
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD

Primal MINLP Heuristics in a nutshell

ZIB-Report 13-42 (August 2013)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Primal MINLP Heuristics in a nutshell

Timo Berthold∗

21/Aug/2013

Abstract

Primal heuristics are an important component of state-of-the-art codes
for mixed integer nonlinear programming (MINLP). In this article we
give a compact overview of primal heuristics for MINLP that have been
suggested in the literature of recent years. We sketch the fundamental
concepts of different classes of heuristics and discuss specific implemen-
tations. A brief computational experiment shows that primal heuristics
play a key role in achieving feasibility and finding good primal bounds
within a global MINLP solver.

1 Introduction

Optimization problems that feature, at the same time, nonlinear func-
tions as constraints and integrality requirements for the variables are ar-
guably among the most challenging problems in mathematical program-
ming. This article gives an overview on existing heuristic approaches to
find good feasible solutions for these so-called MINLPs.

Definition 1.1 (MINLP) A mixed integer nonlinear program (MINLP)
is an optimization problem of the form

min cTx

s.t. gi(x) ≤ 0 for all i ∈M
xj ∈ Z for all j ∈ I,

where I ⊆ N := {1, . . . , n} is the index set of the integer variables, c ∈
R

n, and gi : Rn → R for i ∈M := {1, . . . ,m}.

There are many subclasses of MINLPs; in this article, we will be par-
ticularly concerned with the following: convex MINLPs, for which all
constraint functions gi, i ∈ M, are convex, mixed integer quadratically
constrained programs (MIQCPs), for which all constraint functions are
quadratic, mixed integer linear programs (MILPs), for which all constraint
functions are linear, nonlinear programs (NLPs), for which all variables
are continuous, and linear programs (LPs), for which the constraints are
linear and all variables are continuous.

For MILPs, it is well-known that general-purpose primal heuristics
like the feasibility pump [2, 18, 20] are able to find high-quality solutions
for a wide range of problems. A primal heuristic is, roughly speaking, an
incomplete algorithm that aims at finding high-quality feasible solutions

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, berthold@zib.de

1



quickly. In general, it is neither guaranteed to be successful, nor does it
provide any additional information, such as a dual bound on the solution
quality.

For MINLPs, research in the last five years has shown an increasing
interest in primal heuristics [6, 8, 9, 10, 12, 13, 15, 22, 24, 25]. The
goal of this article is to provide a brief overview on the cited work. We
focus on methods that have been developed for the application inside a
global solver such as Baron, Bonmin, Couenne, or Scip. In such an
environment, it is often worth sacrificing success on a number of instances
for a significant saving in average running time. One way to do so are
“fast fail” strategies that take the most crucial decisions in the beginning
and in a defensive fashion such that if the heuristic aborts, it will not
have consumed much running time. Furthermore, we restrict ourselves
to primal heuristics that have been specifically developed and tested for
MINLPs; we do not cover the manifold ideas to apply metaheuristics to
global optimization problems.

We partition our survey by the main concepts on which the reviewed
algorithms are based. Nonlinear extensions of the feasibility pump [18]
are discussed in Section 2, large neighborhood search heuristics are intro-
duced in Section 3, other ideas, such as rounding and diving, are treated in
Section 4. Section 5 presents a computational evaluation of primal heuris-
tics implemented within the MINLP solver Scip. Finally, conclusions are
drawn in Section 6.

2 Feasibility Pumps

The fundamental idea of all Feasibility Pump [18] algorithms is to con-
struct two sequences of points that hopefully converge to a feasible solu-
tion of a given mathematical programming problem. One sequence con-
sists of points that are feasible for a continuous relaxation (e.g., an NLP
relaxation of an MINLP), but possibly integer infeasible. The other se-
quence consists of points that are integral (for the integer variables), but
might violate the imposed constraints. The next point of one sequence is
always generated by minimizing the distance to the last point of the other
sequence, using different distance measures in both cases (e.g., the `1 and
the `2 norm). We refer to the process of constructing an integral point
from a constraint feasible point as the rounding step and to the process of
finding a new point that fulfills the continuous relaxation as the projection
step.

