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Approximations of the One-Way Helmholtz Equation
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Abstract: In this paper, we generalize the nonlocal discrete transparent boundary con-
dition introduced by Schmidt and Deuflhard [Comp. Math. Appl. 29 (1995) 53-76]
and Schmidt and Yevick [J. Comput. Phys. 134 (1997) 96-107] to propagation meth-
ods based on arbitrary Padé approximations to the two-dimensional one-way Helmholtz
equation. Our approach leads to a recursive formula for the coefficients appearing in the
nonlocal condition which then yields an unconditionally stable propagation method.
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1 Introduction

Scalar wave propagation in two-dimensions is generally modeled by the Helmholtz
equation

uzz + uxx + k2u = 0 (1)

over the entire R2 where the wavenumber k = k(x, z) is generally position de-
pendent. In many physical situations, we can further distinguish a principal
propagation direction, here taken to be the z-direction and a transverse, x direc-
tion. For the particular case of a position-independent wavenumber, the operator
∂2
z + ∂2

x + k2 can be explicitly factorized, leading to the exact one-way Helmholtz
equation

∂zu = ik

√
1 +

1

k2
∂2
x u . (2)

In the above expression, the formal square root operator is a pseudo-differential
operator, which can be given a precise meaning in the Fourier representation.
The associated initial value problem must generally be solved on the domain
Ω = R×R+

0 . This requires that the pseudo-differential square root operator be
evaluated in a basis of eigenfunctions of its operand, which are free-space Fourier
components if k is x-independent.

While (2) is difficult to solve exactly for spatially varying k(x), it provides a
foundation for numerous beam propagation methods. Perhaps the most straight-
forward of these are the split-step fast Fourier transform methods, in which the
square-root operator is computed directly in Fourier space. Alternatively, ap-
proximations such the as fix-point-iteration or rational approximations to the
square root operator

√
1 +X can be applied to transform (2) into more easily

handled differential equations. These approximations can be formally written as

∂zu = ik

(
1− b′0∂2

x

) (
1− b′1∂2

x

) · · · (1 − b′m∂2
x

)
(1 − b0∂2

x) (1− b1∂2
x) · · · (1 − bn∂2

x)
u (3)

with complex coefficients b′0, . . . , b′m and b0, . . . , bn. The approximation quality
and the well-posedness of this formal equation has been extensively examined in
e.g. [10] and [2]. Additionally, the non-commutativity of the factors in (3) in case
of non-constant coefficients b′0, . . . , b′m and b0, . . . , bn on the computational domain
is the source of several theoretical issues which are not discussed here. Rather,
we adopt the usual technique of “frozen coefficients”, in which the functions are
considered to be constant in deriving the rational approximation [2].

In the following sections, we will accordingly investigate the discrete solution
to the following problem:

1. Let the coefficients b′0, . . . , b′m and b0, . . . , bn be piecewise continuous real
functions on the bounded computational domain Ω := [x− , x+]× [0, zmax]
and real constants outside the computational domain.
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2. Next, consider (3) on the unbounded x-z-domain R× [0, zmax]with initial
conditions u(x, 0) = u0(x) compactly supported on the interval [x−, x+] ⊂
R such that the asymptotic boundary condition lim|x|→∞ u(x, z) = 0 holds
for all 0 ≤ z ≤ zmax .

3. Determine the solution u(x) on the bounded computational domain Ω that
agrees exactly with the unbounded result, restricted to Ω.

The goal of our paper is thus to construct transparent boundary conditions
for arbitrary higher order evolution equations of the type (3) that insure the
realization of the third point above. We will restrict our derivation to uniform
step-sizes in the z-direction of propagation in order to apply the simplified shift-
operator technique introduced in [9]. Similar formulas could be derived for non-
equidistant step sizes using the more direct procedure of [8] or the algebraic
approach [7] but the analysis as well as the resulting formulas would be far more
complicated. Recently, a specialization of the above problem, namely a Padé (2,2)
approximation, has been successfully analyzed [1]. While the solution presented
in this reference is restricted to cases for which certain inverse Laplace transforms
can be inverted analytically, such a step is absent from our present method. As a
result, we are able to develop efficient numerical techniques for high Padé orders.
Since our numerical implementation relies on non-trivial data structures, explicit
pseudo codes will as well be presented below.

