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Markov State Models and Molecular Alchemy

Christof Schüttea,b∗∗, Adam Nielsenb∗∗†, Marcus Weberb∗∗∗‡
aInstitute for Mathematics, Freie Universität Berlin, Germany

bZuse Institute Berlin (ZIB), Germany

Abstract

In recent years, Markov State Models (MSMs) have attracted a consid-
erable amount of attention with regard to modelling conformation changes
and associated function of biomolecular systems. They have been used
successfully, e.g., for peptides including time-resolved spectroscopic ex-
periments, protein function and protein folding, DNA and RNA, and
ligand-receptor interaction in drug design and more complicated multi-
valent scenarios. In this article, a novel reweighting scheme is introduced
that allows to construct an MSM for certain molecular system out of an
MSM for a similar system. This permits studying how molecular proper-
ties on long timescales differ between similar molecular systems without
performing full molecular dynamics simulations for each system under con-
sideration. The performance of the reweighting scheme is illustrated for
simple test cases, including one where the main wells of the respective en-
ergy landscapes are located differently and an alchemical transformation
of butane to pentane where the dimension of the state space is changed.

1 Introduction

Applications in modern biochemistry, molecular medicine, or pharmacy demand
for numerical simulations of large biomolecular systems in atomic representation
aimed at a detailed understanding of relations between molecular structures,
dynamical behavior and function. The processes constituting molecular function
typically happen on timescales many orders of magnitude, say 10-15 orders,
longer than the typical time steps of the simulation. Despite all progress in high
performance, computing direct numerical simulation on such timescales often
still is infeasible. Hence, there is an increasing need for coarse graining schemes
to accurately capture the long-term kinetics of a molecular system. The last
decade has seen a manifold of approaches to coarse graining molecular dynamics.
One of these approach is Markov State Modelling in which the kinetics of a

∗∗ Email: Christof.Schuette@fu-berlin.de
†∗∗ Email: nielsen@zib.de
‡∗∗∗ Email: weber@zib.de

1



molecular system is described by a Markov jump process or Markov chain with
the dominant metastable conformations of a molecular system as Markov states
[17, 18, 15]. In recent years Markov State Modelling has been applied with
striking success to many different molecular systems like peptides including
time-resolved spectroscopic experiments [3, 14, 9], proteins and protein folding
[5, 11, 2], DNA [8], and ligand-receptor interaction in drug design [7, 4] and
more complicated multivalent scenarios [23, 19].

Despite the tremendous progress in Markov State Models (MSMs) in recent
years, one still has to put considerable effort into the construction of a MSM:
a large number of short or medium-long molecular dynamics trajectories has
to be generated for the specific molecular system and its precise environmental
parameters (like temperature, solvent details, or pH value) of interest. How-
ever, in many applications one is not only interested in a specific system or
in specific environmental parameters. For example, when designing functional
molecules like in ligand design, one wants to compare the kinetic behavior and
related functions of a variety of molecules (screening), and/or one needs to un-
derstand the influence of environmental parameters on the binding affinity. In
order to answer these questions with techniques presently available, one would
have to construct individual MSMs for each molecular species / parameter value
of interest which is prohibitive in most practical cases. In such cases, molec-
ular alchemy [10] would be helpful: In silico molecular alchemy starts from a
molecular system MA of which a certain property P (MA) is known or has been
computed preliminarily and computes the same property P (MB) for a different
molecular system, MB , by successively transforming MA into MB during the
simulation or by reweighting the simulation for MA due to the transformation
MA →MB .

In this article, a computational scheme for in silico molecular alchemy in
combination with MSMs is presented. We will assume that an MSM has been
constructed from MD trajectory information for the specific molecular system
MA and precise environmental parameters, p. By using exponential reweighting
techniques in path space, we will show how to compute the MSM for another
molecular system and/or changed environmental parameters (MB , p

′) solely
based on the MD trajectories of the (MA, p)-simulations. In this MSM reweight-
ing scheme, each of the (MA, p)-trajectories gets a new weight which enters into
the computation of the transition matrix of the reweighted MSM. In theory, the
reweighting procedure is exact so that the (MB , p

′)-MSM can be constructed
without a single (MB , p

′)-simulation. In fact, we will demonstrate that this ap-
proach allows to handle even critical cases like differing numbers of dominant
conformations, or different dimensions of state space. However, if the molec-
ular system (MA, p) is ”too different” from (MB , p

′) then the reweighting will
require very many original MD trajectories to converge due to inefficient sam-
pling caused by large variance as typical for all reweighting schemes if initial
and target structure are too far apart.