Bonami et al. [12] and Bonami and Gonçalves [13] present the first
two versions of a Feasibility Pump for MINLPs. Both teams of authors
consider convex MINLPs and implement their ideas in Bonmin [11].

The paper [13] is probably the closest to the original Feasibility Pump
for MILPs. It performs a simple rounding to the nearest integer in the
rounding step and solves a convex NLP relaxation with an `1 objective
for the projection step.

In [12], the authors suggest using an `2 norm as objective for the
projection step. The most signigficant difference to [13], however, is the
implementation of the rounding step. Instead of performing an instant
rounding to the nearest integer, they solve a MILP relaxation based on an
outer approximation [17] of the underlying MINLP. This has an important
effect w.r.t. the main weakness of Feasibility Pump algorithms: cycling.
For convex MINLPs, it is always possible to avoid cycling by adding a

2



no-good cut to the auxiliary MILP.
The particular difficulty addressed by D’Ambrosio et al. in [15] is that

of handling the nonconvex NLP relaxation when adapting the algorithm
of [12] to nonconvex constraints. The authors suggest using a stochas-
tic multi-start approach, feeding the NLP solver with multiple randomly
generated starting points, and solving the NLP to local optimality. In the
event that this does not lead to a feasible solution, a final NLP is solved,
in which the integer variables are fixed and the original objective is re-
installed on the continuous variables. To avoid cycling, their algorithm
provides the MILP solver with a tabu list of previously used solutions.

3 Large Neighborhood Search

The main idea of large neighborhood search (LNS) is to define a neigh-
borhood of “good” solution candidates centered at a particular reference
point – typically the incumbent solution. The neighborhood is explored by
solving an auxiliary MINLP, which is constructed by restricting the fea-
sible region of the original MINLP by additional constraints and variable
fixings. LNS is a common paradigm for MILP heuristics, e.g., rins [16],
which defines a neighborhood by fixing variables which coincide in the
incumbent and the LP optimum, or Local Branching [19], which searches
the neighborhood of solutions that differ in at most k variables from the
incumbent.

Bonami and Gonçalves describe an extension of the rins heuristic to
convex MINLPs [13]. They use an optimum of the NLP relaxation as a
second reference solution besides the incumbent.

Nannicini, Belotti, and Liberti introduce a Local Branching heuristic
for nonconvex MINLPs [25]. It solves a MILP that is derived from a linear
relaxation of the original MINLP, the integrality constraints, and a Local
Branching constraint. Subsequently, an NLP local search is performed by
fixing the integer variables to the values from the Local Branching MILP’s
incumbent (which is not necessarily feasible for the original MINLP) and
solving the resulting continuous problem.

In [9], Berthold et al. suggest a generic way of generalizing LNS heuris-
tics from MILP to MINLP, for the first time presenting nonlinear versions
of Crossover [4, 26] and the dins [21] heuristic.

Berthold presents rens [6], an LNS algorithm that optimizes over the
set of feasible roundings of a relaxation solution. To this end, integer
variables that take an integral value in the relaxation solution are fixed to
that value, for others, the bounds are changed to the two nearest integers.

In [8], Berthold and Gleixner introduce Undercover, an LNS start
heuristic for MINLP that explores a linear subproblem which is obtained
by fixing as small a subset of variables as possible. The set of variables
to be fixed is determined by solving a vertex covering problem. Although
general in nature, this approach works best for MIQCPs.

The recipe algorithm described in [22] falls into the category of vari-
able neighborhood search heuristics: it iteratively explores different neigh-
borhoods, updating the neighborhood definition after each iteration.

3



4 Rounding, Diving, and MILP heuris-
tics

Rounding, diving, and propagation heuristics are kind of “folklore”: Most
solvers and many custom codes use them, but there are few publications
on this topic.