2 Wide-Angle Equations

We first summarize the standard wide-angle approximation to the Helmholtz
equation (1) that will form the basis for our subsequent considerations. The first
step in this analysis is to define a new field variable ũ(x, z) := u(x, z) exp(−ik0z)
by introducing a suitable reference-wavenumber k0 such that the mean phase
velocity of the wavevector components of ũ(x, z) in the z-direction is effectively
minimized. The resulting spectrally shifted Helmholtz equation, where we drop
the tilde on u(x, z) for notational simplicity, is(

∂2
z + 2ik0∂z + ∂2

x + k2 − k20

)
u(x, z) = 0 . (4)

Formally factorizing the above equation in analogy with (2) yields the following
one-way equation after the transformations z := z · k0 and x := x · k0

∂zu = −i
(
1 −

√
1 +X2

)
u, with X2 :=

k2 − k20
k20

+ ∂2
x . (5)

Since k = const in the exterior domain, rational approximations of the form

√
1 +X2 � c′0 + c′2X2 + . . .+ c′2mX2m

c0 + c2X2 + . . .+ c2nX2n
. (6)
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Table 1: Padé coefficients
(2, 0) (2, 2) (4, 2) (4, 4)

j
c′j
cj

0 2
1 1/2
1

0 2
1 3/4
1 1/4

0 2 4
1 1 1/8
1 1/2

0 2 4
1 5/4 5/16
1 3/4 1/16

can be applied to the square-root operator. The most accurate of these are
generally obtained for m = n or m = n + 1, see [10]. We will derive a general
procedure for deriving transparent boundary conditions that can be applied to all
such approximations in succeeding sections. However, to simplify our numerical
algorithm, we will consider explicitly only Padé-type approximations of order
(2m, 2n). This yields an interpolation error O(X2m+2n+2) for X → 0.

For the simple Padé approximation of (6) the coefficients c′2i, c2j, i = 0 . . . m,
j = 0 . . . n can be obtained through either an explicit factorization ([3]) or by the
Newman-procedure [5]. The latter technique, upon which our computer codes
are based, can be extended to wide-angle equations other than those based on
Padé-approximations. Some of the resulting coefficients can be found in Table 1.

3 Longitudinal Discretization

The implicit midpoint discretization of (5) results in

ui(x) − ui−1(x)

Δz
= −i

(
1−

√
1 +X2

) ui(x) + ui−1(x)

2
.

Here ui(x), 0 < i ≤ n denotes u(x, z0 + iΔz) with z0 the initial value of the
longitudinal distance and Δz the propagation step length. This yields the discrete
evolution equation(

1 +
iΔz

2

(
1−

√
1 +X2

))
ui(x) =

(
1− iΔz

2

(
1 −

√
1 +X2

))
ui−1(x) .

After replacing the square-root operator by its rational approximant we obtain
an equation of the form

ui(x) =
P ′(X2)

P (X2)
ui−1(x) . (7)

Here P (X2) and P ′(X2) are the following polynomials of degree m in the variable
X2

P ′(X2) =

(
1 − i

Δz

2

)
C(X2) + i

Δz

2
C ′(X2) and

P (X2) =

(
1 + i

Δz

2

)
C(X2)− i

Δz

2
C ′(X2) .
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The quantitiesC′(X2) andC(X2) are themselves polynomials defined by C′(X2) =
c′0 + c′2X2 + . . . + c′2mX2m and C(X2) = c0 + c2X

2 + . . . + c2nX
2n, see (6) and

Tab. (1). Applying a complex root finder yields

P ′(X2) = c′
k∏

j=1

(
1 − a′jX

2
)
and P (X2) = c

k∏
j=1

(
1− ajX

2
)
, (8)

with c and c′are constants. Finally, inserting X2 :=
(
k2 − k20

)
/k20 + ∂2

x leads to
the desired factorization.

4 Discrete Evolution Equation

From the rational approximation (7) and the factorization (8) we obtain the
longitudinally discretized form of the evolution equation

ui(x) =

(
1 − a′k∂

2
x

1 − ak∂2
x

)
· · ·

(
1 − a′2∂2

x

1 − a2∂2
x

)(
1 − a′1∂2

x

1 − a1∂2
x

)
ui−1(x) , (9)

which is the exact counterpart of the continuous evolution equation (3). In terms

of the intermediate functions g
(1)
i (x), . . . g

(k−1)
i (x) given by

g
(1)
i (x) =

(
1 − a′1∂2

x

1 − a1∂2
x

)
ui−1(x)

g
(2)
i (x) =

(
1 − a′2∂2

x

1 − a2∂2
x

)
g
(1)
i (x)

...

g
(k−1)
i (x) =

(
1 − a′k−1∂

2
x

1 − ak−1∂2
x

)
g
(k−2)
i (x)

ui(x) =

(
1 − a′k∂

2
x

1 − ak∂2
x

)
g
(k−1)
i (x) ,

the factorized, order 2k discrete evolution problem (9) can be recast into the
following system of k second-order differential equations(

1 − a1∂
2
x

)
g
(1)
i (x) −

(
1 − a′1∂

2
x

)
ui−1(x) = 0(

1− a2∂
2
x

)
g
(2)
i (x) −

(
1 − a′2∂

2
x

)
g
(1)
i (x) = 0

... (10)(
1 − ak−1∂

2
x

)
g
(k−1)
i (x) −

(
1− a′k−1∂

2
x

)
g
(k−2)
i (x) = 0(

1− ak∂
2
x

)
ui(x)−

(
1 − a′k∂

2
x

)
g
(k−1)
i (x) = 0 .
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To write (10) as a simple matrix equation, we introduce the discrete shift-operator
s with the property that sui(x) = ui−1(x). Introducing the notation ġ for ∂xg
and eliminating ui−1(x) in (10) in terms of ui(x) yields(
E+A∂2

x

)
gi(x) = 0 with boundary conditions ġi,+ = B+gi,+, ġi,− = B−gi,−,

(11)
in which the k × k-matrices E and A and the k-element vectors gi(x), gi,± and
ġi,± are

E =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −s

−1 1
. . .

