots of precedences are generated resulting in a considerable decrease of the model size.

13

m Iter. R1 R2 TW1 TW2 TW3 TW4 Fix1 Fix2 |A|
rbg10a 110 2 27 29 0 3 0 0 0 0 54
rbg10b 110 10 32 19 25 0 5 0 30 0 41
rbg16a 272 3 94 98 0 3 4 0 0 1 79
rbg16b 272 3 54 49 0 1 1 0 0 2 167
rbg17a 306 39 62 26 235 0 4 0 74 5 174
rbg19a 380 3 154 153 0 1 3 0 0 2 71
rbg19b 380 2 90 79 0 2 1 0 0 0 211
rbg19c 380 39 74 36 245 0 4 0 72 0 229
rbg20a 420 32 158 47 141 0 10 0 198 10 95
rbg27a 756 46 142 61 438 0 3 0 92 15 487
rbg48a 2352 105 577 360 1639 0 6 0 247 0 1288
rbg49a 2450 114 734 580 1842 1 5 0 102 1 1083
rbg50a 2550 3 485 429 0 3 2 0 0 7 1629
rbg50b 2550 115 732 591 1964 1 4 0 102 0 1175
rbg50c 2550 108 611 450 1604 0 4 0 172 0 1396

Table 5.2: Preprocessing results

m : Number of arcs in the original input digraph
Iter. : Number of preprocessing loops
R1 : Number of precedence relationships among the nodes
R2 : Number of eliminated transitive relationships arcs
TW1 : Number of release date adjustments due to (5.30).
TW2 : Number of release date adjustments due to (5.31).
TW3 : Number of deadline adjustments due to (5.32).
TW4 : Number of deadline adjustments due to (5.33).
Fix1 : Number of variables fixed to 0 due to the criterion described

in Section 5.3 (|Q| = 1).
Fix2 : Number of variables fixed to 0 due to the criterion described

in Section 5.3 (|Q| = 2).
|A| : Number of remaining arcs / variables

6 Heuristics

Recall that it is an NP-complete problem to find a feasible solution to the ATSP-TW. There-
fore, unless P= NP , there is no efficient procedure that is guaranteed to terminate with such
a solution. As a consequence, we run several construction heuristics varying from very simple
sorting heuristics to more sophisticated insertion heuristics. Whenever a feasible solution is
found we run improvement heuristics in order to obtain a better tour.

For implementational convenience we split the depot node 0 and create an additional
dummy node n+1 such that i ≺ n+1 ∀i ∈ V . Every feasible tour corresponds to a feasible
Hamiltonian path starting at 0 and ending at n+ 1 in the new digraph.

6.1 Construction heuristics

Sorting heuristics:
We apply the following sorting criteria:

(1) Check if the trivial sequence (0, 1, 2, 3, ..., n − 1, n, n+ 1) is feasible.

(2) Sort the nodes according to increasing release dates and check whether this sequence is
feasible.

14

(3) Sort the nodes according to increasing due dates and check whether this sequence is
feasible.

(4) Sort the nodes according to increasing midpoints of the time windows mi := ri +
di−ri

2
and check whether this sequence is feasible.

Nearest-Feasible-Neighbor Heuristic:
Starting with each feasible arc (0, i) ∈ A we run a nearest feasible neighbor heuristic, i.e.,
we enlarge the current subpath (0, v1, v2, ..., vk) by an arc (vk, vl) resulting in the smallest
increase in the objective value and guaranteeing feasibility.

Insertion Heuristics:
Starting with a shortest path in A from 0 to n+ 1 we enlarge the current partial path P′ :=
(0, v1, ..., vk, n+1) by a node j satisfying a certain insertion criterion. Let W := V \{v1, ..., vk}
and dmin(j) := min{cvlj+cjvl+1

−cvlvl+1
|i ∈ V \W,vl ∈ P ′ and (0, v1, . . . , vl, j, vl+1, . . . , vk, n+ 1)

is feasible}. We apply the following strategies, each resulting in a different heuristic:

(1) Among all unsequenced nodes choose the node j ∈ W that causes the lowest increase
in the path length, i.e., dmin(j) = min{dmin(l)|l ∈ W}.

(2) Among all unsequenced nodes choose the node j ∈ W that has the lowest number of
feasible insertion positions and insert this node at the cheapest of these positions.

The best solution found by any of the construction heuristics is passed to the improvement
heuristics.

6.2 Improvement heuristics

Swap Heuristic:
Given a feasible tour T = (v0, v1, ..., vn+1) we scan through the sequence and check whether
swapping two subsequent nodes vi and vi+1, i = 1, ..., n− 1, results in a feasible solution with
better objective value, in which case the swap is accepted. This procedure is repeated until
no further improvement is achieved.

Two-Node-Exchange Heuristic:
This is a generalization of the Swap heuristic where any two nodes (not only subsequent
nodes) in the current sequence are exchanged. If this results in a better feasible tour the
exchange is accepted. This procedure is repeated until no further improvement is achieved.

Node-Reinsertion Heuristic:
Given a feasible tour (v0, v1, . . . , vi, vj , vk, . . . , vn+1) and any inner node vj, we construct a
partial tour T ′ = (v0, v1, . . . , vi, vk, . . . , vn+1) by deleting vj. We then try to reinsert vj in
the best position in T ′ such that the new sequence T is feasible. If this results in a better
objective value we accept T to be the new tour and repeat until no further improvement is
achieved.

Arc-Reinsertion Heuristic:
Given a feasible tour (v0, v1, ..., vi, vj , vk, vl, ..., vn+1) we construct a partial tour T′ = (v0, v1,
..., vi, vl, ..., vn+1) by deleting any two consecutive nodes vj and vk. We then try to reinsert the
pair (vj , vk) at any position in T ′ such that the new sequence T is feasible. If this results in a

15

better objective value we accept T to be the new tour and repeat until no further improvement
is achieved.

Arc-Reversal Heuristic:
Given a feasible tour (v0, ..., vj , vk, ..., vl, vm, ..., vn+1) we construct a tour T := (v0, ..., vj , vl,
..., vk, vm, ..., vn+1) by reversing the subpath (vk, ..., vl) such that the new sequence T is fea-
sible. If this results in a better objective value we accept T to be the new tour and repeat
until no further improvement is achieved.

Or-Exchange Heuristic: (see as well [34, 38, 41])
Given a feasible tour (v0, v1, ..., vi, ..., vj , ..., vn+1) we remove the subpath (vi, ..., vj) and try
to reinsert it between any two subsequent nodes vl and vl+1 such that the new sequence T is
feasible. If this results in a better objective value we accept T to be the new tour and repeat
until no further improvement is achieved. We restrict ourselves to paths involving up to 5
nodes.

The heuristics are called in the following order:

(6.34) Initial heuristics.

1. Run Sorting Heuristics

2. Run Nearest Feasible Neighbor Heuristics

3. Run Insertion Heuristic 1

4. Run Insertion Heuristic 2

5. IF no feasible sequence found STOP

6. DO until no further improvement is achieved

(a) Run Or-Exchange-Heuristic

(b) Run Arc-Reversal Heuristic

(c) Run Swap Heuristic

(d) Run Arc-Reinsertion Heuristic

(e) Run Node-Reinsertion Heuristic

(f) Run Two-Node-exchange Heuristic

The best solution found by any of the procedures is the initial feasible solution passed to
the branch–and–cut code. Our computational experiments showed that these heuristics are
outperformed by the LP-based heuristic procedures described in the next section.

6.3 LP–exploitation heuristic

In order to make use of the information obtained during the branch–and–cut execution, an
LP–exploitation heuristic is run after each LP–solution. Given the current fractional point x∗,
we construct the digraph D∗ := (V,A∗) where (i, j) ∈ A∗ if and only if x∗

ij > 0. We execute
two steps.

First, in case that D∗ is very sparse (in our current implementation this means that
|A∗| ≤ 1.25 · |V |), we apply a branch–and–bound like implicit enumeration scheme, where we

16

backtrack as soon as the current path becomes infeasible or the cost of the path is higher than
the cost of the best feasible solution so far. We expected and observed that this procedure
rarely finds a feasible tour when applied to the optimal solutions of the first LP relaxations.
Feasible tours show up only at the end of the cutting plane procedure after sufficiently many
inequalities have been added to the initial LP forcing out subtours, infeasible paths, and the
like.

In a second step, that is always performed, we set up a modified problem instance by
changing the costs cij of all (i, j) ∈ A as follows, c∗ij := x∗ij · cij . With this modified cost-
matrix C∗ we run all of the following construction heuristics: Nearest–Feasible–Neighbour,
Insertion 1, and Insertion 2 heuristics. If a feasible solution is found we try to improve it
by applying one of the following improvement heuristics: Node Reinsertion, Arc Reinsertion,
Swap, and Arc Reversal. The improvement heuristics are called with the original costs cij. In
order to avoid calling the improvement heuristics more than once with the same input solution
we use an hash table in which the insertion key is the value of the input solution along with
the index of the improvement heuristic. If the heuristic was already called with a solution of
the same value, it is skipped. Note that different solutions may have the same value. Hence,
we may miss a solution that leads to an improvement. Nevertheless, this strategy led to a
dramatic reduction in computing time needed for the LP–exploitation heuristics.

7 The Branch&Cut Algorithm

We implemented four different branch&cut–algorithms: One for each Model (3.5)–(3.7), plus
an advanced implementation based on Model 2 using the branch&cut framework ABACUS [30,
42]. We performed the advanced implementation only for this model as the preliminary ver-
sion of ABACUS we had access to supported binary variables only.

We assume from now on that the preprocessing steps described in Section 5 have been
performed resulting in a reduced digraph D = (V,A) and tightened time windows.

7.1 Initial Linear Program

The initial linear programs for the three models are generated as follows.