This reweighting technique differs essentially from the more traditional sam-
pling approaches used in molecular simulation. Instead of sampling the sta-
tionary distribution by clever trajectories and reweighting afterwards, we try to
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avoid the sampling of new trajectories and obtain a new Markov State Model
only by reweighting pre-assembled trajectories, even the case of other dimensions
is possible (which is not the case for sophisticated methods like, e.g., nested sam-
pling [20]). Therefore, our approach is different from the umbrella sampling [22]
which uses penalty potentials in order to control the behavior of a trajectory,
and is different from the Wang-Landau sampling which adjusts the potential
stepwise by realizing new trajectories. Also our approach differs from the his-
togram reweighting [1] and replica exchange [16] (and its recent optimization
[13, 6]), because, despite the fact that we only use pre-assembled trajectories,
we do not reweight the stationary distributions with space weights, but rather
weights for each single trajectory. Even further, this approach does not only
achieve an approximation of the stationary distribution, but an estimation of
the complete Markov State Model.

The article is structured as follows. First, the background of Markov State
Modelling is introduced in Sec. 2. Next, the theory behind the reweighting
scheme is discussed in Sec. 3. Finally, in Sec. 4, the algorithmic realization
of the reweighting scheme is sketched and illustrative numerical experiments
demonstrate the performance of the reweighting scheme for splitting conforma-
tions and state space different dimensions.

2 Markov State Models (MSMs)

We consider diffusive molecular dynamics,

dxt = −∇qV (xt)dt+ σdBt, σ2 = 2β−1Id, (1)

where Fint = σḂt denotes the (interal) forcing given by a 3N -dimensional Brow-
nian motion Wt, and V the engery landscape associated with the molecular
system under consideration.

The process xt admits a unique, positive invariant probability measure µ to
which it is ergodic. This invariant density is absolutely continuous wrt. the
Lebesgue measure and given by the density ∝ exp(−βV (x)) that we for conve-
nience also denote by

µ(x) =
1

Z
exp(−βV (x)), Z =

∫
exp(−βV (x))dx,

For an arbitrary complete decomposition {A1, . . . , Am} of state space into m
disjoint sets we define the transition matrix to be the m × m matrix T with
entries

Tij = Pµ[xt ∈ Aj |x0 ∈ Ai], (2)

where Pµ indicates that X0 is distributed due to µ. It is a stochastic matrix
that describes the transition probabilities between the sets of the decomposition
on time scale t in equilibrium. Its entries can alternatively be computed by

Tij =
1

µ(Ai)
Eµ

(
1Ai

(x0)1Aj
(xt)

)
,
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where 1A denotes the indicator function of the set A [18]. In the following, we
assume that we already have identified appropriate sets {A1, . . . , Am} such that
the associated transition matrix T forms a meaningful MSM and that we have
already computed the entries of T up to sufficient accuracy by using sampling
paths (i.e. trajectories) of the process {xt}.

3 MSM reweighting

Now we are interested to understand the effect of a change of force in the SDE
(1) on the entries of the MSM transition matrix T . This change of force can
result from changing the environmental parameters of the simulation or from
replacing groups of atoms of the molecular system by other ones. Even the case
of introducing additional atoms is included as will be illustrated in Sec. 4.3.

Girsanov transformation

To this end, let xt = xt(ω) and Xt = Xt(ω) be the solutions on some probability
space (Ω,Σ, P ) of the stochastic differential equations

dxt = −∇V (xt)dt+ σdBt (3a)

dXt = −(∇V (Xt) +∇U(Xt))dt+ σdBt (3b)

and deterministic initial conditions

x0(ω) = X0(ω) = x (almost surely) .

Define ξt ∈ Rn by

ξt = σ−1∇U(xt) =

√
β

2
· ∇U(xt).