Bonami and Gonçalves present computational results for NLP-based
diving heuristics [13]. Their algorithm solves a convex NLP relaxation,
fixes several variables (with variable selection rules referred to as Frac-
tional Diving and Vectorlength Diving in [4]), and iterates this process.
They further tested solving a final sub-MINLP as soon as all fractional
variables exclusively belong to linear constraints. Mahajan et al. [23] sug-
gest a diving algorithm that uses quadratic programming relaxations.

Nannicini and Belotti present iterative rounding [24], which is a mix-
ture of diving and variable neighborhood search. It solves a series of
auxiliary MILPs to generate integer points near an initial optimal solu-
tion of an NLP relaxation. In each iteration, the feasible region of the
MILP gets contracted further by outer approximation and no-good cuts.

A popular approach for solving MINLPs is to use an outer approx-
imation generated by linearization of convex constraints and linear un-
derestimation of nonconvex constraints. Having an outer approximation
at hand, one might employ MILP primal heuristics to the outer approx-
imation LP plus the integrality constraints. In particular for heuristics
that are computationally very cheap, such as rounding and propagation
heuristics [3], this is a valid strategy. Applying MILP heuristics to such
a “MILP relaxation” typically produces points that are integral, valid
for the LP outer approximation, but violate one or more nonlinear con-
straints. Such points are natural candidates for an NLP local search as
it is, e.g., described in [10, 22, 25]: the integer variables are fixed to their
value in the (infeasible) reference solution and the resulting NLP is solved
to local optimality.

5 Computational Results

To evaluate the impact of primal heuristics on the performance of a global
MINLP solver, we conducted a computational experiment in which we
compare the performance of the MINLP solver Scip [1] when running
with and without primal heuristics. We used Scip version 3.0.1 com-
piled with SoPlex 1.7.1 [28] as LP solver and Ipopt 3.11 [27] as NLP
solver. Scip does not run all of the described algorithms by default. It fea-
tures Undercover, nonlinear versions of rens and Crossover, an NLP local
search, and many MILP heuristics, including a Feasibility Pump (for an
overview, see [5]). As a test set, we chose the MINLPLib [14], excluding
instances which feature nonlinear functions that Scip 3.0.1 cannot handle,
e.g., trigonometric functions. The results were obtained on a cluster of
64bit Intel Xeon X5672 CPUs at 3.20GHz with 12 MB cache and 48 GB
main memory, running an openSuse 12.3 with a gcc 4.7.2 compiler. We
imposed a time limit of one hour. Detailed results can be found in the
Appendix.

Similar to the situation in MILP, the impact of primal heuristics on
the overall running time was negligible. Both versions differed by less than
one percent in shifted geometric mean. Furthermore, both variants solved
170 of the 252 test instances to optimality. The major difference occurs

4



when considering the primal bound. For those instances which could not
be solved within the time limit, the Scip version without heuristics found
a feasible solution in 35 cases, the one using primal heuristics in 58. The
primal bound at termination was better for 48 instances when using primal
heuristics, only for two instances it was worse. Consequently, the average
primal integral [7] of both runs differed by about 50%.

6 Conclusion

Altogether, the results show that primal heuristics are essential to improve
the primal bound observed during search, while they do not deteriorate the
overall optimization process. Within a complete MINLP solver, heuristics
give a user the immediate advantage of finding good solutions early, in
particular for hard instances that are not solved within a given time limit.

The situation of computational MINLP today is, in many respects,
comparable to that of computational MILP in the early nineties. Just as
primal heuristics have become a substantial ingredient of nowadays MILP
solvers, we can expect them to remain an active field of research for the
MINLP community in the nearby future.

Acknowledgements

This research has been supported by the DFG Research Center Matheon
Mathematics for key technologies in Berlin. Many thanks go to Ambros
M. Gleixner for proof-reading a first draft of this paper.

References

[1] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathe-
matical Programming Computation, 1(1):1–41, 2009.