Model 2. This model involves only the variables xij , (i, j) ∈ A. We generate the variables
xij that correspond to arcs (i, j) in the 5–nearest–neighbours digraph and to the arcs of the
best feasible tour found by the initial heuristics. (The remaining variables are later taken into
account by pricing). We generate the nonnegativity constraints and the degree constraints

x(δ−(i)) = 1 ∀i ∈ V ∪ {0}
x(δ+(i)) = 1 ∀i ∈ V ∪ {0}.

restricted to the initial set of xij-variables.

Model 1. We generate the same xij-variables and constraints as in Model 2. We add
all node variable ti, i ∈ V , and the corresponding lifted t–bounds (4.15). We generate, for
every variable xij , the MTZ–inequality (3.5)(3), and, whenever possible, we add strengthened
MTZ–inequalities of type (4.27), (4.28), (4.29).

17

Model 3. We generate the same xij-variables and constraints as in Model 2 and, for each
xij-variable, the corresponding variable yij. We add the inequalities (3.7)(3) and (3.7)(4).

7.2 Separation routines

In this section we describe the separation procedures for the classes of inequalities listed in
Section 4. For some of these classes we use routines described in the literature.

• Subtour Elimination constraints (SEC): We use the separation routine developed
by Padberg and Rinaldi [35]. Whenever a violated SEC is found, we check if it can be
strengthened to a π–, σ–, or pcb-inequality ((4.20), (4.21), or (4.23)).

• 2-matching constraints: We use a heuristic separation procedure as described in [26].

• π–, σ–, (π, σ)–inequalities: We use the heuristic separation procedure for the “weak”
version of these inequalities, as proposed in [11].

• “Special” inequalities (4.25) and (4.26), PCB–inequalities (4.23): We use the
“shrinking procedure” proposed in [11]. We shrink saturated SECs both in the LP-
solution digraph D∗ and the precedence digraph. If an infeasible arc (i.e., a reverse or
transitive arc of a precedence arc) or a cycle in the precedence digraph is detected we
have a violated pcb–inequality or a violated inequality of type (4.25) or (4.26).

• Dk–inequalities: We use the separation procedure described in [23].

• SD–inequalities: We use the separation procedure described in [23].

• Infeasible Path Elimination Constraints (IPEC): In the test phase of our im-
plementation we often observed the following: As soon as an IPEC is generated, the
LP–solution tries to react to this cutting plane by taking a short “detour” or a “short
cut”. Therefore, in the final implementation we first check whether a minor modification
of an already–generated infeasible path constraint is violated.

If these trivial separation checks are not successful, tournament constraints (4.8) are
separated with the help of the following simple enumeration procedure. Suppose we are
given a (fractional) point x∗. It can be shown (Savelsbergh [37]) that there are only
polynomially many paths Pk for which

∑k−1
i=1

∑k
j=i+1 x

∗
vivj−k+2 is greater than 0, under

the assumption that
∑

i∈V x∗ij =
∑

j∈V x∗ij = 1. These paths can easily be detected by

enumeration (backtrack as soon as
∑k−1

i=1

∑k
j=i+1 x

∗
vivj − k + 2 ≤ 0).

If a violated tournament constraint is found, we check, whether it can be lifted to an
inequality of type (4.9)–(4.12).

If no cut is found, we verify if a concatenation of paths corresponding to variables
x∗ij = 1 creates an infeasibility, i.e., if an inequality of type (4.14) is violated.

• Strengthened (π, σ)–inequalities:
If X = {i} and Y = {j}, the strengthened (π, σ)–inequality is called simple. The
separation problem for the simple strengthened (π, σ)–inequalities can heuristically be
solved via a separation procedure similar to the one used for the weak (π, σ)–inequalities
(Balas et al. [11]). Given the LP fractional point x∗, we set up a capacitated digraph
D∗ := (V,A∗), A∗ := {(i, j) ∈ A | x∗ij > 0}. To each (i, j) ∈ A∗ associate a capacity

18

c∗ij := x∗ij. For all i ≺ j we then apply the following procedure. We construct a digraph

D̃ := (Ṽ , Ã) from D∗ by deleting
– all nodes in π(i) ∪ σ(j),
– all nodes k such that (i, k, j) is infeasible, i.e., ri + ϑik + ϑkj > dj ,
– all arcs (u, v) such that (i, u, v, j) is infeasible, i.e., ri+ϑiu+ϑuv+ϑvj > dj .

If we do not succeed in sending one unit of flow from i to j in D̃, then the minimum
capacity cut in D̃ separating i from j defines a violated simple generalized (π, σ)–
inequality.

• Two-Job-Cuts: Violated inequalities of this class can be found by enumeration of all
i and j satisfying rj < ri + pi and ri < rj + pj.

• Pool-Separation: During the run of the algorithm we maintain a pool of active and
nonactive valid inequalities. An inequality is called active if it is both stored in the
constraint matrix of the current LP and in the pool, whereas inequalities that are only
stored in the pool are called nonactive. The pool is initially empty. Each generated cut
is added to the constraint matrix and is stored in the pool. As soon as a constraint is
nonbinding in the current LP it becomes inactive, i.e., it is removed from the constraint
matrix but is still kept in the pool.

The inequalities in the pool can be used either to reconstruct linear programs from
scratch, or to check if any of the cuts generated in an earlier iteration of the algorithm
is violated by the actual LP–solution (pool separation).

Separation-Order. The separation routines are called in the following order:

1. Pool Separation.

2. Subtour elimination constraints.

3. “Shrinking–procedure”.

4. π–inequalities.

5. σ–inequalities.

6. Infeasible Path Elimination Constraints.

7. Dk–inequalities.

8. SD–inequalities.

9. Strengthened (π, σ)–inequalities.

10. 2–matching constraints.

11. Two–Job Cuts (only for Model 1).

Whenever one of the procedures generates a cutting plane all subsequent routines are skipped.

7.3 Variable fixing

Within the branch&cut tree (BC–tree, for short) we apply two types of variable fixings. We
say that a variable xij is fixed to its upper or lower bound, if this operation is valid for the
whole BC–tree. If this is valid only for the current BC–node and all of its children-nodes we
say that this node is set to its upper or lower bound.

19

If a variable is set (resp. fixed) to zero, the corresponding arc is deleted from the current
feasible arc set A. Note that fixing is a permanent operation, but due to the local character
of variable settings the feasible arcs may differ between different nodes of the BC-tree.

7.3.1 Logical implications

Due to the fixing (resp. setting) of a variable, further fixings (resp. settings) may be performed.
First, assume that variable xij was set (resp. fixed) to zero. If after this operation either
|δ+(i)| = 1 or |δ−(j)| = 1, we know that the arc leaving i or entering j has to be used in any
feasible tour. Therefore, the corresponding variable can be set (resp. fixed) to one.

Now assume, that variable xij was fixed to one. An update of the time windows is possible,
i.e., we set

rj := max{rj, ri + ϑij}
di := min{di, dj − ϑij}

and call the preprocessing routines described in Section 5. In order to guarantee that all infea-
sible path constraints, that are based on the time windows, remain globally valid throughout
the BC-tree, this operation is only applied when a variable is fixed (not when it is set) to 1.

In addition, the following reductions can be applied:

xij = 1 ⇒ xji = 0
xik = 0 ∀k ∈ V \ {j}
xkj = 0 ∀k ∈ V \ {i}
x(j : π(i)) = 0
x(σ(j) : i) = 0
x(π(i) : σ(j)) = 0
x(π(j) : σ(i)) = 0

7.3.2 Reduced cost fixing

Nonbasic active variables can be fixed to their current value using reduced cost criteria. To
this end, assume that we are given a global upper bound gub and a global lower bound glb.
For a nonbasic variable xij we compute the associated reduced cost rij. In case that xij = 0
and glb+rij >gub we are allowed to fix variable xij to zero, whereas xij = 1 and glb−rij >gub
implies that xij can be fixed to one. Using the same arguments nonbasic active variables can
be set to their current value using a local lower bound and reduced costs instead of the global
ones.

7.4 Further implementation details

Branching. Branching is performed on x–variables only. The branching variable xij is
chosen to be one that is closest to 0.5. If there exist several such variables, one with highest
cost coefficient cij is chosen.

Enumeration strategy. For the comparison of the three models, Depth–First–Search is
applied as enumeration strategy. ABACUS also supports Breadth–First–Search and Best–
First–Search. Computational test have shown that Best–First–Search yields slightly better
results than the other strategies. Therefore, we have chosen Best–First–Search as default
strategy for the advanced implementation of Model 2.

20

Key to Tables 8.1 and 8.2:

Opt : Value of optimal solution
#N : Number of generated nodes in the branch&cut tree
#LP : Number of linear programs that had to be solved
#Rows : Number of rows (constraints) in linear program
#Cols : Number of columns (variables) in linear program
CPU(total) : Total CPU-time in minutes to solve problem instance to optimality
LB : Lower bound before branching in root node
UB : Upper bound before branching in root node
CPU : CPU-Time until first branching is necessary
LP : Percentage of computing time spent in LP solver
Sep : Percentage of computing time spent in separation routines
Pric : Percentage of computing time spent in pricing operations
Heur : Percentage of computing time spent in heuristic algorithms.

Pricing frequency: Nonactive variables are priced out at each 5-th LP-solution.

Tailing off: Whenever in a certain BC–node new cuts are added but the increase in the
objective function is not sufficiently large, we say that “tailing off” occurs and perform a
branching step. In our implementation we resort to branching whenever the last 10 LPs
produced no improvement in the lower bound, or in case an improvement of only 1% has
been achieved in the last 20 LPs.

8 Computational results

All implementations were done in the programming language C on a SUN SPARC Station 10.
Only for the advanced implementation based on Model 2 we used a preliminary version of
the general purpose branch&cut-framework ABACUS [29, 30, 31], supporting 0/1-variables
only. Therefore, the comparison of the three different models was performed on ad hoc
implementations we developed.