−1 1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎜⎝
−a1 sa′1
a′2 −a2

. . .

a′k−1 −ak−1

a′k −ak

⎞⎟⎟⎟⎟⎟⎟⎠ ,

gi(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g
(1)
i (x)

g
(2)
i (x)
...

g
(k−1)
i (x)
ui(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, gi,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g
(1)
i

g
(2)
i
...

g
(k−1)
i

ui

⎞⎟⎟⎟⎟⎟⎟⎟⎠
x=x�

, ġi,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ġ
(1)
i

ġ
(2)
i
...

ġ
(k−1)
i

u̇i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
x=x�

.

The Dirichlet-to-Neumann operators B± implement the desired boundary con-
ditions and must be constructed such that the asymptotic boundary condition
lim|x|→∞ ui(x) = 0 is fulfilled for all propagation steps. Thus at step i − 1 the

function ui−1(x) maps over k − 1 intermediate functions g
(j)
i (x) to the solution

ui(x). We can equivalently consider this procedure as a one-step propagation
(mapping) from ui−1(x) to a vector of functions gi(x), that is,

ui−1(x) �−→ g
(1)
i (x) �→ g

(2)
i (x) �→ . . . �→ g

(k−1)
i (x) �−→ ui(x)︸ ︷︷ ︸

gi(x):=

(
g
(1)
i (x),g

(2)
i (x),... g

(k�1)
i (x),ui(x)

) (12)

ui−1(x) �−→ gi(x) . (13)

In the lowest order case k = 1 the vector gi(x) consists of the single function
ui(x).

5 Discrete Transparent Boundary Conditions

We now present a derivation of transparent boundary conditions for general wide-
angle methods. To simplify the discussion, we consider gi(x) only in the right
exterior domain, x ≥ x+, and further shift the position of the right boundary
x+ to the origin according to x �→ x+ x0 and omit the ±-subscript. As well, we
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designate the boundary value gi,+ by gi,0. All our results of course apply equally
to the left exterior domain.

Consider (11) as an initial value problem in the right exterior domain with
data given on the shifted boundary x+ = 0. Our objective is to construct an op-
erator with the property that the corresponding exterior solution decays asymp-
totically for any given Dirichlet data gi,0. To do this, we construct the Laplace
transform ĝi(p) :=

∫∞
0 exp(−px)gi(x) dx, p ∈ C with 
(p) > const., of the exte-

rior solution vector gi(x). In the exterior domain, the Laplace transform of the
equation system (11) is(

E+ p2A
)
ĝi(p) = A (pgi,0 + ġi,0) .

By construction A is invertible, since aj �= 0, j = 1, . . . , k, cf. Sec.3. Therefore
we can write equivalently(

p2I−C2
)
ĝi(p) = pgi,0 + ġi,0 ,

where the k × k-matrix C2 := −A−1E and I is the k × k-identity-matrix. If we
assume for the moment that we can obtain the square roots, ±C, of the matrixC2

we have
(
p2I−C2

)
= (pI+C) (pI−C), since C and I commute. Thus imposing

the ansatz ġi,0 = Bgi,0, see (11), and imposing the boundary operator B = −C,
leads to a special solution of the matrix equation, namely

ĝi(p) = (pI+C)−1 gi,0 subject to boundary conditions ġi,0 = Bgi,0. (14)

To derive the nonlocal boundary conditions, which is equivalent to finding the
s-dependent boundary operator B, we apply the same procedure as in [8] or
[9]. That is, we construct the matrix C such that all poles pj, j = 1, . . . , k of
(pI+C)−1 are located in the right half of the complex plane, i.e. 
pj > 0, j =
1, . . . , k. This ensures that the exterior solution decays appropriately as x → ±∞.

The square root of C2 := −A−1E is obtained by decomposing the matrices A
and E into two components. The first of these is independent of the shift operator
s , namely A0 := A|s=0 and E0 := E|s=0 while the second is s-dependent. We
thus have A = A0 + sA1 and E = E0 + sE1 with

A1 :=

⎛⎜⎜⎜⎜⎝
0 · · · 0 a′1

0

0
...
0

⎞⎟⎟⎟⎟⎠ E1 :=

⎛⎜⎜⎜⎜⎝
0 · · · 0 −1

0

0
...
0

⎞⎟⎟⎟⎟⎠ .

Normalizing the above matrices with respect to A0 generates new matrices

A0 := A−1
0 A0 = I A1 := A−1

0 A1 E0 := A−1
0 E0 E1 := A−1

0 E1 .

From the previous definitions together with the ansatz C(s) = C0+sC1+s2C2+
. . ., where Cj ∈ Ck×k, j ≥ 0, we observe that we must find matrices Cj such that

(I+ sA1)
(
C0 + sC1 + s2C2 + . . .