[2] T. Achterberg and T. Berthold. Improving the Feasibility Pump.
Discrete Optimization, Special Issue 4(1):77–86, 2007.

[3] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propaga-
tion heuristics for mixed integer programming. In D. Klatte, H.-J.
Lüthi, and K. Schmedders, editors, Operations Research Proceedings
2011, pages 71–76. Springer Berlin Heidelberg, 2012.

[4] T. Berthold. Primal heuristics for mixed integer programs. Diploma
thesis, Technische Universität Berlin, 2006.

[5] T. Berthold. Heuristics of the branch-cut-and-price-framework SCIP.
In J. Kalcsics and S. Nickel, editors, Operations Research Proceedings
2007, pages 31–36. Springer-Verlag, 2008.

[6] T. Berthold. RENS – the optimal rounding. ZIB-Report 12-17, Zuse
Institute Berlin, 2012. Submitted for publication.

[7] T. Berthold. Measuring the impact of primal heuristics. ZIB-Report
13-17, Zuse Institute Berlin, 2013. Accepted for publication in Op-
erations Research Letters.

[8] T. Berthold and A. M. Gleixner. Undercover: a primal MINLP
heuristic exploring a largest sub-MIP. Mathematical Programming,
2013. Online first publication.

5



[9] T. Berthold, S. Heinz, M. E. Pfetsch, and S. Vigerske. Large neigh-
borhood search beyond MIP. In L. D. Gaspero, A. Schaerf, and
T. Stützle, editors, Proceedings of the 9th Metaheuristics Interna-
tional Conference (MIC 2011), pages 51–60, 2011.

[10] T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework
to solve MIQCPs. In J. Lee and S. Leyffer, editors, Mixed Integer
Nonlinear Programming, volume 154 of The IMA Volumes in Math-
ematics and its Applications, pages 427–444. Springer, 2011.

[11] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann,
C. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An
algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5:186–204, 2008.

[12] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump
for mixed integer nonlinear programs. Mathematical Programming,
119(2):331–352, 2009.

[13] P. Bonami and J. Gonçalves. Heuristics for convex mixed integer
nonlinear programs. Computational Optimization and Applications,
51:729–747, 2012.

[14] M. Bussieck, A. Drud, and A. Meeraus. MINLPLib – a collection
of test models for mixed-integer nonlinear programming. INFORMS
Journal on Computing, 15(1):114–119, 2003.

[15] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of fea-
sibility pumps for nonconvex MINLP. Mathematical Programming,
136:375–402, 2012.

[16] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation in-
duced neighborhoods to improve MIP solutions. Mathematical Pro-
gramming, 102(1):71–90, 2004.

[17] M. A. Duran and I. E. Grossmann. An outer-approximation algo-
rithm for a class of mixed-integer nonlinear programs. Mathematical
Programming, 36(3):307–339, 1986.

[18] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathe-
matical Programming, 104(1):91–104, 2005.

[19] M. Fischetti and A. Lodi. Local branching. Mathematical Program-
ming, 98(1-3):23–47, 2003.

[20] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical
Programming Computation, 1:201–222, 2009.

[21] S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and
D. P. Williamson, editors, Integer Programming and Combinatorial
Optimization, 12th International IPCO Conference, Proceedings, vol-
ume 4513 of LNCS, pages 310–323. Springer, 2007.

[22] L. Liberti, N. Mladenović, and G. Nannicini. A recipe for finding
good solutions to MINLPs. Mathematical Programming Computa-
tion, 3:349–390, 2011.

[23] A. Mahajan, S. Leyffer, and C. Kirches. Solving mixed-integer nonlin-
ear programs by QP-diving. Preprint ANL/MCS-2071-0312, Argonne
National Laboratory, Mathematics and Computer Science Division,
2012.

[24] G. Nannicini and P. Belotti. Rounding-based heuristics for nonconvex
MINLPs. Mathematical Programming Computation, 4(1):1–31, 2012.