The LPs were solved using the callable library of CPLEX 4.09. The codes were tested on
a set of real-life data from a joint project with industry that had the aim to minimize the
unloaded travel time of a stacker crane within an automatic storage system (see Ascheuer [3]
for details). This set of test problems was enlarged by instances for which we relaxed some
randomly selected time windows. These datasets are based on the 27–node real-life instance
rbg027a and are denoted by rbg27.b.x, where x gives the number of nodes for which time
windows are present1.

8.1 Comparison of the three models

In a first phase we performed computational experiments with all three models of the ATSP-TW
described in Section 3. Our aim was to gather from these test runs information that would al-
low us to choose a “winner”, i.e., a model that, for the range of problem instances we address,
displays the best computational performance in practice.

1Information on how to download the problem instances mentioned in this chapter can be obtained via
http://www.zib.de/ascheuer/ATSPTWinstances.html

21

From the test runs we have made, we have chosen to present here 11 benchmark problems
that cover our range of typical instance sizes and that all three models were able to solve to
optimality. The data of these test runs are, by and large, representative for our experience
with these models. We first run the branch&cut algorithms as described in Section 7 from
scratch. These results are summarized in Table 8.1. In a second set of runs we supplied
optimum solutions as input to see how the implementations behave if the best upper bound
is provided. The results are presented in Table 8.2.

We infer from Tables 8.1 and 8.2 that Model 2 is the clear winner. The implementation of
Model 2 ran fastest in 16 out of 22 cases, was second in 2 and third in 4 cases. Model 3 won
6 test runs, and was third in all others, while Model 1 came in second in all but two cases
where it was third.

A more detailed analysis also shows that one should not expect one model to be the best
over the whole range of applications. Model 2 did do particularly well on problems of type
rbg*a where time windows are active for all nodes (the usual case in our application). Our
implementation of Model 3 works rather poorly in this problem range, but it outperforms the
others when only a few time windows are active.

There are additional indicators that supported our choice of Model 2. We briefly mention
a few of them. Our algorithm for Model 3 often ran into severe numerical problems. The
linking constraints (3.7)(4) of this model caused problems whenever di = ∞. Indeed, in case
an LP variable xij has a very small value (slightly above the zero tolerance of the LP-solver)
the corresponding yij–variables are not necessarily forced to 0. Therefore, adjustments with
parameter settings of the LP solver are necessary. Moreover, the primal simplex method of
the LP solver we used often returned an error code indicating that the problem was solved
to optimality but indeterminate infeasibilities have been detected (CPLEX - infeasibility
type 11). Finally, the resulting LPs of Model 3 are extremely difficult to solve and about
90 % of the total computing time was spent within the LP solver.

The LP formulations of all three models differ significantly in their number of variables,
number of constraints and their degree of difficulty. The LPs resulting from Model 2 seem to
be the smallest and easiest for the LP solver. The numerical problems for Model 1 (big M)
and Model 3 (linking constraints) result in high computing times to solve the LPs. Moreover,
an optimal solution of the LP relaxation of Models 1 and 3 tends to have more fractional
components, i.e., variables x∗ij with 0 < x∗ij < 1.

In Tables 8.1 and 8.2 we report computational results for instances up to 69 nodes only,
as only instances up to this size could be solved to optimality by the implementations of all
three models. Larger instances could only be solved by Model 2.

For all these reasons we decided to work with Model 2 and develop a more advanced
implementation based on this model.

22

Root Computing time (in %)
��� �� ��� ��	
� ��	
� �����	��
� �� �� ��� �� ��� ���� ����

Model 1
rbg027a 268 25 215 350 208 0:13.37 265.25 268 0:01.24 60.2 6.7 24.1 6.1
rbg034a 403 3 56 528 380 0:05.95 401.67 403 0:04.35 70.4 4.7 16.0 3.0
rbg050a 414 7 171 746 447 0:55.67 411.51 430 0:14.64 68.5 2.5 23.4 3.5
rbg055a 814 3 81 760 508 0:22.11 814.00 815 0:16.60 52.7 4.2 14.3 23.7
rbg067a 1048 3 85 917 629 0:27.43 1046.67 1049 0:22.39 43.5 6.7 14.5 28.9
rbg27.b.04 170 139 1310 851 751 3:38.46 164.00 175 0:02.95 71.5 1.8 18.7 6.4
rbg27.b.08 206 271 2170 705 578 5:08.88 194.00 214 0:02.40 68.4 3.4 24.2 2.5
rbg27.b.10 210 169 2161 535 432 2:53.24 202.85 219 0:09.21 64.1 6.5 24.0 4.5
rbg27.b.13 224 7 153 323 214 0:10.70 221.12 231 0:07.37 69.7 5.9 17.4 4.3
rbg27.b.14 224 1 101 339 205 0:06.34 224 224 0:06.34 68.8 7.1 16.2 4.9
rbg27.b.18 238 1 54 304 163 0:02.86 238 238 0:02.86 72.0 4.9 9.8 6.6

Model 2
rbg027a 268 25 189 113 174 0:04.90 265.50 268 0:00.65 23.9 15.5 42.7 11.2
rbg034a 403 3 38 126 248 0:01.25 401.67 403 0:01.12 28.0 10.4 30.4 9.6
rbg050a 414 3 97 217 353 0:11.21 412.84 430 0:08.04 14.1 12.5 54.5 10.0
rbg055a 814 5 72 190 418 0:05.94 812.67 815 0:03.87 15.3 9.6 39.1 19.5
rbg067a 1048 5 84 233 491 0:09.63 1046.00 1048 0:04.63 12.9 18.1 34.5 18.4
rbg27.b.04 170 645 5420 109 742 4:10.70 164.00 174 0:00.77 18.0 6.8 46.7 25.7
rbg27.b.08 206 1567 12515 141 550 8:50.66 190.67 214 0:01.06 24.8 15.1 47.4 10.0
rbg27.b.10 210 285 2783 119 511 1:36.88 202.85 233 0:03.70 27.9 15.8 43.1 10.8
rbg27.b.13 224 5 138 116 179 0:03.50 221.12 224 0:02.31 38.6 18.6 18.3 13.7
rbg27.b.14 224 1 111 129 167 0:02.90 224 224 0:02.90 34.5 13.8 29.3 13.4
rbg27.b.18 238 1 45 117 132 0:00.93 238 238 0:00.93 37.6 14.0 21.5 10.8

Model 3
rbg027a 268 13 117 547 484 0:34.83 265.55 268 0:07.69 92.1 1.6 4.2 0.7
rbg034a 403 3 30 680 538 0:13.25 401.67 403 0:09.59 92.2 1.1 2.9 0.5
rbg050a 414 41 553 1983 1768 20:07.99 411.00 430 0:49.30 90.9 0.4 7.1 0.6
rbg055a 814 7 100 1156 970 1:43.56 809.15 815 1:03.23 88.0 0.7 2.7 7.0
rbg067a 1048 5 82 1373 1126 1:56.87 1043.15 1049 1:09.39 92.6 1.2 2.5 2.1
rbg27.b.04 170 133 988 1472 1448 2:27.55 164.00 172 0:03.78 77.1 2.0 11.0 7.3
rbg27.b.08 206 41 560 800 694 1:38.87 194.00 214 0:04.39 88.5 1.9 6.9 1.9
rbg27.b.10 210 15 361 661 554 0:57.38 197.00 233 0:03.70 87.7 2.1 6.5 2.7
rbg27.b.13 224 9 183 485 380 0:27.81 221.88 231 0:19.22 88.5 2.2 5.8 2.5
rbg27.b.14 224 1 130 466 346 0:16.23 224 224 0:16.23 87.7 2.1 6.0 2.5
rbg27.b.18 238 1 55 406 272 0:05.82 238 238 0:05.82 88.0 3.3 3.8 1.9

Table 8.1: Model comparison

Root Computing time (in %)
��� �� ��� ��	
� ��	
� �����	��
� �� �� ��� �� ��� ���� ����

Model 1
rbg027a 268 25 215 350 208 0:13.39 265.25 268 0:01.26 60.0 7.7 24.4 4.8
rbg034a 403 3 56 528 380 0:05.96 401.67 403 0:04.34 70.0 4.7 16.8 3.2
rbg050a 414 43 469 1260 995 3:34.94 411.00 414 0:09.28 49.0 1.7 41.1 2.0
rbg055a 814 3 74 770 509 0:16.71 812.67 814 0:14.45 61.0 6.0 22.4 5.1
rbg067a 1048 1 60 879 581 0:14.45 1048 1048 0:14.45 42.6 13.4 19.0 15.6
rbg27.b.04 170 285 2278 756 661 6:14.25 164.00 170 0:02.25 70.8 1.8 19.6 7.1
rbg27.b.08 206 133 1071 670 579 1:52.19 193.00 206 0:01.78 64.4 4.3 26.1 3.0
rbg27.b.10 210 175 2258 586 471 3:21.93 197.00 210 0:01.84 65.5 5.9 23.4 4.3
rbg27.b.13 224 3 115 322 212 0:08.02 221.12 224 0:07.17 73.7 4.9 12.5 5.9
rbg27.b.14 224 1 101 339 205 0:06.36 224 224 0:06.36 68.1 6.6 15.7 5.7
rbg27.b.18 238 1 63 303 164 0:03.15 238 238 0:03.15 70.2 7.6 11.7 4.1