) (
C0 + sC1 + s2C2 + . . .

)
= −E0 − sE1.

(15)
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As is evident by comparing coefficients, to solve (15) we must first find C0 such
that C2

0 = −E0. Because the matrix E0 is a quotient of two lower triangular
matrices, the matrix C0 is also lower triangular. Further, the diagonal entries C0

can be chosen such that 
(C)jj > 0, j = 1, . . . , k, see Alg. (1). Hence all poles
corresponding to C0, with C0 constructed according to Alg. 1, are located in the
right half of the complex plane.

Algorithm 1 Calculate C =
√−E0

for i = 1 to k do
cii =

√−E0,ii

if i > 1 then
for j = i− 1 to1 do

cij =
(
−E0,ij −∑i−1

m=j+1 cimcmj

)
/(cii + cjj)

end for
end if

end for

Remark. Since C0 = C(s) at s = 0 the condition B = −C0 supplies the
desired boundary conditions for the first step – i.e. the first k − 1 intermediate

solutions g
(1)
1 (x), . . . , g

(k−1)
1 (x) – and the solution u1(x) after the first step. By

construction, all eigenvalues of the square-root have a positive real part, so that
both the intermediate solutions and u1(x) decay asymptotically in the external
domain.

Subsequently the sequence C1,C2, . . . ,Cn−1 for the following n propagation
steps is obtained by comparing coefficients of equal powers of s in (15). The
corresponding pseudo-code is given in Alg. 2, and consists mainly of solutions of
Sylvester equations. From the structure of the algorithm we observe that if C0
is computed, the entire sequence is uniquely determined.

Algorithm 2 Recursive calculation of Cj, j = 1, . . . , n− 1

Z := − (
E1 +A1C

2
0

)
Compute C1 from C1C0 +C0C1 = Z
for k = 2 to n− 1 do
Z ⇐ −A1Z
Compute Ck from CkC0 +C0Ck = Z−∑k−1

j=1 CjCk−j

end for

Finally, the nonlocal boundary condition at every step 0 < i ≤ n is obtained
from Cj, j = 0, . . . n− 1, by employing the definitions B = −C and

ġi,0 = B(s)gi,0

=
(
B0 + sB1 + . . .+ si−1Bi−1

)
gi,0 (16)

= B0gi,0 +B1gi−1,0 + . . . +Bi−1g1,0 .
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Eq. (16) provides the algorithmic basis for constructing nonlocal boundary con-
ditions for any wide-angle approximation and discrete propagation method, as
different propagation methods can be distinguished simply through the values
of the defining coefficients a′1, . . . , a′k and a1, . . . , ak.. As the operator B(s) pos-
sesses a Taylor representation in s, its action can be represented by matrix-vector
multiplications of the Taylor coefficients Bj with boundary values describing the
history of the evolution process. In our numerical implementation we order the
boundary vectors gi,0 from lower to larger step numbers and introduce a com-

posite boundary vector g0 =
(
gT
1,0, . . . g

T
i−1,0,g

T
i,0

)T
. Similarly, we generate the

composite boundary matrices

B = (Bi−1,Bi−2, . . . B0) , 1 ≤ i ≤ n (17)

C = −B. (18)

in place of the boundary operator B(s), after which the normal derivative ġi,0
from system (16) is computed through a matrix-vector multiplication. This pro-
cedure for implementing the discrete boundary condition in terms of a composite
matrix C is summarized in Alg. 5.

6 Finite-element Discretization

From the representation (10), we will now generate a finite-element discretization
on the interior domain. For illustrative purposes, consider the first equation of
the system (10) at step i, 0 < i ≤ n. Multiplying this equation by a trial function
v ∈ H1(Ω), Ω = (x−,x+), integrating over Ω, and finally performing a partial
integration yields(

v, g
(1)
i

)
+
(
∂xv, a1∂xg

(1)
i

)
−
(
a1∂xg

(1)
i

)∣∣∣x+

x�
= (19)

(v, ui−1) +
(
∂xv, a

′
1∂xui−1

)− (
a′1∂xui−1

)∣∣x+

x�
.

The variational problem corresponding to this equation is therefore to find a

function g
(1)
i ∈ H1(Ω) such that (19) holds for any v ∈ H1(Ωi). The other

equations of the system (10) can be reformulated similarly. The resulting system
is then discretized by replacing the infinite-dimensional function space H1(Ω)
by a finite-dimensional space Vh ⊂ H1(Ω). Hence the corresponding discrete

problem is to determine a discrete approximation g
(1)
h,i of g

(1)
i with g

(1)
h,i ∈ Vh such

that for all vh ∈ Vh(
vh, g

(1)
h,i

)
+
(
∂xvh, a1∂xg

(1)
h,i

)
−
(
a1∂xg

(1)
h,i

)∣∣∣x+

x�
= (20)