It follows from the Girsanov theorem [12, Thm. 8.6.8], sometimes also called
Cameron-Martin-Girsanov theorem [21] that for

dQ := MtdP

with

Mt := exp

(
−
∫ t

0

ξs · dBs −
1

2

∫ t

0

|ξs|2ds
)
, (4)

we get for any measurable set A

P [Xt ∈ A] = Q[xt ∈ A],

which is identical to writing∫
1A(Xt(ω))dP =

∫
1A(xt(ω))dQ.
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In particular, we obtain

E[1A(Xt)] =

∫
1A(Xt(ω))dP

=

∫
1A(xt(ω))dQ

=

∫
1A(xt(ω))Mt(ω)dP

= E[Mt1A(xt)]

(5)

for any measurable set A.

Updating MSM transition probabilities

Now let TQ denote the transition matrix associated with {Xt} for the same sets
{A1, . . . , Am}, and µQ the associated invariant measure. Then, our result yields
that

TQij =
1

µQ(Ai)
EµQ

(
1Ai

(X0)1Aj
(Xt)

)
(6)

=
1

µQ(Ai)

∫
1Ai

(x) ·Ex
[
1Aj

(xt) exp

(
−
∫ t

0

ξs · dBs −
1

2

∫ t

0

|ξs|2ds
)]

µQ(x)dx.

We have

µQ(x) =
1

ZQ
exp

(
− β(V (x) + U(x))

)
=

Z

ZQ
µ(x) exp(−βU(x)),

ZQ =

∫
exp

(
− β(V (x) + U(x))

)
dx = Z ·Eµ(e−βU ).

such that

TQij =
1

µQ(Ai)

∫
Ai

wj(t, x) g(x)µ(x)dx, (7)

wj(t, x) = Ex

[
1Aj

(xt) exp

(
−
∫ t

0

ξs · dBs −
1

2

∫ t

0

|ξs|2ds
)]

(8)

ξs =

√
β

2
· ∇U(xs)

g(x) =
e−βU(x)

Eµ(e−βU )
,

with µQ(Ai) =
∫
Ai
g(x)µ(x)dx. Consequently, based on the trajectory informa-

tion that was gained to compute Tij , we in principle can also compute TQij .
Note that for

Cij =

∫
Ai

wj(t, x) g̃(x)µ(x)dx
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with
g̃(x) = e−βU(x)

we obtain
m∑
j=1

Cij =

∫
Ai

g̃(x)µ(x)dx

and, therefore,
Cij∑m
j=1 Cij

=
Cij∑m
j=1 Cij

1
c
1
c

= TQij

for c = Eµ(e−βU )

Linearization

Denote by TP the transition matrix associated with {xt} for the sets {A1, . . . , Am}.
Let us now consider the case of a small change in potential, i.e., U = εW with
a small ε > 0. Then Taylor expansion around ε = 0 for the weighting factor
w(t, x) yields the update formula

TQij = TPij + εLPij +O(ε2),

LPij =
1

µQ(Ai)

√
β

2

∫
Ai

Ex

[
1Aj (xt)

∫ t

0

∇W (xs) dBs

]
g(x)µ(x) dx,(9)

µQ(Ai) =

∫
Ai

g(x)µ(x)dx.

Here LQij still depends on ε via g and µQ; however, we do not linearize these
factors for two reasons: (1) linearization may destroy the normalization of the
measure and (2) these factors can be computed pointwise and thus rather effi-
ciently. By exchanging groups of atoms in the molecular system under consid-
eration one gets a specific update potential U . Then U = W and evaluation of
CP gives the sensitivity of the MSM matrix to the exchange.

Generalization

Next we consider the Langevin equation with position q and associated momenta
p:

dq = M−1p

dp =
[
−∇V (q) + γp

]
dt+ σdBt,

where γ is the friction coefficient. The state of the system is x = (q, p) with
invariant measure

µ(x) =
1

Z
exp

(
−β

2

[
pTM−1p+ V (q)

])
, β =

2γ

σ2
.
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In this case the above reweighting argument for replacing V by V + U goes as
before. This time the definition of ξ is(

0 0
0 σ

) (
ξq
ξp

)
=

(
0

−∇U(q)

)
.

Thus our reweighting formula (7) remains unchanged, now with

wj(t, x) = Ex

[
1Aj

(xt) exp

(
−
∫ t

0

ξp,s · dBs −
1

2

∫ t

0

|ξp,s|2ds
)]

ξp,s =

√
β

2
· ∇U(qs).