Model 2
rbg027a 268 25 189 113 174 0:04.97 265.50 268 0:00.68 23.9 16.7 42.1 9.1
rbg034a 403 3 38 126 248 0:01.23 401.67 403 0:01.09 25.2 11.4 33.3 9.8
rbg050a 414 5 118 235 349 0:13.62 412.00 414 0:05.92 13.1 10.1 60.5 10.6
rbg055a 814 1 65 214 396 0:04.71 814 814 0:04.71 17.6 15.9 27.8 21.7
rbg067a 1048 3 52 218 504 0:05.73 1046.67 1048 0:04.83 12.0 16.2 33.7 14.7
rbg27.b.04 170 1543 11993 101 739 8:45.38 164.00 170 0:00.39 19.7 7.5 42.2 28.7
rbg27.b.08 206 775 6351 123 547 4:23.44 195.20 206 0:02.10 23.9 14.6 48.1 10.1
rbg27.b.10 210 225 2153 113 455 1:15.91 202.85 210 0:03.95 27.9 15.9 44.0 10.3
rbg27.b.13 224 7 166 107 186 0:04.28 221.12 224 0:02.87 31.1 14.0 33.9 14.5
rbg27.b.14 224 1 111 129 167 0:02.87 224 224 0:02.87 37.6 13.6 29.3 13.2
rbg27.b.18 238 1 59 111 135 0:01.16 238 238 0:01.16 37.9 18.1 18.1 10.3

Model 3
rbg027a 268 13 117 547 484 0:34.79 265.55 268 0:07.68 92.2 1.6 4.3 0.7
rbg034a 403 3 30 680 538 0:13.24 401.67 403 0:09.59 92.7 1.1 2.9 0.3
rbg050a 414 9 271 1064 878 4:11.20 410.50 414 0:31.94 88.8 0.9 8.2 1.4
rbg055a 814 5 79 1162 934 1:17.75 809.15 814 0:58.50 90.9 0.7 3.4 4.0
rbg067a 1048 9 118 1309 1116 2:10.44 1044.17 1048 1:09.44 91.3 1.5 3.7 2.4
rbg27.b.04 170 161 1341 1373 1362 3:00.11 164.00 170 0:02.02 75.8 1.9 11.7 8.6
rbg27.b.08 206 39 637 911 818 1:50.77 193.00 206 0:04.30 87.8 2.1 7.4 2.0
rbg27.b.10 210 17 392 570 470 0:50.39 202.85 210 0:19.96 84.9 3.0 7.7 3.1
rbg27.b.13 224 7 183 471 366 0:28.24 221.12 224 0:19.13 88.2 2.2 6.2 2.3
rbg27.b.14 224 1 130 466 346 0:16.47 224 224 0:16.47 87.2 2.6 5.9 2.7
rbg27.b.18 238 1 57 408 262 0:05.74 238 238 0:05.74 88.7 3.3 3.3 1.9

Table 8.2: Model comparison (optimal solution supplied)

23

Key to Table 8.3:

n : Number of nodes.
|A| : Number of arcs after preprocessing
Solution ... Opt : Value of an optimal solution. If the instance is not solved to optimality, the

global lower bound glb and global upper bound gub are given in the form
[glb, gub].

Gap : Optimality gap in percent; calculated by gub−glb
glb

· 100.
Root ... Bounds : Lower bound rlb and upper bound rub at the root LP.

gap : Optimality gap at the root of the BC-tree in percent; calculated by rub−rlb
rlb

·100
Qual : Quality of lower bound at the root of the BC-tree in percent; calculated by

100 − (gub−rlb
rlb

· 100)
BC-Tree ... #N : Number of nodes in the branch&cut tree.

Lev : Depth of the branch&cut tree.
#cuts : Number of generated cutting planes.
#LP : Number of linear programs that had to be solved.
CPU : Total CPU-time in minutes to solve problem instance to optimality

If the problem instance could not be solved to optimality within a certain time
limit, this is marked by giving the CPU-time after which the run is stopped

Key to Table 8.4: (generated cuts)

Pool : Number of inequalities generated from the pool / Number of calls of pool separation.
SEC : Number of generated subtour elimination constraints (SEC)/ Number of calls of SEC

separation routine.
TMC : Number of generated 2–matching constraints. / Number of calls of 2–matching sep-

aration routine.
π : Number of generated π inequalities/ Number of calls of π separation routine.
σ : Number of generated σ inequalities/ Number of calls of σ separation routine.
(π, σ) : Number of generated (π, σ) inequalities/ Number of calls of (π, σ) separation routine.
IPEC : Number of generated infeasible path elimination constraints (IPEC) / Number of

calls of IPEC separation routine.
Shrink : Number of inequalities generated by shrinking procedure (see Section 7.2)/ Number

of calls.
Dk : Number of generated Dk–inequalities/ Number of calls of Dk separation routine.
Tk : Number of generated Tk–inequalities/ Number of calls of Tk separation routine.
SD : Number of generated SD–inequalities / Number of calls of SD separation routine.

Key to Table 8.5: (generated infeasible path elimination constraints)

Tourn : Number of generated tournament constraints (4.8).
Concat : Number of generated concatenated infeasible path elimination constraints (4.14).
IP1a : Number of generated infeasible path elimination constraints (IPEC) (4.9) by enumeration

procedure.
IP1b : Number of generated IPEC (4.9) by modification of already detected infeasible paths.
IP2a : Number of generated IPEC (4.10) by enumeration procedure.
IP2b : Number of generated IPEC (4.10) by modification of already detected infeasible paths.
IP3a : Number of generated IPEC (4.11) by enumeration procedure.
IP3b : Number of generated IPEC (4.11) by modification of already detected infeasible paths.
IP4a : Number of generated IPEC (4.12) by enumeration procedure.
IP4b : Number of generated IPEC (4.12) by modification of already detected infeasible paths.
Total : Total number of generated infeasible path elimination constraints.

24

Key to Table 8.6: (Timing statistics)

Init : Computing time spent in initialization phase (in %).
LP : Computing time spent in LP solver (in %).
Improve : Computing time spent in LP-exploitation and subsequent improvement heuristics (in %).
Separation : Computing time spent in various separation procedures (in %).
Pricing : Computing time spent in pricing (in %).
Misc : Computing time spent in other parts of the program (in %).
Total : Total CPU-time in minutes.

8.2 Advanced implementation of Model 2

The advanced implementation of the branch&cut-algorithm based on Model 2 was done us-
ing a preliminary version of the general purpose branch&cut-framework ABACUS that is
explained in [29], the LP-solver CPLEX 5.0, and the FORTRAN implementations of the
separation routines for SD- and Dk-inequalities by Fischetti and Toth [23].

We demonstrate here the performance of this code on a testbed of 50 problem instances
varying from 12 to 233 nodes that were derived from a practical application. For all instances
we allow a maximum computation time of 5 hours of CPU-time. All runs are executed with
the default parameter settings described in the previous section. If an instance could not be
solved to optimality within the given time limit, we list the lower and upper bounds found
by the algorithm. The results are summarized in Tables 8.3–8.6. Table 8.3 gives general
information on the performance of the implementation, Table 8.4 (resp. Table 8.5) on the
number of generated cutting planes (resp. generated infeasible path elimination constraints).
Table 8.6 summarizes the percentages of computing time spent in the various parts of the
program.

There is no obvious way of measuring or predicting the difficulty of an ATSP-TW instance
(for a particular code). For example, the real–world instance rbg041a with 43 nodes appears
to be extremely difficult. Within a running time of 5 hours the code could only produce an
upper and lower bound differing by 9.16%. To do that, 109402 LP runs were made, pool
separation was called 105521 times resulting in the handling of more than 1 million cutting
planes. The total number of different cutting planes generated was, however, only 46846. The
(on the surface) not too different real–world problem rbg067a with 69 nodes was solved, on
the other hand, to optimality within 6 seconds. Only 176 cutting planes were generated and
one branching step was sufficient. In general, our code for Model 2 produced, for the instances
of our application, either optimal solutions or feasible solutions within an acceptable quality
guarantee.

From Table 8.3 one can derive that the heuristics embedded in our implementation often
found an optimal solution in the root node of the branch&cut–tree. For these instances the
optimality of the solutions was proven fast. For all instances that were solved to optimality
the GAP between the the lower and upper bound before branching is relatively small. For
all instances, except rbg035a.2 and rbg040a it is within a 7% range, for most of the instances
even smaller (see column Root . . . gap). The quality of the lower bound before branching is
slightly better. For all instances solved to optimality (except rbg040a) it is at most 5% lower
than the value of an optimum solution. For most of these instances even within a 1% range
(see column Root . . . qual).

25

For the instances that were not solved to optimality only minor improvements in the upper
bound could be obtained in the branching phase, whereas the lower bound could be improved
significantly (cmp. columns solution . . . opt and root . . . bounds)

The largest instance (in terms of nodes) solved to optimality has 127 nodes. But one
should note as well that there exist small instances (e.g., rbg019b) that were hard to solve by
the branch&cut-algorithm. The smallest unsolved instance contains 43 nodes.

Table 8.4 gives, for each separation routine, the number of generated cuts in relation to
the number of times this separation routine was called. For example, on instance rbg016b the
separation routine for the π–inequalities was called 148 times generating 41 cutting planes in
total. One sees that very seldomly violated 2–matching constraints, Dk–, and Tk–inequalities
were found. Among the other separation routines the number of generated cuts is more or
less evenly distributed.

Table 8.5 gives a more detailed view on the number of infeasible path elimination con-
straints (IPEC) that were generated. Most of the generated IPEC are tournament constraints.
On some instances (e.g., rbg041a) most of the IPEC are tournament constraints or inequalities
of type (4.12). Only on very few instances a large number of violated inequalities (4.9)–(4.11)
were found. Surprisingly, violated inequalities of type (4.11) and (4.12) were never found by
the separation heuristic checking modifications of already found infeasible paths.