6



[25] G. Nannicini, P. Belotti, and L. Liberti. A local branching heuristic
for MINLPs. ArXiv e-prints, 2008.

[26] E. Rothberg. An evolutionary algorithm for polishing mixed in-
teger programming solutions. INFORMS Journal on Computing,
19(4):534–541, 2007.

[27] A. Wächter and L. Biegler. On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[28] R. Wunderling. Paralleler und objektorientierter Simplex-Algorith-
mus. PhD thesis, Technische Universität Berlin, 1996.

7



Appendix

Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

4stufen ∞ ∞
alan 4 0.1 8 0.1
batchdes 4 0.1 3 0.1
batch 6 0.2 15 0.1
beuster 120277 ∞
cecil 13 -115593 -115562
chp partload ∞ ∞
contvar ∞ ∞
csched1a -29484.1 -30249.9
csched1 1066 1.2 2991 1.6
csched2a -127600 -129127
csched2 -150059 -119167
detf1 12.8818 ∞
du-opt 232 0.8 294 0.5
du-opt5 75 0.3 74 0.2
eg all s 9.54458 ∞
eg disc2 s 19.9971 ∞
eg disc s 12.8718 ∞
eg int s 100000 ∞
elf 580 0.9 822 0.8
eniplac 45 0.4 86 0.1
enpro48 248 1.1 9640 2.5
enpro48pb 3853 2.4 78 0.6
enpro56 124 1.0 33903 6.2
enpro56pb 85 1.0 263428
ex1221 1 0.1 1 0.1
ex1222 1 0.1 1 0.1
ex1223a 1 0.1 1 0.1
ex1223b 1 0.1 6 0.1
ex1223 1 0.1 6 0.1
ex1224 6 0.1 18 0.1
ex1225 1 0.1 1 0.1
ex1226 1 0.1 5 0.1
ex1233 155011 155095
ex1243 29 0.5 128 0.4
ex1244 392 1.2 325 0.7
ex1252a 1067 5.1 1048 10.9
ex1252 2368 10.5 1627 11.8
ex1263 360 0.8 406 0.7
ex1263a 308 0.3 190 0.1
ex1264 79 0.2 227 0.3
ex1264a 272 0.3 67 0.1
ex1265 132 0.3 89 0.3
ex1265a 105 0.1 112 0.1
ex1266 64 0.6 48 0.6

8



Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

ex1266a 166 0.2 51 0.1
ex3 5 0.2 5 0.1
ex3pb 5 0.2 5 0.1
ex4 8 0.7 92 0.6
fac1 5 0.1 5 0.1
fac2 3.31837e+08 9.33091e+08
fac3 6 0.2 15 0.1
feedtray2 1 0.2 107 0.7
feedtray -13.2521 ∞
fo7 2 55625 23.9 58912 21.8
fo7 ar2 1 54859 22.5 28535 10.3
fo7 ar25 1 37990 16.3 50996 18.4
fo7 ar3 1 57084 23.5 49246 17.5
fo7 ar4 1 49263 22.3 52006 22.5
fo7 ar5 1 26616 14.2 31567 14.0
fo7 167645 74.7 173509 74.5
fo8 ar2 1 284758 116.8 240573 90.3
fo8 ar25 1 383103 145.4 250042 95.7
fo8 ar3 1 475974 109.9 69260 33.7
fo8 ar4 1 58378 29.0 116895 48.9
fo8 ar5 1 50974 30.3 138664 61.1
fo8 395824 211.8 387718 180.1
fo9 ar2 1 2267077 856.1 2557641 985.8
fo9 ar25 1 4699479 1925.4 6650732 2769.7
fo9 ar3 1 809661 347.7 129742 65.2
fo9 ar4 1 512918 319.9 1106804 623.9
fo9 ar5 1 1424595 708.2 803051 395.8
fo9 965136 537.5 1973156 1145.9
fuel 4 0.1 5 0.1
fuzzy ∞ ∞
gasnet 490 2.5 29431 185.9
gastrans 3 0.2 15 0.1
gbd 1 0.1 1 0.1
gear2 1009 0.7 1032 0.3
gear3 126 0.4 429 0.1
gear4 4159 1.1 349 0.1
gear 126 0.2 429 0.1
ghg 1veh 7.78141 3821915 1663.0
ghg 2veh 7.7709 8.20276
ghg 3veh 7.76609 ∞
gkocis 1 0.1 4 0.1
hda -5671.47 ∞
hmittelman 1 0.1 1 0.1
johnall 2 76.9 1 8.1
lop97ic 4610.73 5183.26
lop97icx 4259.37 4341.74
m3 14 0.1 19 0.1