(vh, uh,i−1) +
(
∂xvh, a

′
1∂xuh,i−1

)− (
a′1∂xuh,i−1

)∣∣x+

x�
.
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A compact notation for (20) results if we define the vectors b
(1)
i ,b

′(1)
i ∈ CN with

N = dimVh by

b
(1)
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
−a1∂xg

(1)
h,i

)∣∣∣
x=x�

0
...
0(

a1∂xg
(1)
h,i

)∣∣∣
x=x+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and b

′(1)
i =

⎛⎜⎜⎜⎜⎜⎜⎝

(−a′1∂xuh,i−1)|x=x�

0
...
0

(a′1∂xuh,i−1)|x=x+

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and introduce the mass and stiffness matrices M ∈ RN×N , A1,A
′
1 ∈ CN×N in

standard fashion as (M)i,j = (vh,i, vh,j) and (A)i,j = (∂xvh,i, a1∂xvh,j). Defining

as well the vectors g
(1)
i =

(
g
(1)
h,i,1, . . . , g

(1)
h,i,N

)T ∈ CN and ui−1 = (uh,i−1,1, . . . ,

uh,i−1,N)T ∈ CN , that are the discrete counterparts of the continuous functions

g
(1)
i (x), ui(x) we have

(M +A1) g
(1)
i − b

(1)
i =

(
M +A′

1

)
ui−1 − b

′(1)
i . (21)

If we know the solution ui−1 in the interior domain together with its normal

derivative on the boundary and the normal derivative of g
(1)
i we can obtain the

unknown intermediate vector g
(1)
i . Repeating this procedure for each of the

equations of (10), we generate the following block matrix equation in terms of
the matrices and vectors introduced in the preceding paragraph,⎛⎜⎜⎜⎜⎝

M+A1

M+A2

. . .

M+Ak

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

g
(1)
i

g
(2)
i
...
ui

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎝
b
(1)
i

b
(2)
i
...

b
(k)
i

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
M+A′

1

M+A′
2

. . .

M+A′
k

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ui−1

g
(1)
i
...

g
(k−1)
i

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎝
b
′(1)
i

b
′(2)
i
...

b
′(k)
i

⎞⎟⎟⎟⎟⎟⎠ . (22)

To solve the system (22), the vectors b
(j)
i , b

′(j)
i , j = 1, . . . k must be constructed

in accordance with the boundary conditions. The relationship between the dis-
cretized evolution equation (22) and the boundary condition (16) is determined
by first decomposing the boundary condition at each boundary according to

9



b
(j)
i = b

(j)
i,− + b

(j)
i,+ with

b
(j)
i,− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
−aj∂xg

(j)
i,h

)∣∣∣
x=x�

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and b

(j)
i,+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0(

aj∂xg
(j)
i,h

)∣∣∣
x=x+

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, b

(j)
i,± ∈ CN .

Performing the same decomposition for each vector b
′(j)
i and assembling all

nonzero entries of the vectors b
(j)
i,±, b

′(j)
i,± , j = 1, . . . k into the four vectors bi,±,

b′
i,± ∈ Ck we arrive at

bi,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
±a1∂xg

(1)
i,h

)∣∣∣
x=x�(

±a2∂xg
(2)
i,h

)∣∣∣
x=x�

...(
±ak−1∂xg

(k−1)
i,h

)∣∣∣
x=x�

(±ak∂xui)|x=x�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and b′

i,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

± (a′1∂xui−1)|x=x�

±
(
a′2∂xg

(1)
i,h

)∣∣∣
x=x�

...

±
(
a′k−1∂xg

(k−2)
i,h

)∣∣∣
x=x�

±
(
a′k∂xg

(k−1)
i,h

)∣∣∣
x=x�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)
We now derive an equation relating the vectors bi,± and b′

i,± to the boundary
condition (16). Regarding first bi−1,+, we have from (23) and (16)

bi,+ = diag(a1, . . . , ak)ġ0,i

= diag(a1, . . . , ak)B(s)g0,i

= diag(a1, . . . , ak)
(
B0 + sB1 + s2B2 + . . . + si−1Bi−1

)
g0,i .

All of the expressions sjBjgn(0) = Bjgn−j(0) above with j = 1, . . . , n − 1 can
be immediately evaluated based on the observation that the shift operator s
decreases the index of Bj by unity. Further, as the matrix B0 is a lower triangular
matrix we can arrange the algorithm such that the boundary condition at the
current step only depends on boundary values at previous steps. To this end we
decompose b± as

b± = Bd,±g0,i +Br,±gi
with Bd,± := ± diag(a1, . . . , ak)|x=x�

diag (B0,±) (24)

and Br,±(s) := ± diag(a1, . . . , ak)|x=x�

·
(
B0 − diag (B0) + sB1 + . . . + si−1Bi−1

)∣∣∣
x=x�

, (25)

where the matrices diag (B0,±) contain only the main diagonals of B0,±. The
diagonal matricesBd,± are then inserted into the matrix of the final system which
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Figure 1: Construction of the boundary operator B′from the boundary operator
B

g
...
g

(1)

(k-1)

un-1

n

n

           n-1
  

u      g       g      u
z

0 n...n n
(1) (k-1)

g
...
g
u

(1)

n

(k-1)
n

n

B B B...