26

�������� ���� 	
��
��

n |A| ��� ��� ������ ��� ���� �� ��� ����� ���
��

rbg010a 12 54 149 0.00 [148, 149] 0.68 99.32 2 1 22 14 0:00.12
rbg016a 18 79 179 0.00 [177, 179] 1.13 98.87 2 1 8 8 0:00.20
rbg016b 18 167 142 0.00 [133, 142] 6.77 93.66 76 13 288 329 0:08.80
rbg017.2 17 200 107 0.00 107 0.00 100.00 0 0 2 2 0:00.03
rbg017 17 122 148 0.00 [148, 150] 0.00 100.00 4 2 43 43 0:00.82
rbg017a 19 176 146 0.00 146 0.00 100.00 0 0 3 5 0:00.12
rbg019a 21 71 217 0.00 217 0.00 100.00 0 0 0 1 0:00.03
rbg019b 21 211 182 0.00 [180, 185] 2.78 98.88 820 29 623 1645 0:54.57
rbg019c 21 229 190 0.00 [182, 190] 4.39 95.56 58 9 360 325 0:08.72
rbg019d 21 156 344 0.00 [343, 344] 0.29 99.71 2 1 40 31 0:00.75
rbg020a 22 95 210 0.00 210 0.00 100.00 0 0 0 1 0:00.20
rbg021.2 21 237 182 0.00 182 0.00 100.00 0 0 32 10 0:00.22
rbg021.3 21 256 182 0.00 [178, 190] 6.74 97.75 340 17 788 869 0:27.15
rbg021.4 21 264 179 0.00 [177, 190] 7.34 98.87 72 10 189 237 0:05.82
rbg021.5 21 268 169 0.00 [167, 169] 1.20 98.80 76 10 199 264 0:06.63
rbg021.6 21 358 134 0.00 [133, 134] 0.75 99.24 2 1 55 54 0:01.38
rbg021.7 21 375 133 0.00 [128, 133] 3.91 96.09 24 6 131 166 0:04.30
rbg021.8 21 380 132 0.00 [129, 136] 5.43 97.67 254 17 369 672 0:17.40
rbg021.9 21 380 132 0.00 [128, 138] 7.81 96.87 320 15 620 948 0:26.12
rbg021 21 229 190 0.00 [182, 190] 4.40 95.60 58 9 360 325 0:08.75
rbg027a 29 487 268 0.00 [266, 268] 0.75 99.24 6 3 174 59 0:02.25
rbg031a 33 388 328 0.00 328 0.00 100.00 0 0 97 37 0:01.70
rbg033a 35 421 433 0.00 433 0.00 100.00 0 0 45 24 0:01.85
rbg034a 36 535 403 0.00 [401, 403] 0.50 99.50 2 1 48 16 0:00.98
rbg035a.2 37 940 166 0.00 [158, 215] 36.08 94.94 96 15 1253 698 1:04.80
rbg035a 37 477 254 0.00 254 0.00 100.00 0 0 121 34 0:01.83
rbg038a 40 486 466 0.00 [466, 474] 0.00 100.00 13204 40 20586 38855 70:32.23
rbg040a 42 539 386 0.00 [355, 393] 10.70 91.28 1756 26 2007 5605 12:31.82
rbg041a 43 628 [382, 417] 9.16 [361, 418] 15.79 84.49 23396 35 46846 109402 —∗

rbg042a 44 762 [409, 435] 6.35 [394, 444] 12.69 89.59 22300 43 49238 99990 —∗

rbg048a 50 1288 [455, 527] 15.82 [454, 527] 16.08 83.92 25222 49 103883 77604 —∗

rbg049a 51 1083 [418, 501] 19.86 [408, 503] 23.28 77.20 17486 52 52679 61295 —∗

rbg050a 52 1629 414 0.00 [414, 430] 0.00 100.00 6 2 392 121 0:18.62
rbg050b 52 1175 [453, 542] 19.65 [447, 548] 22.59 78.74 8600 25 30094 37337 —∗

rbg050c 52 1396 [509, 536] 5.30 [507, 539] 6.31 94.28 25184 35 99795 94976 —∗

rbg055a 57 765 814 0.00 [813, 814] 0.12 99.88 2 1 229 68 0:06.40
rbg067a 69 843 1048 0.00 [1047,1048] 0.10 99.90 2 1 176 56 0:05.95
rbg086a 88 927 [1049, 1052] 0.28 [1042,1062] 1.92 99.04 12208 30 7317 26088 —∗

rbg092a 94 1367 [1102, 1111] 0.81 [1084,1111] 2.49 97.51 8828 39 12502 27938 —∗

rbg125a 127 1824 1410 0.00 [1402,1412] 0.71 99.42 56 6 654 293 3:49.82
rbg132.2 132 3126 [1069, 1125] 5.24 [1053,1128] 7.12 93.16 4336 26 5001 13939 —∗

rbg132 132 1575 [1348, 1400] 3.86 [1323,1400] 5.82 94.17 7628 32 5630 20294 —∗

rbg152.3 152 6191 [1525, 1594] 4.53 [1521,1596] 4.93 95.20 2558 37 9340 8817 —∗

rbg152 152 2125 [1770, 1792] 1.24 [1759,1792] 1.87 98.12 5038 28 7263 13732 —∗

rbg172a 174 2837 [1787, 1897] 6.15 [1777,1897] 6.75 93.24 3434 33 7752 11139 —∗

rbg193.2 193 6031 [1981, 2093] 5.65 [1969,2093] 6.29 93.70 1726 21 7542 7602 —∗

rbg193 193 3050 [2388, 2452] 2.68 [2386,2452] 2.76 97.23 2790 28 6666 8254 —∗

rbg201a 203 3287 [2159, 2296] 6.34 [2158,2296] 6.39 93.60 3282 35 3611 7395 —∗

rbg233.2 233 7588 [2152, 2304] 7.06 [2146,2304] 7.36 92.64 1106 31 10520 5111 —∗

rbg233 233 3766 [2647, 2786] 5.25 [2635,2786] 5.73 94.26 1200 25 11927 7254 —∗

—∗: time limit of 5 CPU hours exceeded

Table 8.3: Computational results for the advanced implementation of Model 2

27

�
	
	

�
�
�

�
�
�
��
�

π
σ

(π
,
σ
)