Further generalization to other forms of molecular dynamics, like thermostat-
ted MD, is possible by incorporating the respective environmental forces as an
stochastic forcing.

4 Algorithmic Realization and Numerical Ex-
periments

In the following, we compare different approximations of the transition ma-
trix TQ related to (3b). One form of approximation of TQ is through direct
computation, i.e., based on (6) using trajectories of (3b); we will denote this
approximation by TQ,dir. The other one results from the reweighting scheme
based on trajectories of (3a), denoted by TQ,reweighted. We explain both ap-
proximation types now in detail. In the following, Xt, xt denote d-dimensional
random variables.

Direct computation To gain TQ,dir, we compute a long trajectory (Xi)i=0,...,n−1
for the perturbed dynamics (3b) by performing n timesteps of size dt using
the Euler-Maruyama discretization

Xi+1 = Xi − (∇V (Xi) +∇U(Xi)) dt+ σ
√
dt ηi

of (3b), where ηi = (η1i , . . . , η
d
i ) are independent d-dimensional random

variables distributed due to the standard normal distribution. This trajec-
tory is chopped into pieces of length l yieldingM subtrajectories (Xk

i )i=1,...,l :=
(Xlk, . . . , Xl(k+1)−1) for k = 0, . . . ,M−1. If the trajectory is long enough,

it can be assumed that the points X0
1 , . . . , X

M−1
1 are distributed according

to µQ and we can calculate TQ,dir by

CDij =

M−1∑
k=0

1Ai(X
k
1 )1Aj (Xk

l )

and

TQ,dirij =
CDij∑m
i=1 C

D
ij

. (10)
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Reweighted computation To gain TQ,reweighted, we compute a long trajec-
tory (xi)i=0,...,n−1 for the unperturbed dynamics (3a) by performing n
timesteps of size dt using the Euler-Maruyama discretization

xi+1 = xi − (∇V (xi)) dt+ σ
√
dt ηi

of (3a), where ηi = (η1i , . . . , η
d
i ) are independent d-dimensional random

variables distributed due to the standard normal distribution. Again, this
trajectory is chopped into pieces of length l yielding M subtrajectories
(xki )i=1,...,l := (xlk, . . . , xl(k+1)−1) for k = 0, . . . ,M − 1. If the trajec-

tory is long enough, it can be assumed that the points x01, . . . , x
M−1
1 are

distributed according to µ. Now, we have to approximate for each subtra-
jectory (xki )i=1,...,l the term Mt(x

k
l ) with t = l ·dt. This is done as follows.

First, for

R =

∫ t

0

ξs dBs +
1

2

∫ t

0

|ξs|2ds =

d∑
i=1

(∫ t

0

ξs(i) dB
i
s

)
+

1

2

∫ t

0

|ξs|2ds

(11)

we haveMt = exp (−R), whereBs =
(
B1
s , . . . , B

d
s

)
denotes the d-dimensional

Brownian Motion with independent components. Each term
∫ t
0
ξs(i) dB

i
s

can be approximated by using the Euler-Maruyama discretization by∫ t

0

ξs(i) dB
i
s ≈ ril − ri0,

where

ri0 = xk1

rij+1 = rij + [ξ(rij)(i)] η
i
(kl+j)

√
dt

and
ξ(r) = σ−1∇U(r).

Therefore, for each trajectory (xki )i=1,...,l we calculate the weight wk by

rk =

d∑
i=1

(ril − ri0) +
1

2

l∑
i=1

|ξ(xki )|2 dt

wk = exp(−rk). (12)

Finally, we can compute TQ,reweighted by

Cwij =

M−1∑
k=0

1Ai(x
k
1)1Aj (xkl )wk g̃(xk1) (13)

and

TQ,reweightedij =
Cwij∑m
i=1 C

w
ij

.
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It should be obvious that we also can use the trajectory (xi)i=0,...,n−1 for
construction of an approximation TP,dir of TP in direct analogy of the
construction of TQ,dir based on (Xi)i=0,...,n−1.

Three remarks may be in order:

• The trajectory (Xi)i=0,...,n−1 for the perturbed energy landscape V + U
is computed solely for allowing comparisons; in real-world applications of
the reweighting scheme only trajectory information for the unperturbed
energy landscape V will be computed and the perturbing force field ∇U
is evaluated solely as part of the weight calculations.

