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1 INTRODUCTION

In the past decades the progress of laser technology has been immense.
This has led to the development of many new methods for measurement
or control of processes in Science and Engineering, especially in Chemistry
and Solid—State Physics, using various forms of interaction between laser
fields and matter. As one of these methods, the laser—induced excitation
of molecules is playing an increasingly important role in modern Chemistry.
Particularly the usage of ultrashort laser pulses is a promising new technique
for controlling or accelerating chemical reactions. One key problem in this
new field is the simulation of the dynamical reaction of a molecule subjected
to infrared laser pulses. This key problem is treated herein: The aim is the
construction of an efficient simulation algorithm. In order to characterize the
specific challenge of this problem class we begin with an illustration of the
basic ideas of “laser—assisted” Chemistry. After this we shortly deal with the
numerical difficulties arising in this context. Finally, we describe the basic
pattern of the new algorithm to be presented herein.

INlustration of Chemical Problem Class

We consider a typical chemical reaction process: a well-balanced mixture of
substances is heated so that the thermally activated substances mainly react
towards the desired product. The expression “mainly” is inserted in order to
underline the fact that thermal activation is a deeply statistical effect. The
activated substances react towards all possible products due to the situation
dependent statistical probabilities, not only towards the desired one.

Let us choose a particularly simple example: the dissociation of HOD. The
two different dissociation processes

HOD = H' + OD~ and HOD = D' + OH~ (1.1)

take place with nearly equal probabilities. Now, assume we are only inter-
ested in OD™ anions. Unfortunately, chemical standard methods do not allow
us to suppress the second dissociation. Is there any alternative way to control
the dissociation selectively? A promising idea is to control the behaviour of
the HOD-molecules by external, well-designed laser-radiation: First, use in-
frared radiation to selectively excite a well-chosen vibration of the OH-bond
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in HOD. Second, induce the desired dissociation by use of UV-radiation in
order to shift the vibrationally excited (HO)* D into an instable, delocalized
electronic state:

HOD % (HO)»*'D Y% H* + OD- (1.2)

In this situation the previously excited OH-bond is the first to break up so
that, indeed, the dissociation D* + OH~™ is suppressed. Thus, (1.2) is a
selective dissociation process which, indeed, was experimentally realized and
is well-understood theoretically (cf. [23][27][47]).

The basic idea of this “2-photon—process” (1.2) can be transferred to many
similar situations (e.g. selective isomerization [32]). Its second step, the UV—
photoexcitation process, is well established whereas its first step, the selective
vibrational excitation, is a subject of much actual interest. This first step can
only be realized on a very short — femto- or picosecond — time scale because
otherwise the local energy concentration in the OH-bond is blurred out by
the processes of intramolecular energy redistribution [3].

The possibility of a selective control of molecules by ultrashort laser pulses
was first documented by Zewail in 1980 [49]. Since then, important ex-
perimental and theoretical work has been done in this field which, due to
the short time scale, is usually called “Femto—Chemistry” or, more descrip-
tive, “Laser—Assisted Molecular Control”. It is part of one key problem in
chemistry (“Understanding Chemical Reactivity”) which, according to [39],
is topic ‘A’ in the list of chemical research frontiers with outstanding priority.

Obviously, the task of finding a vibrational excitation of highest selectivity
can be seen as an optimization problem which, for the time being, may be
formulated as: “Find the form of laser radiation which causes an optimally
selective excitation of the molecule”. An experimental optimization is nearly
impossible or at least far too expensive. This shows to be an exemplary case
in which simulation calculations are absolutely necessary. In this paper, as
a contribution to the theoretical investigation (cf. [10]28][30][36][35][32]) of
this simulation task, an algorithm for the fast simulation of laser—-molecule
interaction is presented.



Numerical Challenge of Problem Class

The mathematical model for the description and simulation of selective vi-
brational excitation is based on Quantum Theory, i.e. on the time-dependent
Schrodinger equation. In Section 2.1 the details of the quantum theoretical
derivation of this model are presented. It is shown that the Schriodinger
equation can be reduced to an ODE of the form

i0c = (Q+ f(t) cos(wt) Vi) e, (1.3)

with ¢ € C", a diagonal matrix Q = diag(Q1,...,Qum) € R™™" and a
symmetric one V, € R™"™. The function f : [0,7] C RT — R* models the
laser pulse shape and is slowly varying in comparison with the light oscillation
itself (represented by cos(wt)).