��
�
�

D
‖

�
�

�

�

T
‖

rb
g
0
1
0
a

0
/

1
0

9
/

1
0

6
/

2
0
/

4
0
/

4
0
/

4
3
/

4
4
/

1
0
/

0
0
/

0
0
/

0
rb

g
0
1
6
a

0
/

6
1
/

6
0
/

3
0
/

5
0
/

5
0
/

5
3
/

5
4
/

2
0
/

1
0
/

1
0
/

1
rb

g
0
1
6
b

1
7
0
/

2
6
8

3
5
/

1
9
6

7
8
/

1
6
0

4
1
/

1
4
8

5
/

1
2
9

2
6
/

1
2
6

4
5
/

1
1
5

4
3
/

7
9

1
5
/

6
0

0
/

4
8

0
/

4
8

rb
g
0
1
7
.2

0
/

1
2
/

1
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
1
7

5
/

3
6

2
1
/

3
2

8
/

1
7

4
/

1
8

2
/

1
6

0
/

1
4

6
/

1
4

2
/

8
0
/

6
0
/

6
0
/

6
rb

g
0
1
7
a

0
/

3
3
/

3
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
1
9
a

0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
1
9
b

1
8
5
4
/
1
2
3
5

4
2
/

7
4
8

1
8
2
/

7
1
8

1
3
2
/

6
6
3

1
3
9
/

5
8
5

7
/

4
9
6

7
6
/

4
9
1

8
/

4
2
9

3
5
/

4
2
1

2
/

3
9
6

0
/

3
9
4

rb
g
0
1
9
c

4
3
7
/

2
6
5

3
4
/

1
6
1

4
4
/

1
3
2

4
6
/

1
2
7

2
6
/

1
1
1

1
9
/

1
0
4

1
7
8
/

9
4

7
/

4
6

6
/

4
0

0
/

3
6

0
/

3
6

rb
g
0
1
9
d

7
/

2
7

1
6
/

2
1

0
/

1
3

6
/

1
3

4
/

1
1

0
/

9
3
/

9
1
1
/

7
0
/

0
0
/

0
0
/

0
rb

g
0
2
0
a

0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
2
1
.2

1
/

8
8
/

7
8
/

1
0
/

2
0
/

2
0
/

2
1
6
/

2
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
2
1
.3

1
1
1
0
/

8
2
9

4
7
/

5
1
4

1
9
8
/

4
6
5

9
8
/

4
2
5

1
0
5
/

3
6
7

2
8
/

3
1
8

2
3
6
/

3
0
3

3
5
/

2
4
5

4
1
/

2
2
1

0
/

1
9
6

0
/

1
9
6

rb
g
0
2
1
.4

9
2
/

1
8
8

3
5
/

1
4
2

1
8
/

1
1
0

3
6
/

1
1
6

1
6
/

8
6

1
1
/

8
0

6
0
/

7
3

8
/

5
4

5
/

4
6

0
/

4
2

0
/

4
2

rb
g
0
2
1
.5

1
1
7
/

2
0
1

2
7
/

1
4
9

2
6
/

1
2
7

2
0
/

1
2
6

1
5
/

1
0
6

2
0
/

9
8

3
0
/

8
7

5
3
/

6
8

8
/

4
3

0
/

4
0

0
/

4
0

rb
g
0
2
1
.6

1
7
/

4
7

1
9
/

3
7

1
4
/

1
5

1
0
/

1
5

0
/

1
2

0
/

1
2

7
/

1
2

3
/

5
2
/

3
0
/

2
0
/

2
rb

g
0
2
1
.7

3
2
/

1
4
1

3
4
/

1
1
6

5
/

7
8

2
4
/

8
8

1
2
/

6
5

0
/

5
7

3
5
/

5
7

1
0
/

3
6

1
1
/

2
6

0
/

2
0

0
/

2
0

rb
g
0
2
1
.8

3
6
1
/

5
2
7

5
9
/

3
3
9

0
/

0
0
/

0
0
/

0
0
/

0
1
0
5
/

2
8
2

1
3
1
/

2
3
3

7
4
/

1
6
1

0
/

1
3
0

0
/

1
3
0

rb
g
0
2
1
.9

3
7
9
/

7
5
5

1
0
7
/

5
2
7

0
/

0
0
/

0
0
/

0
0
/

0
2
0
4
/

4
2
2

2
2
7
/

3
2
3

8
2
/

2
1
3

0
/

1
7
5

0
/

1
7
5

rb
g
0
2
1

4
3
7
/

2
6
5

3
4
/

1
6
1

4
4
/

1
3
2

4
6
/

1
2
7

2
6
/

1
1
1

1
9
/

1
0
4

1
7
8
/

9
4

7
/

4
6

6
/

4
0

0
/

3
6

0
/

3
6

rb
g
0
2
7
a

6
/

4
7

2
3
/

4
4

7
0
/

3
2

2
8
/

1
9

1
4
/

1
3

9
/

9
2
7
/

7
0
/

4
3
/

4
0
/

2
0
/

2
rb

g
0
3
1
a

1
0
/

3
1

2
7
/

2
5

4
4
/

1
3

1
2
/

8
4
/

4
8
/

2
2
/

1
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
3
3
a

0
/

2
0

2
3
/

2
0

6
/

1
0

0
/

9
1
/

9
0
/

8
9
/

8
2
/

3
4
/

1
0
/

0
0
/

0
rb

g
0
3
4
a

2
/

9
2
2
/

8
2
5
/

2
0
/

1
0
/

1
0
/

1
1
/

1
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
3
5
a
.2

1
9
4
4
/

5
6
9

7
4
/

3
1
1

4
6
2
/

2
6
4

3
7
2
/

2
1
6

1
6
2
/

1
4
4

1
5
7
/

7
6

2
2
/

4
2

0
/

2
7

4
/

2
7

0
/

2
4

0
/

2
4

rb
g
0
3
5
a

2
4
/

3
0

2
8
/

2
3

7
4
/

1
4

1
1
/

7
5
/

4
2
/

3
1
/

2
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
3
8
a

8
1
2
4
8
/
3
4
4
8
9

1
0
9
6
/
1
6
8
5
4

1
6
3
7
/
1
5
1
9
1

3
6
1
/
1
5
6
9
8

4
4
5
/
1
5
4
3
4

2
6
9
/
1
5
1
2
4

9
8
5
4
/
1
4
9
3
7

3
6
9
3
/
9
1
3
9

3
1
7
6
/
6
4
0
4

2
4
/
4
7
3
9

3
1
/
4
7
2
9

rb
g
0
4
0
a

2
2
4
9
1
/
4
8
5
6

7
6
/
2
0
1
2

3
6
8
/
1
9
7
2

2
2
7
/
1
8
9
7

1
9
3
/
1
7
8
5

5
7
6
/
1
6
7
6

2
5
2
/
1
4
3
3

1
2
8
/
1
1
9
9

1
8
5
/
1
0
8
3

1
/

9
3
6

1
/

9
3
5

rb
g
0
4
1
a

1
0
0
6
4
2
2
/
1
0
5
5
2
1

1
2
8
9
/
3
6
3
6
0

6
2
3
5
/
3
5
6
5
6

3
1
4
9
/
3
3
7
7
9

6
7
8
9
/
3
1
7
9
6

3
8
1
4
/
2
8
4
9
7

2
0
6
8
5
/
2
6
2
6
6

1
4
5
5
/
1
4
9
1
0

3
3
9
7
/
1
3
6
5
2

2
6
/
1
1
2
5
0

7
/
1
1
2
3
3

rb
g
0
4
2
a

5
8
1
0
5
3
/
9
5
3
2
1

1
1
6
1
/
3
7
3
7
5

9
5
7
8
/
3
6
4
6
3

4
0
5
5
/
3
3
5
5
3

5
3
1
8
/
3
0
9
9
3

4
2
6
1
/
2
8
1
8
7

1
6
6
9
1
/
2
5
9
2
2

2
7
6
0
/
1
6
3
0
2

5
3
9
3
/
1
3
9
4
1

2
/
1
0
4
6
4

1
9
/
1
0
4
6
2

rb
g
0
4
8
a

6
7
1
7
0
6
/
7
2
1
1
6

3
4
9
0
/
3
1
9
4
8

2
4
1
2
/
3
0
0
6
4

1
2
0
9
/
2
9
9
0
1

1
7
0
9
7
/
2
9
2
6
0

2
4
3
5
0
/
2
7
7
1
8

4
9
4
0
3
/
2
3
3
5
9

2
9
3
1
/
1
2
0
3
1

2
9
6
1
/
9
4
0
4

1
/
7
3
8
2

2
9
/
7
3
8
1

rb
g
0
4
9
a

4
5
8
5
2
6
/
5
9
9
0
3

2
1
1
1
/
2
7
1
8
4

1
5
5
3
/
2
5
8
7
5

5
7
9
/
2
5
7
0
3

4
1
0
8
/
2
5
3
2
4

8
9
0
/
2
4
5
2
5

3
3
7
0
3
/
2
4
3
1
5

3
9
2
8
/
1
4
4
2
6

5
6
3
5
/
1
1
1
1
7

1
1
7
/
7
7
4
3

5
5
/
7
6
8
6

rb
g
0
5
0
a

8
5
/

1
0
5

5
4
/

7
6

2
2
6
/

5
6

4
7
/

3
6

3
5
/

1
6

2
8
/

7
2
/

2
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
5
0
b

4
9
6
5
2
0
/
3
6
7
0
9

8
3
2
/
1
4
0
9
3

1
1
9
4
/
1
3
6
6
9

1
2
9
4
/
1
3
3
8
7

5
9
8
/
1
3
1
2
0

2
0
6
4
/
1
2
9
1
3

1
8
8
4
1
/
1
2
5
1
6

1
2
5
3
/
7
1
4
3

3
9
8
4
/
5
9
8
4

6
/
3
9
2
4

2
8
/
3
9
2
0

rb
g
0
5
0
c

3
8
3
2
2
3
/
9
0
8
7
1

8
1
6
5
/
4
3
3
2
9

8
1
0
0
/
3
7
5
5
6

2
3
6
9
/
3
6
8
0
3

1
7
9
4
6
/
3
5
1
8
5

5
5
2
4
/
3
0
7
1
5

4
4
3
7
1
/
2
7
9
5
6

8
6
9
0
/
1
6
6
3
8

4
5
9
1
/
1
1
3
8
8

2
8
/
8
7
2
6

1
1
/
8
7
1
7

rb
g
0
5
5
a

4
0
/

5
6

4
7
/

4
8

1
4
0
/

3
1

1
/

1
4

2
6
/

1
3

1
4
/

3
1
/

1
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
6
7
a

3
7
/

4
5

4
2
/

3
7

1
2
5
/

2
2

0
/

2
8
/

2
0
/

1
1
/

1
0
/

0
0
/

0
0
/

0
0
/

0
rb

g
0
8
6
a

9
9
9
2
0
/
2
5
1
2
9

2
5
4
/
1
0
7
1
1

8
7
9
/
1
0
6
0
3

2
5
4
/
1
0
3
6
9

3
7
9
/
1
0
2
2
0

4
3
9
/
1
0
0
6
0

3
0
9
8
/
9
8
1
3

3
7
5
/
7
7
7
7

1
6
2
7
/
7
4
1
9

6
/
6
1
7
0

6
/
6
1
6
8

rb
g
0
9
2
a

2
0
7
5
2
2
/
2
5
5
4
9

4
1
2
/
8
6
8
2

3
2
0
2
/
8
5
0
5

7
3
9
/
7
8
0
8

7
4
6
/
7
4
1
9

1
3
7
0
/
7
0
3
0

4
7
7
5
/
6
3
1
1

3
5
7
/
3
6
8
7

8
8
5
/
3
3
6
2

1
3
/
2
7
3
0

3
/
2
7
2
3

rb
g
1
2
5
a

1
6
6
/

2
4
5

1
6
4
/

1
8
0

3
3
9
/

1
2
6

3
9
/

8
5

1
8
/

6
8

1
0
/

6
2

1
3
/

6
0

4
4
/

5
0

2
7
/

2
8

0
/

2
1

0
/

2
1

rb
g
1
3
2
.2

1
3
3
9
0
8
/
1
3
3
4
4

2
9
3
/
3
9
2
9

1
5
7
0
/
3
8
3
1

4
8
9
/
3
5
9
3

5
7
8
/
3
3
7
5

8
9
8
/
3
1
3
2

5
5
0
/
2
7
5
1

2
3
4
/
2
2
8
1

3
8
3
/
2
0
6
0

4
/
1
7
6
3

2
/
1
7
6
0

rb
g
1
3
2

1
3
6
6
9
9
/
2
0
0
4
5

3
0
9
/
6
8
9
9

1
0
5
9
/
6
7
8
8

3
5
2
/
6
6
1
9

2
4
5
/
6
4
2
9

6
0
9
/
6
2
7
1

2
1
3
5
/
5
9
4
5

2
3
4
/
4
4
3
1

6
7
7
/
4
2
2
9

2
/
3
7
4
5

8
/
3
7
4
4

rb
g
1
5
2
.3

1
4
6
0
6
4
/