• The decomposition of the available long trajectory into subtrajectories
makes it obvious how to use the reweighting scheme if only an ensemble
of short trajectories instead of one long trajectory is given.

• It is essential that the random vector ηi which is used to compute (xi) is
also used to compute the weights Mt.

4.1 Double Well Potential

We consider the two one-dimensional potentials

V (x) = (x2 − 1)2, U(x) = ax,

and want to see whether our reweighting formula allows to reproduce the tilting
of the double well potential V by the linear perturbation U . For our experiments
we chose a = −0.75 which results in the potentials shown in Fig. 1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

Figure 1: Double well potentials V (red, solid) and V + U (blue, dashed).

Setting β = 2.5, we apply the above scheme for the constrcution of TQ,reweighted

and compute a trajectory with n = 4 · 107 timesteps of size dt = 0.001 which
we chop into pieces of length l = 400, yielding M = 100.000 subtrajectories
(xki )i=1...l k = 0, . . . ,M − 1. This long-term trajectory samples the interval
S = [−1.6, 1.6]. Next, we compute the MSM matrices TQ,reweighted and TP,dir

for t = 0.4 and based on the following complete decomposition A1, . . . , Am of S:
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eigenvalues TP,dir TQ,dir TQ,reweighted TQ,linear TQ,no−weights

λ3 0.227 0.189 0.190 0.200 0.221
λ2 0.947 0.886 0.884 0.895 0.949

Table 1: Results for the double well potential: Second and third eigenvalues of
the different MSM matrix approximation introduced in the text.

Ai = [xi, xi + ∆x), xi = −1.6 + (i− 1)∆x for i = 1, . . . ,m = 32 and ∆x = 0.1.
For further comparison, we compute the following alternative approximations
of TQ:

• We ignore the reweighting factor wk in (13), i.e., we use (13) with wk = 1
to get TQ,no−weights.

• We replace the reweighting factor wk in (13) by their linearized counter-

parts as of (9) and get TQ,linear = TPij + εLQij .

For the sole sake of comparison, we compute TQ,dir based on a trajectory of the
perturbed dynamics (3b) with same length and sampling parameters, and for
the same complete decomposition.

Table 1 gives the second and third eigenvalues of the respective transition
matrices. We observe

• that our the leading eigenvalues of the reweighted transition matrix TQ,reweightedij

are almost identical with the dominant ones of TQ,dir; this demonstrates
the validity of our formula (7),

• that the dominant eigenvalues of the linearization TQ,linear are close (but

not very close) to those of the full reweighted transition matrix TQ,reweightedij ,

• that TQ,no−weights has dominant eigenvalues similar to those of TP but
rather different from those of TQ,reweightedij and TQ,dir; this shows that the
weighting factors wk have a decisive impact on the transition probabilities,

Figure 2 shows the invariant measure of the respective approximations, com-
pared to the measures computed based on the exact formula µP = exp(−βV )/Z
and µQ = exp(−β(V + U))/ZQ. We observe that the invariant measure of the
respective approximations are almost identical with small deviation resulting
from the sampling and discretization errors.

4.2 Splitting a metastable set

Here we stick with the double well potential considered above but choose U
differently,

U(x) = a exp
(
− 1

2s2
(x+ 1)2

)
,
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Figure 2: Results for the double well potential. Left: Invariant measures µP
(blue, solid) compared to µ computed via µ = µTP based on the approximate
MSM matrix TP (red, dashed). Right: Invariant measures µQ (blue, solid)
compared to µ̃ computed via µ̃ = µ̃TQ,reweighted based on the approximate
MSM matrix TQ,reweighted (red, dashed).

with a = 1.25, and s = 0.05. This results in the situation shown in Fig. 3, where
the left well of V is split by the peak of U such that V +U has three instead of
two metastable sets.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

x

Figure 3: Split double well potential: Potentials V (red, solid) and V +U (blue,
dashed).

We perform the same algorithmic procedure as above (this time with t = 0.15
and ∆x = 0.05), resulting in the MSM matrices TP,dir, TQ,dir, and TQ,reweighted.
The second and third eigenvalues of these matrices are shown in Table 2. We
observe that the creation of the third metastable well induces the third eigen-
value to move closer to the second one. This is reproduced by the reweighting
with sufficient (but not perfect) accuracy. The reason for the deviation between
the third eigenvalues of TQ,dir and TQ,reweighted lies in the following sampling
problem: Around x = −1 the perturbation potential U exhibits steep gradi-
ents. However, the second and third eigenvectors of TQ,dir and TQ,reweighted

essentially agree, see Fig. 4.