9



Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

m6 1117 1.7 3202 1.3
m7 ar2 1 5399 2.8 12292 3.9
m7 ar25 1 2456 1.5 1856 0.9
m7 ar3 1 7810 5.0 13694 4.8
m7 ar4 1 1121 1.7 1761 1.2
m7 ar5 1 9883 5.2 10575 4.2
m7 6951 4.6 2541 1.5
mbtd 8.91665 ∞
meanvarx 2 0.2 5 0.1
meanvarxsc 2 0.2 13 0.1
minlphix -26110.7 259.52
netmod dol1 -0.560008 -0.560008
netmod dol2 171 46.7 172 47.8
netmod kar1 345 6.0 268 5.4
netmod kar2 345 6.0 268 5.2
no7 ar2 1 36320 19.4 28389 13.5
no7 ar25 1 95347 50.4 93286 44.2
no7 ar3 1 293714 137.2 384556 158.4
no7 ar4 1 217836 104.5 169311 75.5
no7 ar5 1 103159 54.0 138984 63.8
nous1 1.56707 1.82194
nous2 4868 3.9 6424 4.1
nuclearva ∞ ∞
nuclearvb ∞ ∞
nuclearvc ∞ ∞
nuclearvd ∞ ∞
nuclearve ∞ ∞
nuclearvf ∞ ∞
nuclear25 -1.10613 ∞
nuclear25a -1.08439 ∞
nuclear25b -1.05757 ∞
nuclear49 ∞ ∞
nuclear49a ∞ ∞
nuclear49b -1.11491 ∞
nuclear14 ∞ ∞
nuclear14a ∞ ∞
nuclear14b -1.10637 ∞
nuclear10a ∞ ∞
nuclear10b -1.15015 ∞
nuclear104 ∞ ∞
nvs01 13 0.1 16 0.1
nvs02 1 0.1 1 0.1
nvs03 1 0.1 1 0.1
nvs04 1 0.1 13 0.1
nvs05 760 1.6 5985635 1372.6
nvs06 11 0.1 31 0.1
nvs07 1 0.1 1 0.1

10



Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

nvs08 1 0.1 9 0.1
nvs09 2440089 762.5 -4.03417
nvs10 1 0.1 1 0.1
nvs11 3 0.1 9 0.1
nvs12 5 0.1 13 0.1
nvs13 8 0.1 19 0.1
nvs14 1 0.1 1 0.1
nvs15 7 0.1 8 0.1
nvs16 5 0.1 4 0.1
nvs17 47 0.1 89 0.1
nvs18 23 0.1 52 0.1
nvs19 90 0.2 179 0.2
nvs20 105 0.5 384 0.8
nvs21 24 0.1 38 0.1
nvs22 12 0.2 48 0.1
nvs23 122 0.4 187 0.3
nvs24 114 0.4 187 0.3
o7 2 1464180 693.0 1168428 507.0
o7 ar2 1 428307 112.7 179099 82.7
o7 ar25 1 615855 341.7 629362 323.7
o7 ar3 1 1007602 520.0 1077211 512.3
o7 ar4 1 1857564 1015.3 1780200 882.3
o7 ar5 1 693767 333.0 787092 372.0
o7 4104431 2122.5 2673150 1276.1
o8 ar4 1 243.071 243.071
o9 ar4 1 236.138 236.138
oaer 1 0.1 3 0.1
oil2 -0.73326 ∞
oil -0.932494 ∞
ortez 34 0.5 35 0.1
parallel 924.163 615454 2712.5
pb302035 4.28828e+06 4.8551e+06
pb302055 4.33141e+06 5.51106e+06
pb302075 4.55301e+06 6.35817e+06
pb302095 5.92856e+06 6.58091e+06
pb351535 5.63016e+06 6.34354e+06
pb351555 5.28901e+06 6.16652e+06
pb351575 6.84379e+06 8.49873e+06
pb351595 7.54834e+06 1.02975e+07
prob02 1 0.1 1 0.1
prob03 1 0.1 1 0.1
procsel 1 0.1 2 0.1
product2 1 3.1 ∞
product 10366 23.6 16144 41.2
pump 1036 6.5 1103 9.6
qapw 392424 405072
qap 415192 415484