7
4
6
4

5
4
9
/
1
3
5
7

5
2
6
3
/
1
2
2
9

1
6
8
7
/

8
0
3

7
6
3
/

3
3
5

9
4
4
/

1
5
0

1
3
1
/

3
1

2
/

2
1
/

1
0
/

0
0
/

0
rb

g
1
5
2

7
0
4
9
5
/
1
2
9
2
5

3
8
5
/
5
1
5
0

3
1
3
8
/
4
9
8
8

5
0
7
/
4
4
7
4

3
1
4
/
4
1
8
2

6
3
6
/
3
9
8
4

1
3
2
7
/
3
6
3
4

2
6
9
/
2
6
8
5

6
7
3
/
2
4
3
6

1
0
/
1
9
6
4

4
/
1
9
5
9

rb
g
1
7
2
a

5
8
8
8
2
/
1
0
6
8
0

4
3
3
/
3
9
8
6

1
8
5
0
/
3
8
4
6

2
8
6
/
3
6
3
5

2
7
8
/
3
5
1
2

3
4
4
/
3
3
8
7

2
2
1
0
/
3
2
4
2

5
7
7
/
2
4
9
8

1
7
4
6
/
2
0
3
7

2
0
/
1
3
5
2

8
/
1
3
4
7

rb
g
1
9
3
.2

1
3
5
7
5
9
/
6
6
5
9

4
9
8
/
1
3
3
7

3
1
7
1
/
1
2
2
8

1
5
1
8
/

9
0
1

1
1
4
2
/

4
3
3

1
0
8
8
/

1
5
6

1
2
1
/

2
1

4
/

3
0
/

0
0
/

0
0
/

0
rb

g
1
9
3

3
6
1
8
5
/
7
5
2
1

4
7
2
/
2
9
1
8

2
6
0
4
/
2
7
4
6

4
3
4
/
2
3
2
6

4
2
1
/
2
1
1
8

6
5
5
/
1
9
3
2

1
6
7
0
/
1
6
9
7

1
6
7
/
1
0
5
6

2
3
7
/

9
0
2

6
/

7
6
3

0
/

7
6
1

rb
g
2
0
1
a

2
0
9
3
1
/
7
1
2
1

3
6
1
/
2
8
8
6

1
4
8
5
/
2
7
8
9

1
8
9
/
2
6
3
4

1
1
7
/
2
5
7
6

1
4
4
/
2
5
1
8

3
7
6
/
2
4
4
7

4
4
8
/
2
1
0
9

4
7
5
/
1
7
2
3

1
0
/
1
4
4
3

6
/
1
4
3
9

rb
g
2
3
3
.2

1
3
6
3
9
0
/
4
4
6
5

5
6
2
/

9
3
8

7
3
1
8
/

8
1
3

1
0
4
3
/

4
9
9

9
7
7
/

2
4
4

5
6
0
/

7
5

5
3
/

1
3

7
/

5
0
/

0
0
/

0
0
/

0
rb

g
2
3
3

1
1
4
9
8
1
/
6
5
8
8

5
3
6
/
2
0
1
5

3
7
4
0
/
1
8
5
0

5
6
9
/
1
4
7
3

8
2
2
/
1
2
3
5

1
6
0
7
/

9
5
4

4
3
7
0
/

5
0
0

1
3
5
/

1
3
8

1
4
8
/

6
1

0
/

1
3

0
/

1
3

Table 8.4: Number of generated cuts / Number of calls of separation routine

28

���
�
����� ���� ���� �� � �� � ��!� ��!� ��"� ��"� Total
rbg010a 1 0 0 0 0 0 0 0 2 0 3
rbg016a 1 1 0 0 0 0 0 0 1 0 3
rbg016b 21 3 0 0 3 0 1 0 17 0 45
rbg017.2 0 0 0 0 0 0 0 0 0 0 0
rbg017 1 0 0 0 2 1 0 0 2 0 6
rbg017a 0 0 0 0 0 0 0 0 0 0 0
rbg019a 0 0 0 0 0 0 0 0 0 0 0
rbg019b 48 0 0 0 0 0 0 0 28 0 76
rbg019c 36 4 90 29 4 4 2 0 9 0 178
rbg019d 2 0 0 0 0 0 0 0 1 0 3
rbg020a 0 0 0 0 0 0 0 0 0 0 0
rbg021.2 3 0 10 0 2 0 0 0 1 0 16
rbg021.3 69 0 78 49 18 1 7 0 14 0 236
rbg021.4 5 0 18 6 19 0 0 0 12 0 60
rbg021.5 8 2 0 0 0 0 1 0 19 0 30
rbg021.6 2 0 0 0 0 0 0 0 5 0 7
rbg021.7 6 8 0 0 0 0 0 0 21 0 35
rbg021.8 7 3 0 0 0 0 0 0 95 0 105
rbg021.9 5 6 0 0 0 0 0 0 193 0 204
rbg021 36 4 90 29 4 4 2 0 9 0 178
rbg027a 9 0 13 0 3 0 2 0 0 0 27
rbg031a 0 0 0 0 0 0 0 0 2 0 2
rbg033a 4 0 0 0 0 0 0 0 5 0 9
rbg034a 0 0 0 0 0 0 0 0 1 0 1
rbg035a.2 13 0 0 0 0 0 0 0 9 0 22
rbg035a 1 0 0 0 0 0 0 0 0 0 1
rbg038a 9000 138 0 0 0 0 0 0 716 0 9854
rbg040a 211 2 0 0 0 0 0 0 39 0 252
rbg041a 17995 121 0 0 0 0 0 0 2569 0 20685
rbg042a 14288 156 0 0 3 1 38 0 2205 0 16691
rbg048a 28631 133 1679 1152 5114 10194 1359 0 1141 0 49403
rbg049a 21246 58 784 416 2147 7568 655 0 829 0 33703
rbg050a 1 0 0 0 0 0 0 0 1 0 2
rbg050b 11632 55 618 347 595 5147 37 0 410 0 18841
rbg050c 30175 480 1150 329 1254 3583 3005 0 4395 0 44371
rbg055a 0 0 0 0 0 0 0 0 1 0 1
rbg067a 0 0 0 0 0 0 0 0 1 0 1
rbg086a 2319 147 4 2 1 503 0 0 122 0 3098
rbg092a 4224 100 0 0 2 1 3 0 445 0 4775
rbg125a 4 0 0 0 0 0 0 0 9 0 13
rbg132.2 465 6 0 0 0 0 0 0 79 0 550
rbg132 2024 11 0 0 4 4 0 0 92 0 2135
rbg152.3 108 0 0 0 0 0 0 0 23 0 131
rbg152 1136 20 0 0 2 1 1 0 167 0 1327
rbg172a 1746 6 0 0 0 0 0 0 458 0 2210
rbg193.2 74 0 0 0 0 0 0 0 47 0 121
rbg193 1407 20 0 0 1 3 1 0 238 0 1670
rbg201a 357 0 0 0 0 0 0 0 19 0 376
rbg233.2 32 0 0 0 0 0 0 0 21 0 53
rbg233 3866 3 0 0 3 10 6 0 482 0 4370

Table 8.5: Number of generated infeasible path constraints

29

Init LP Improve Separation Pricing Misc Total

rbg010a 0.0 14.3 14.3 28.6 0.0 42.9 0:00.12
rbg016a 16.7 33.3 8.3 41.7 0.0 0.0 0:00.20
rbg016b 0.4 32.6 13.1 36.0 4.9 13.1 0:08.80
rbg017.2 100.0 0.0 0.0 0.0 0.0 0.0 0:00.03
rbg017 4.1 24.5 16.3 44.9 0.0 10.2 0:00.82
rbg017a 57.1 42.9 0.0 0.0 0.0 0.0 0:00.12
rbg019a 100.0 0.0 0.0 0.0 0.0 0.0 0:00.03
rbg019b 0.1 23.5 11.4 40.2 4.6 20.3 0:54.57
rbg019c 1.1 32.5 7.5 42.6 2.7 13.6 0:08.72
rbg019d 2.2 26.7 13.3 48.9 0.0 8.9 0:00.75
rbg020a 91.7 0.0 0.0 0.0 8.3 0.0 0:00.20
rbg021.2 38.5 38.5 0.0 15.4 7.7 0.0 0:00.22
rbg021.3 0.3 25.8 7.1 50.0 3.3 13.6 0:27.15
rbg021.4 1.4 25.2 4.9 44.7 3.2 20.6 0:05.82
rbg021.5 1.3 27.9 5.8 37.9 5.8 21.4 0:06.63
rbg021.6 7.2 44.6 18.1 22.9 3.6 3.6 0:01.38
rbg021.7 1.9 26.0 27.9 26.7 1.9 15.5 0:04.30
rbg021.8 0.5 26.2 24.1 24.3 3.9 20.9 0:17.40
rbg021.9 0.4 23.5 26.9 22.5 5.7 21.0 0:26.12
rbg021 1.0 34.9 5.3 44.6 3.0 11.2 0:08.75
rbg027a 14.8 28.1 7.4 36.3 5.9 7.4 0:02.25
rbg031a 12.7 24.5 31.4 25.5 2.0 3.9 0:01.70
rbg033a 16.2 18.9 21.6 29.7 0.0 13.5 0:01.85
rbg034a 40.7 25.4 8.5 8.5 11.9 5.1 0:00.98
rbg035a.2 1.0 33.8 23.7 19.1 10.1 12.3 1:04.80
rbg035a 19.1 24.5 28.2 21.8 0.9 5.5 0:01.83
rbg038a 0.0 13.8 5.8 61.2 2.3 16.9 70:32.23
rbg040a 0.1 23.1 5.1 49.8 4.5 17.4 12:31.82
rbg041a 0.0 25.2 10.6 54.5 2.2 7.5 300:01.68
rbg042a 0.0 22.1 16.5 51.3 2.5 7.6 300:01.68
rbg048a 0.0 20.2 3.1 62.1 5.1 9.5 300:01.12
rbg049a 0.0 16.0 3.5 69.8 3.6 7.1 300:01.22
rbg050a 7.3 16.2 44.2 19.6 2.7 10.0 0:18.62
rbg050b 0.0 21.0 2.1 61.5 9.6 5.8 300:01.33
rbg050c 0.0 18.9 5.3 60.2 4.5 11.1 300:01.27
rbg055a 22.1 20.6 16.9 26.6 2.6 11.2 0:06.40
rbg067a 41.2 21.0 17.4 14.3 1.4 4.8 0:05.95
rbg086a 0.0 6.6 21.1 39.3 2.5 30.5 300:01.95
rbg092a 0.0 16.0 9.0 49.2 5.3 20.5 300:01.40
rbg125a 7.8 8.3 17.1 16.4 3.9 46.4 3:49.82
rbg132.2 0.2 13.6 9.4 55.1 4.8 16.9 300:01.42
rbg132 0.1 13.0 8.9 53.5 3.6 20.9 300:01.47
rbg152.3 0.5 42.8 16.9 16.1 9.8 14.0 300:02.90
rbg152 0.2 11.4 12.6 44.0 4.1 27.7 300:03.10
rbg172a 0.3 11.5 7.2 59.7 5.1 16.1 300:02.43
rbg193.2 0.7 29.7 9.2 30.2 8.9 21.3 300:06.55
rbg193 0.4 8.3 6.9 52.0 7.8 24.6 300:03.98
rbg201a 0.5 7.8 6.1 56.8 7.9 20.8 300:06.08
rbg233.2 1.4 28.5 17.4 23.2 8.1 21.4 300:01.28
rbg233 0.7 13.6 11.5 55.8 3.8 14.6 300:07.62

Table 8.6: Percentage of computing time spent in different parts of algorithm

30

9 Conclusions

Our computational experience indicates that most ATSP-TW instances in the range of up
to 50–70 nodes can be solved to optimality via branch&cut codes based on any of the three
models. The LPs arising from Models 1 and 3 are larger and, at times, significant numerical
instabilities occur in the solution process, despite the fact that our LP solver CPLEX is
generally very good at handling numerical difficulties. The reasons for this are model inherent
(big M , weak linking constraints) and not due to poor software. Overall the implementation
of Model 2 outperformed the two other codes, although for special cases (few time windows
active) Model 3 appeared to be more suitable.