11



eigenvalues TP,dir TQ,dir TQ,reweighted

λ3 0.603 0.900 0.881
λ2 0.993 0.991 0.990

Table 2: Results for the split double well potential: Second and third eigenvalues
of the different MSM matrix approximation.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

0

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1

0

1

x

Figure 4: Results for the split double well potential: Second (red) and third (red)
eigenvector of transition matrix TQ,dir (top panel) and TQ,reweighted (bottom
panel).

4.3 From Butane to Pentane

In the following, it is shown how to apply the result for different dimensions.
Consider the one dimensional, 2π-periodic, artificial potential VB : R → R of
the dihedral angles for butane given by

VB(x) = a+ b cos(x) + c cos2(x) + d cos3(x)

with a=2.0567, b=-4.0567, c=0.3133, d=6.4267 and the two dimensional, 2π-
periodic, artificial potential VP : R2 → R2 of the dihedral angles for pentane
given by

VP (x, y) = VB(x) + VB(y)

as shown in Figure 5.
To obtain the transition matrix from pentane by simulations of butane we

use the Girsanov transformation with V (x, y) = VB(x) and U(x, y) = VP (x, y)−
VB(x). We still denote with TQ the transition matrix associated with {Xt} from

(3b), which depends on V and U . If we choose σ =

(
σ1 0
0 σ1

)
with σ2

1 = 2β−1
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Figure 5: Left: Boltzmann distribution exp(−βVB(x)) on [0, 2π)2. Right: Boltz-
mann distribution exp(−βVP (x)) on [0, 2π)2.

and β = 0.5, then, when replacing xt =

(
yt
zt

)
, (3a) becomes

dyt =
∂VB(yt)

∂x
+ σ1dB

1
t (14)

dzt = σ1dB
2
t . (15)

This shows that yt and zt can be solved independently. Therefore, in case a rep-
resentative trajectory for butane has already been computed, we only need one
trajectory of the Brownian motion to compute the approximation TQ,reweighted

for pentane. This Brownian motion is completely independent of yt.
This time, we compute such a representative trajectory by performing n =

4 · 108 timesteps of size dt = 0.001 using the Euler-Maryama discretization

yi+1 = yi −∇V (yi) dt+ σ1
√
dt η1i ,

zi+1 = zi + σ1
√
dt η2i .

This yields two statistically independent discrete trajectory yi, zi, i = 0, . . . , 4 ·
108 − 1 plotted in Figure 6.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

Figure 6: Left: Trajectory yt mod 2π. Right: Trajectory zt mod 2π.

This long trajectory is chopped into pieces of length l = 400, yielding M =
10.000.000 subtrajectories (yki )i=1,...,l, (zki )i=1,...,l, k = 0, . . . ,M − 1.
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eigenvalues λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
TQ,weighted 0.952 0.947 0.946 0.941 0.902 0.896 0.895 0.890 0.648
TQ,dir 0.952 0.952 0.946 0.946 0.906 0.901 0.900 0.895 0.643
TP,dir 0.952 0.946 0.637 0.642 0.443 0.441 0.251 0.252 0.121

Table 3: From butane to pentane: First dominating eigenvalues of TQ,reweighted

, TQ,dir and TP,dir, where TP,dir denotes the directly computed transition ma-
trix for butane according to the process yt from VB by dividing [0, 2π) into 30
sets.

We divide [0, 2π) into 30 sets Ai = [xi, xi + ∆x), i = 1, . . . , 30 with xi =
(i − 1)∆x and ∆x = 2π/30. Then, we partition [0, 2π)2 into 900 sets Bij with
Bij = Ai × Aj for i, j = 1, . . . , 30 and use the above scheme to construct
TQ,reweighted.

In addition we compute an analogous trajectory for pentane and construct
TQ,dir based on the same complete partition (Bij), again just for the sake of
comparison.

The eigenvalues given in Table 3 and the eigenvector for eigenvalue λ = 1
given in Figure 7 show that the weighted transition matrix TQ,reweighted is a
good approximation of TQ,dir.