B’ B’ B’

0

0

1

1n-1

n-1

...

a)

b)

c)

u1 ...

yields updated matrices Aj satisfying

Aj = Aj −
⎛⎜⎝ Bd,−(j, j)

0
Bd,+(j, j)

⎞⎟⎠ , j = 1, . . . k . (26)

The reduced matrixBr,±, which is a lower triangular matrix with a zero diagonal,
only couples previously determined boundary values and is therefore placed on
the right-hand side of the evolution equation, cf. Alg. 5.

To derive a corresponding expression for b′+ we note that the vector gi is

ordered as
(
g
(1)
i , g

(2)
i , . . . g

(k−1)
i , ui

)T
, which reflects the algebraic structure of the

boundary condition (16). The discrete evolution system (22), however, requires

the alternate ordering (23)
(
ui−1,g

(1)
i , g

(2)
i , . . . g

(k−1)
i

)T
. Thus to derive a condi-

tion of the form⎛⎜⎜⎝
∂ui−1

...

∂g
(k−1)
i

⎞⎟⎟⎠ =
(
B′

0 + sB′
1 + . . .+ si−1B1i−1

)⎛⎜⎜⎝
ui−1
...

g
(k−1)
i

⎞⎟⎟⎠
with an operator B′(s) := B′

0 + sB′
1 + . . . + si−1B′

i−1, we must rearrange the
columns and rows of the operator B.

In the first step of this transformation, which is illustrated in Fig. 1 we remove
the last row and the last column of the composite boundary matrix B = −C to
obtain the reduced matrix shown in part b) of Fig. 1. We then place the former
last row of B at the top of the reduced matrix, after shifting the row to the left

11



and adjusting it to the dimension of the reduced matrix, as illustrated in part
c) of Fig. 1. Finally, the resulting matrix is multiplied with the diagonal matrix
diag (a′1, . . . a′k) according to (23). The pseudo-code for these operations is given
in Algorithm 3.

Algorithm 3 Computation of the operator B′ (see Fig. 1)

1: Compute B′ := −C(1 : k − 1, 1 : nk − 1)

2: Compute b′ := −
⎡⎢⎣C(k, k + 1 : nk), 0, 0, . . . 0︸ ︷︷ ︸

k−1

⎤⎥⎦
3: Compute B′ ⇐ diag (a′1, . . . a′k)

[
0 b′

0 B′

]

Remark. To evolve the field over n propagation steps, we must first initialize
the two boundary operators B+ and B− with dimension k × (kn), acting on the
right and left boundary, respectively. At the end of the simulation we will possess
two vectors g+ and g− of dimension nk+1 that will contain the boundary values.

The initialization of the propagation algorithm, which includes the compu-
tation of the standard finite element matrices, the updating of these matrices
(which corresponds to incorporating the boundary conditions) and the computa-
tion of the boundary matrices B± are summarized in Alg. 4. The structure and

Algorithm 4 Computation of the finite element matrices Aj , M and the bound-
ary matrices B±
Compute C0,± {acc. to Alg. 1}
Compute Cj,±, j = 1 : n− 1 {acc. to Alg. 2}
Compute C± := [Cn−1,Cn−2, . . . C0]± {acc. to Eq. (18)}
Compute Aj, j = 1, . . . , k and M {acc. to Eq.(20) and Eq. (21)}
Compute B′± {acc. to Alg. 3}
Compute Bd {acc. to Eq. (24)}
Update Aj , j = 1 : k using Bd {acc. to Eq. (26) }
Compute B± := −diag(a1, . . . , ak)± [Cn−1,Cn−2, . . . C0 − diag(C0)]±

{acc. to Eq. (25)}
B± ⇐ [0,B±(:, 1 : nk − 1)]
B± := [Bn−1,Bn−2, . . . B0] ⇐ B± −B′±

the numerical details of the resulting propagation algorithm is finally described
in Alg. 5.

12



Algorithm 5 Propagation algorithm

g := u0 {set the initial values}
g− := (g(1)), g+ := (g(N)) {save the boundary values}
for i = 1 to n do {propagate n steps}
for j = 1 to k do {solve k intermediate problems}
b =

(
M+A′

j

)
g

c− = B−(j, (n− i)k + 1 : (n− 1)k + j)g−
c+ = B+(j, (n− i)k + 1 : (n− 1)k + j)g+

b ⇐ b+

⎛⎜⎝ c−
0
c+

⎞⎟⎠
Compute g from

(
M +Aj

)
g = b

g− ⇐ (g−, g(1))T , g+ ⇐ (g+, g(N))T {save the boundary values}
end for
ui := g {solution of the i-th step}

end for

7 Stability

The stability of the wide-angle transparent boundary conditions can be verified
through a natural extension of our earlier analysis for the Schrödinger-type Padé-
(2,0) approximant [9]. Assume that the algorithm is implemented with exact
arithmetic, and consider the representation of the exterior solution given by (14),
namely