11



Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

ravem 42 0.8 163 0.5
ravempb 42 1.1 152 0.5
risk2b 184 0.6 467 0.3
risk2bpb 8 0.1 11 0.2
saa 2 12.8818 ∞
sep1 21 0.4 35 0.1
space25 ∞ ∞
space25a 638.828 ∞
space960 ∞ ∞
spectra2 14 0.8 67 0.7
spring 83 0.5 135 0.1
st e13 1 0.1 3 0.1
st e14 1 0.1 6 0.1
st e15 1 0.1 1 0.1
st e27 1 0.1 1 0.1
st e29 6 0.1 18 0.1
st e31 1891 1.3 1098 0.7
st e32 7935 10.7 11331 13.5
st e35 64867.7 14628 15.3
st e36 333 0.8 524 0.3
st e38 3 0.1 15 0.1
st e40 29 0.1 22 0.1
st miqp1 1 0.1 1 0.1
st miqp2 1 0.1 5 0.1
st miqp3 5 0.1 3 0.1
st miqp4 1 0.1 1 0.1
st miqp5 1 0.1 1 0.1
stockcycle 42555 207.8 69920 337.4
st test1 1 0.1 1 0.1
st test2 1 0.1 1 0.1
st test3 1 0.1 1 0.1
st test4 1 0.1 1 0.1
st test5 1 0.1 1 0.1
st test6 1 0.1 1 0.1
st test8 1 0.1 1 0.1
st testgr1 30 0.1 55 0.1
st testgr3 14 0.1 9 0.1
st testph4 1 0.1 1 0.1
super1 ∞ ∞
super2 ∞ ∞
super3 ∞ ∞
super3t -0.653203 ∞
synheat 154997 ∞
synthes1 5 0.1 5 0.1
synthes2 5 0.1 6 0.1
synthes3 7 0.1 495622 46.9
tln2 1 0.1 1 0.1

12



Table 1: Impact of primal heuristics on overall solving process for
MINLPLib instances. When an instance could not be solved to op-
timality, the primal bound after one hour is given.

default no heuristics
Instance Nodes Time Nodes Time

tln4 4298 1.8 3168 1.2
tln5 349271 173.0 16705 8.2
tln6 15.3 15.3
tln7 15.1 15.7
tln12 91.3 118.8
tloss 120 0.2 203 0.2
tls2 18 0.1 13 0.1
tls4 18131 34.1 36715 65.7
tls5 10.3 10.9
tls6 15.9 16
tls7 17.2 22.1
tls12 ∞ ∞
tltr 11 0.2 23 0.2
uselinear ∞ ∞
util 82 0.2 379 0.1
waste 656.325 742.053
water4 926.947 1002.75
waterx 957.908 2854.37
waterz 929.784 1027.87

feas. sol. 228 205
better obj. 48 2

all optimal
sh. geom. mean 842 9.6 988 9.5
arithm. mean 149 273 72.4 152 835 73.2

13


	Introduction
	Feasibility Pumps
	Large Neighborhood Search
	Rounding, Diving, and MILP heuristics
	Computational Results
	Conclusion