From Butane to Pentane with MD in atomic resolution

In the preceding section, we have seen that we can go from butane to pentane
simply by simulating a Brownian motion on the interval [0, 2π]. For MD in full
atomic resolution, a Brownian motion on R3n will not be helpful. However,
we can proceed as follows. First, we need to split the molecule in two parts
that coincide in one single atom, see Figure 8. Then, for each part we can
simulate an independent MD trajectory in full atomic resolution. If we merge
both trajectories together, the resulting trajectory can be seen as the outcome
of the original potential without taking into account the interactions between
both parts. To be more precise, let us label the position in state space of the
atoms from pentane at time step i by x1i , . . . , x

17
i ∈ R3. Then we are going to fix

the yellow atom 13 in state space, for example x13i = (0, 0, 0) for all i ∈ N (see
Figure 8). The first part of pentane which consists now of 12 atom positions can
be evaluated by a force field V1 which only takes into account the interactions
of the first 13 atoms where the 13th atom is fixed:x

1
i+1
...

x12i+1

 = −∇V1

 x1i
...
x12i

 dt+ σ

 dB1
i

...
dB12

i

 .
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Analogously we can evaluate the second part byx
14
i+1
...

x17i+1

 = −∇V2

x
14
i
...
x17i

 dt+ σ

dB
14
i

...
dB17

i

 .

Altogether, denoting z as

zi :=



x1i
...
x12i
x14i

...
x17i


and V (zi) := V1

 x1i
...
x12i

+ V2

x
14
i
...
x17i



we can consider z as the solution of the stochastic differential equation

dzt = −∇V (zt) dt+ σdBt. (16)

If U(z) denotes the potential that takes into account the interactions between
(x1, . . . , x12) and (x14, . . . , x17), we can reformulate the problem how to con-
struct the MSM of

dzt = −∇(V (zt) + U(zt)) dt+ σdBt

if only trajectories of (16) are available. This can be solved with our the ma-
chinery already presented above. Calculating the weights will be much more
efficient than calculation new trajectories, because we only have to consider
the interactions between both molecular parts for calculating the corresponding
weights.

5 Conclusion

In this article we have assumed that an MSM for a certain molecular system
has already been constructed based on a long-term molecular trajectory (or an
ensemble of shorter ones). We have shown how this trajectory can be re-used to
also compute the MSM of a perturbed molecular system by reweighting. The un-
derlying reweighting scheme has been derived for diffusive molecular dynamics.
including Langevin dynamics. As a by-product linearization of the reweight-
ing provides hints for a sensitivity analysis of molecular systems according to
small force field or parameter changes. We have illustrated the performance of
the reweighting scheme for simple test cases including one where the perturbed
energy landscape exhibits additional wells and an alchemical transformation of
butane to pentane where the dimension of the state space is changed. In the
numerical experiment from butane to pentane it turned out that for long tra-
jectories one has to take a sufficiently small time step, in order to get acceptable
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weights. The term rk of the weight wk = exp(−rk) consists of two components:
A stochastic integral and a classical positive integral along the trajectory, see
Equation (11). The second term increases according to the length of the trajec-
tory and the perturbation U , which causes the weights to tend to zero for long
trajectories. However, the first term can reverse this effect, but may demand a
small time step to obtain a sufficient approximation of the Ito integral.

The presented method shares the fundamental difficulties of all reweighting
schemes: (1) If the perturbation of the molecular system is ”too large” then the
reweighting might yield inaccurate results since the reweighting renders most
of the original trajectories statistically irrelevant, or (2) if the perturbation of
the molecular force field is not local then the reweighting may be computation-
ally very expensive since then the computation of the new trajectory weights
along the trajectories require too expensive force field evaluations. Within these
restrictions the application of the scheme in typical MD cases will produce con-
siderably less computational effort than the from scratch construction of an
additional MSM for the perturbed molecular system. This article outlines how
to perform such realistic MD applications while being restricted to the fun-
damentals; details of an algorithmic realization presently are topic of further
investigations.
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Figure 7: Top: Invariant measures µ1 computed via µ1 = µ1T
Q,reweighted.

Bottom: Invariant measures µ2 computed via µ2 = µ2T
Q,dir.
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Figure 8: Left: Splitting pentane in two parts. Right: Merged parts.
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