ĝi(p) = (pI+C(s))−1 gi,0, withC(s) = C0 + sC1 + . . .+ si−1Ci−1,

in which by construction (Alg. 1) 
 (diag(C0)) > 0. Further, in accordance
with the algebraic properties of the shift operator, [6], we define gi,0 = 0 for all
i ≤ 0. Introducing the matrix Δ = s (pI+C0)

−1 (C1 + sC2 . . .+ si−2Ci−1
)
we

can represent ĝi(p) by

ĝi(p) = ((pI+C0) (I+Δ))−1 gi,0

= (I+Δ)−1 (pI+C0)
−1 gi,0

=
(
I−Δ+Δ2 − . . .

)
(pI+C0)

−1 gi,0 . (27)

This expansion around s = 0, which results from the Neumann series expansion,
is a convergent representation of our solution [6]. Since the inverse Laplace trans-
form of the scalar quantity ĝ(p) = (p + c0)

−1 is g(x) = exp(−c0x), we conclude
that limx→∞ gi(x) = 0 for 
(c0) > 0, which is our desired asymptotic boundary
condition. This asymptotic property is further valid for any term of the form
(p+ c0)

−j , j ≥ 1 and consequently the above manipulations can be directly gen-
eralized to the vectorial representation (27). As well, since the Laplace variable p
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occurs only within the factor (pI+C0)
−1, while the full solution (27) is a linear

combination of powers of such factors, the vector of solutions gi(x) approaches 0
at infinity.

We now prove that our boundary condition conserves the L2(−∞,∞)-norm
over the infinite domain - where we employ the continuous form of the L2-norm
within the right and left exterior domains Ω− = (−∞, x−) and Ω+ = (x+,∞)
and the discrete L2-norm on Ω = (x−, x+). The unconditional stability of the
propagation algorithm then follows directly from this conservation law.

We consider first the discrete variational equation, (20), where we abbreviate

g
(1)
h,i by g and uh,i−1 by u and a1,a

′
1 by a, a′. We must compute function g from

its predecessor u. Accordingly, (20) reads

(vh, g) + (∂xvh, a∂xg) − (a∂xg)|x+
x�

= (vh, u) +
(
∂xvh, a

′∂xu
)− (

a′∂xu
)∣∣x+

x�
.

If we regard the special choice vh = g and vh = u., we obtain the equation system

(g, g) + (∂xg, a∂xg) − (a∂xg)|x+
x�

= (g, u) +
(
∂xg, a

′∂xu
)− (

a′∂xu
)∣∣x+

x�

(u, g) + (∂xu, a∂xg) − (a∂xg)|x+
x�

= (u, u) +
(
∂xu, a

′∂xu
)− (

a′∂xu
)∣∣x+

x�
.

Provided that a′ and a are complex conjugates, which is the essential requirement
to insure stability, the sum of both equation yields

(g, g) − 2
 (a∂xg)|x+
x�

= (u, u) − 2
 (
a′∂xu

)∣∣x+

x�
.

The same procedure applies to the exterior domains. For the right exterior do-
main

(g, g)out,+ − 2
 (a∂xg)|∞x+
= (u, u)out,+ − 2
 (

a′∂xu
)∣∣∞
x+

,

with an analogous result for the left exterior domain. Summing all three contri-
butions and noting that the terms at infinity vanish while the normal derivatives
at x± cancel we obtain

(g, g)− + (g, g) + (g, g)+ = (u, u)− + (u, u) + (u, u)+ .

Since the global L2-norm is thus conserved for every intermediate step, it is
conserved for the entire discrete evolution. This establishes as well the uniqueness
of the discrete solution.

8 Numerical Experiments

We now verify our theoretical considerations by computing the reflection from
the computational window boundary of a Gaussian input beam described by

u(x, 0) = u0(x) = const exp
(
− (x/10)2

)
exp (ik0x sinφ)
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propagating in air. We set k(x) = k0 = 2π/λ where the free space wavelength λ =
1.55μm, the propagation step size Δz = 0.4μm and φ = π/4. In our calculations
which are meant to duplicate the corresponding numerical experiments in [4], the
computational domains are either Ω = (−50, 50)×(0, 400)μm2 or Ω = (−50, 50)×
(0, 100)μm2 while the transverse step sizes Δx vary between 0.01μm ≤ Δx ≤
0.2μm. We consider first the intrinsic error associated with applying the implicit
mid-point rule to plane wave solutions of the Helmholtz equation. Recall that for
the exact one-way Helmholtz propagator

u(Δz) = u(0) exp

(
−iΔzk0

√
1− sin2 φ

)
,

for which the implicit mid-point rule yields

uIMR(Δz) = uIMR(0)
1 − iΔzk0/2

(
1 −

√
1− sin2 φ

)
1 + iΔzk0/2

(
1 −

√
1− sin2 φ

) .