The results of our test runs made us conclude that Model 2 is suited best for our particular
application of ATSP-TW and we decided to produce a more thorough implementation. This
branch&cut code (based on ABACUS and CPLEX 5.0) was tested on real–world and modified
real–world instances with sizes of up to about 250 nodes. However, this model has the
disadvantage that it can only handle TSP–objective functions but not makespan objectives
and the like. For our application, this does not matter, though.

We should also remark here that our computational experience does not indicate that –
in contrast to the TSP, say – the polyhedral approach to the ATSP-TW is the unchallenged
winning strategy. We believe that dynamic programming and implicit enumeration techniques
may outperform our cutting plane method, in particular when the time windows are rather
tight. Further research (including very time consuming implementational work) has to show
where the relative advantages of the different methodologies lie. Nevertheless, the heuristics
and cutting plane algorithms described in this paper were able to solve real–world instances
of a particular application (stacker crane optimization) of the asymmetric travelling salesman
problem with time windows in a way that is satisfactory for practice.

References

[1] D. Applegate, R. Bixby, V. Chvatal and W. Cook. On the Solution of Traveling Salesman
Problem. Doc.Math.J.DMV Extra Volume ICM III (1998) 645-656

[2] D. Applegate and W. Cook. A computational study of the job–shop scheduling problem.
ORSA J. on Comp., 3:149–156, 1991.

[3] N. Ascheuer. Hamiltonian Path Problems in the On-line Optimization of Flexible Man-
ufacturing Systems. PhD Thesis2, Technische Universität Berlin, 1995.

[4] N. Ascheuer, M. Fischetti, and M. Grötschel. A polyhedral study of the asymmetric trav-
elling salesman problem with time windows. Preprint SC 97-113 Konrad-Zuse-Zentrum
Berlin, 1997 (to appear in Networks).

[5] N. Ascheuer, M. Grötschel, and A. Abdel–Hamid Abdel–Aziz. Order picking in an auto-
matic warehouse: Solving online asymmetric TSPs. Mathematical Methods of Operations
Research, 49:501–515, 1999.

2Available at URL http://www.zib.de/ZIBbib/Publications/
3Available at URL http://www.zib.de/ZIBbib/Publications/

31

[6] N. Ascheuer, M. Grötschel, S.O. Krumke, and J. Rambau. Combinatorial online opti-
mization. In P. Kall and H.-J. Lüthi, editors, Operations Research Proceedings 1998,
pages 21–37. Springer, 1999.

[7] N. Ascheuer, M. Jünger, and G. Reinelt. A branch & cut algorithm for the asymmetric
Traveling Salesman Problem with precedence constraints. Preprint SC 97-704, Konrad-
Zuse-Zentrum Berlin, 1997 (to appear in Computational Optimization and Applications).

[8] E.K. Baker. An exact algorithm for the time–constrained traveling salesman problem.
Operations Research, 31(5):938–945, 1983.

[9] E. Balas. On the facial structure of scheduling polyhedra. Mathematical Programming
Study, 24:179–218, 1985.

[10] E. Balas and M. Fischetti. A lifting procedure for the asymmetric traveling salesman
polytope and a large new class of facets. Mathematical Programming, 58:325–352, 1993.

[11] E. Balas, M. Fischetti, and W. Pulleyblank. The precedence constrained asymmetric
traveling salesman polytope. Math. Prog., 68:241–265, 1995.

[12] E. Balas and N. Simonetti. Linear time dynamic programming algorithms for some
classes of restricted tsp’s. Technical Report MSRR No.617, Carnegie Mellon University,
Pittsburgh, USA, 1996.

[13] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors. Network Rout-
ing, volume 8 of Handbooks in Operations Research and Management Science. Elsevier
Sci. B.V., Amsterdam, 1995.

[14] L. Bianco, A. Mingozzi, and S. Ricciardelli. Dynamic programming strategies and reduc-
tion techniques for the travelling salesman problem with time windows and precedence
constraints. Operations Reserach, 45(3):365–377, 1997.

[15] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11:145–164, 1981.

[16] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Reserach, 40(2):342–354, 1992.

[17] M. Desrochers and G. Laporte. Improvements and extensions to the Miller–Tucker–
Zemlin subtour elimination constraints. Operations Research Letters, 10(1):27–36, 1991.

[18] M. Desrochers, J.K. Lenstra, M.W.P. Savelsbergh, and F. Soumis. Vehicle routing with
time windows: Optimization and approximation. In B.L. Golden and A.A. Assad, editors,
Vehicle routing: Methods and studies, pages 65–84. North–Holland, 1988.

[19] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time Constrained Routing and
Scheduling, chapter 2, pages 35–139. Volume 8 of Ball et al. [13], 1995.

[20] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algorithm for
the traveling salesman problem with time windows. Operations Research, 43(2):367–371,
1995.

4Available at URL http://www.zib.de/ZIBbib/Publications/

32

[21] M. Dyer and L.A. Wolsey. Formulating the single machine sequencing problem with
release dates as a mixed integer program. Disc. Applied Math., 26:255–270, 1990.

[22] M. Fischetti. Facets of the asymmetric traveling salesman polytope. Mathematics of
Operations Research, 16:42–56, 1991.

[23] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling salesman
problem. Management Science, 43(11):1520–1536, 1997.

[24] M.R. Garey and D.S. Johnson. Two–processor scheduling with start–times and deadlines.
SIAM Journal on Computing, 6:416–426, 1977.

[25] M. Grötschel. Polyedrische Charakterisierungen kombinatorischer Optimierungsprob-
leme. Hain, Meisenheim am Glan, 1977.

[26] M. Grötschel and M. Padberg. Polyhedral computations. In E.L. Lawler, J.K. Lenstra,
A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem. John
Wiley & Sons, 1985.

[27] M. Grötschel and M. Padberg. Polyhedral theory. In E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem. John Wiley
& Sons, 1985.

[28] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M.O. Ball,
T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Models, volume 7 of
Handbooks in Operations Research and Management Science, chapter 4, pages 225–330.
North Holland, 1995.

[29] M. Jünger, G. Reinelt, and S. Thienel. Provably good solutions for the traveling salesman
problem. Zeitschrift für Operations Research, 40(2):183–217, 1994.

[30] M. Jünger and S. Thienel. Introduction to ABACUS – A Branch And CUt System. Tech-
nical report, Institut für Informatik, Universität zu Köln, Technical Report No. 97.263,
1997. See on-line documentation under URL

http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html.

[31] M. Jünger and S. Thienel. Introduction to ABACUS - a branch and cut system. Opera-
tions Research Letters, 22:83–95, 1998.

[32] F. Maffioli and A. Sciomachen. A mixed-integer model for solving ordering problems with
side constraints. Technical Report Research report, University of Genoa, Italy, 1993.

[33] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations and
traveling salesman problems. J. Assoc. Comput. Mach., 7:326–329, 1960.

[34] I. Or. Traveling Salesman–Type Combinatorial Problems and their relation to the logistics
of regional blood banking. PhD Thesis, Dept. of Industrial Engineering and Management
Science, Northwestern University, Evanston, 1976.

[35] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47:19–36, 1990.

33

[36] M. Padberg and G. Rinaldi. A Branch and Cut Algorithm for the Resolution of Large–
Scale Symmetric Traveling Salesman Problems. SIAM Review, 33:60–100, 1991.

[37] M. Savelsbergh, 1994. Personal communication (1994) . School of Industrial and System
Engineering, Georgia Institute of Technology, Atlanta, USA.

[38] M.W.P. Savelsbergh. Local search for routing problems with time windows. Annals of
Operations Research, 4:285–305, 1985.

[39] M.W.P. Savelsbergh. The vehicle routing problem with time windows: minimizing route
duration. COSOR Memorandum 91–03, Eindhoven University of Technology, 1991.

[40] N. Simonetti, 1997. Personal communication (1997).

[41] M.M. Solomon, E.K. Baker, and J.R. Schaffer. Vehicle routing and scheduling problems
with time window constraints: Efficient implemantations of solution improvement pro-
cedures. In B.L. Golden and A.A. Assad, editors, Vehicle routing: Methods and studies,
pages 85–105. North–Holland, 1988.

[42] S. Thienel. ABACUS A Branch-And-CUt System. PhD thesis, Univ. zu Köln, 1995.

[43] J. Tsitsiklis. Special cases of traveling salesman and repairman problems with time
windows. Networks, 22:263–282, 1992.

[44] C.A. van Eijl. A polyhedral approach to the delivery man problem. Technical Report
95–19, Department of Mathematics and Computer Science, Eindhoven University of
Technology, 1995.

34