In this expression φ, −π/2 < φ < π/2 is the angle between the propaga-
tion direction and the z-axis. This yields a resulting phase error log(u(Δz)) −
log(uIMR(Δz)) which we compare in Fig. 2 to that obtained by instead applying
the Padé (2,0) (Schrödinger-type) approximation to the exact propagator. While
at Padé order 2 the phase error of the Padé approximation is far greater, the
opposite is true for a Padé (8,8) approximant as evident from Fig. 3.

Next we display in Fig. 4 the spectral norms of the matrices Bi, for the
boundary conditions associated with both the (2,0) and (8,8) Padé approximants
as a function of the number of propagation steps. Here the matrices Bi are
defined and computed as in Alg. 4. Both approximations decay asymptotically
as ||Bi||2 = const i−3/2, independent of the order of the approximation. Note
that every second coefficient of the Padé (2,0) approximation vanishes.

We now propagate the field from z = 0 to z = 400μm with the (8,8) Padé
procedure. The transverse grid spacing is here Δx = 0.2μm while the com-
putational domain is Ω = (−50, 50) × (0, 400)μm2. The contour lines for the
logarithmic amplitude over the first 100μm of propagation are shown in Fig. 5.
While the incident field propagates as expected along the θ = π/4-direction,
residual reflections are generated by the finite transverse discretization error.

To underline the wide-angle property of the Padé (8, 8) approximant, we first
note that employing the (2, 0) in place of the (8, 8) Padé approximation for the
square root operator leads to considerable phase errors, as evident from Fig. 6.
Further, we extended the numerical experiment by adding a second Gaussian
beam, which propagates upward with an angle of π/4with respect to the z-axis.
Fig. 7 demonstrates that in fact the wide-angle propagation can be realized with
our numerical scheme. To examine the influence of the discretization error with
respect to the transverse step length Δx, we now repeat our previous (8, 8) Padé
simulation, Fig. 5 with Δx = 0.01μm, cf. Fig.8. The boundary reflection, which
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Figure 2: The phase error associated with the exact implicit mid-point discretiza-
tion (solid line) compared to that of the corresponding Padé (2,0) approximant
(dashed line).
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Figure 3: As in Fig. 2, but for a (8,8) Padé approximant.
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Figure 4: Spectral norm of the boundary matrices Bi as a function of the number
of propagation steps.
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Figure 5: Gaussian beam propagation calculated with a (8,8) Padé propagator
and Δx = 0.2μm. The dashed line represents the exact propagation angle θ =
π/4. The reflected field vanishes as Δx → 0.

−50 0 50
0

10

20

30

40

50

60

70

80

90

100

x/μm

z/
μm

10−1

 

10−6 

17



Figure 6: As in Fig. 5 except for a Padé (2,0) propagator. Note the error in the
propagation angle.
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Figure 7: Propagation of two Gaussian beams at a relative angle of π/2.
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Figure 8: As in Fig. 5, but with Δx = 0.01μm.
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vanishes in the Δx → 0 limit is indeed significantly reduced. To analyze the
actual dependence of the reflection from the discretization error, we display in
the succeeding Fig. 9 the discrete L2(−50, 50) norm as a function of propaga-
tion distance for transverse step sizes of 0.2μm, 0.1μm, 0..05μm, 0.025μm, and
0.01μm. The figure clearly shows that halving the transverse grid point spac-
ing reduces the norm of the reflected field by a factor of 4. This behavior is
entirely consistent with the O

(
Δx2

)
discretization error of the underlying linear

finite elements. Finally, to demonstrate the stability of our algorithm (subject to
arithmetic error), we display in Fig. 10 ||u|| computed over a longer longitudinal
interval 0 ≤ z ≤ 400μm for an (8,8) Padé propagator. The parameters are the
same as in Fig. 5. Clearly the resulting curve, which displays successive plateaus
corresponding to integer number of reflections of the Gaussian beam from the
computational window boundaries is completely free of numerical divergences.

Conclusions

We have presented the theoretical and algorithmic details required to derive and
implement transparent boundary conditions for arbitrary rational approximations
of the one-way Helmholtz equation in two dimensions. Our approach directly
generalizes our earlier work on Schrödinger-type equations. Additionally, we have
proven the unconditional stability of propagation methods based on our technique
that are based on longitudinal discretization with the implicit mid-point rule. The
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Figure 9: TheL2(−50, 50) norm ||u|| as a function of the propagation distance for
varying step sizes Δx.
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Figure 10: The discrete L2-norm of the field within the computational window
as a function of longitudinal distance for 0 ≤ z ≤ 400μm for the parameters of
Fig. 5.
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proof requires only that the rational approximations to the square-root operator
obeys the condition aj = ā′j , j = 1, . . . , k and that the finite-element space Vh of
the interior discrete problem is non-adaptive; that is, it remains unchanged over
the entire longitudinal propagation length. Given the generality of our results,
we conclude that the associated family of transparent boundary conditions will
find considerable application in a wide variety of numerical wave propagation
problems.
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