Only the knowledge of the values |cx(#)|? of the solution ¢(t) = (cx(t))k=1..n
of (1.3) is of quantum chemical relevance. These values are called “popula-
tions of the vibrational states £ = 1...n”. Their computational determi-
nation is the inner problem of the optimization problem named above and,
numerically, its most difficult part. In this thesis we are only interested in a
highly efficient algorithm for solving this inner problem. Thus, to us, the op-
timization problem is of minor importance. Details concerning the quantum
chemical framework of the optimization problem can be found in Section 5,
along with a detailed motivation of some chemical real life applications.

But which difficulties are to be faced when solving the inner problem?
Can’t we simply use a standard integrator for solving (1.3), simultaneously
computing the populations? The solutions of (1.3) show multifrequency,
highly oscillatory behaviour including fast oscillations with large amplitudes.
These fast oscillations confine the stepsizes of any numerical integrator.
Hence, our first simple idea causes tremendous computational effort. Never-
theless, exactly this method is used in most previous investigations concern-
ing our inner problem.

If we compute the populations |cg(t)|? of the highly oscillatory solutions
we also observe fast oscillations but with small amplitudes only. Particularly
in our kind of applications, it is sufficient to know the running average of the
populations

t+T/2

(AdlesP) (1) = = [ Jewl(s)ds (1.4
T

t—T/2
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because the fast oscillations are only small deviations from the “general evo-
lution” (Ar|cx|?)(t) of the populations. Obviously, the choice of the average
length T determines which oscillations are “fast” and which not.

The problem of highly oscillatory behaviour of ODEs has received a con-
siderable amount of attention in Numerical Mathematics: there are several
different filtering and averaging techniques which directly compute smooth
approximations of a considered highly oscillatory solution. As shown in Sec-
tion 2.2, all these smoothing techniques unfortunately are inappropriate for
our inner problem for two main reasons: First, in all these methods it is
basically assumed that fast oscillations of the solution of an ODE are caused
by large imaginary eigenvalues of the Jacobian of the right hand side of this
ODE. This assumption arises from the study of autonomous ODEs. Here,
however, we deal with the specific nonautonomous ODE (1.3). Its oscillatory
behaviour is deeply transient and cannot be characterized sufficiently by the
eigenvalues (see Section 2.2 for details). Second, because of the general non—
identity |Arck|? # Ar|ck|?, we cannot compute the averaged populations
Ar|ci|? from the smoothed solutions Arcy. Thus, the direct smoothing of
the solutions is no way to solve our “inner problem”.

In addition, there are different “non—smoothing” techniques for solving
highly oscillatory ODEs (see Section 2.2 again). But they also are either
inappropriate or not efficient enough for our kind of problem (e.g. Floquet
methods [7], the Fourier—Galerkin method [45], or the quasi-envelope method
(19][38)).

Ck

Basic Pattern of Quasiresonant Smoothing Algorithms

The algorithm presented herein determines the averaged populations Ax|cy|?
by computing a smooth solution of an ODE which results from (1.3) by
“deliberate sparsing” of V.. Therefore it is called a “smoothing algorithm”.
Its basic idea is the quasiresonant approximation which motivates the named
variation of V,, and can shortly be explained as follows:

The observation of so—called “transition conditions” constitutes a basic
physical insight into molecule-light interaction processes. With respect to
the notations used in (1.3) this insight can be formulated in the following
way: “The interaction between the populations |ck|? and |¢|* can only be
important for the evolution of the populations if the frequency w fulfills the



11

resonant transition condition |Qr — Q| &~ w.” In (1.3) the interaction be-
tween |cx|? and |¢|? is represented by the elements Vi, and Vi of V... Now,
let (k,[) be an index pair for which the transition condition is broken. Can
we then set Vi, = V) = 0 without changing the evolution of the popula-
tions? The answer is: yes, if we do it carefully. This is the basis of the
quasiresonance-idea allowing the construction of a quasiresonant smoothing
(QRS) algorithm which is explained in more detail in Section 3. Therein, it
is demonstrated that the quasiresonance idea allows a deliberate sparsing of
V. controlled by a natural splitting parameter §. It is further shown that,
indeed, a well-chosen § leads to smooth solutions d(t) and smooth popula-
tions |dg(t)|? &~ (Ar|ck|?)(t) simultaneously. Thus, this method is useful to
obtain an extreme speedup in the solution of the inner problem.

Yet, in the pure QRS—method the crucial point is the choice of the right
sparsing parameter §. If § is too small, wrong results are obtained. If it is too
large, the efficiency can be drastically reduced. In order to get a reliable algo-
rithm, one must be prepared to adapt the parameter § according to the local
variation of the solution. Thus, the construction of an adaptive QRS—version
is necessary which determines § step by step according to an accuracy re-
quirement. This is successfully done in Section 4: an error estimation scheme
is constructed which allows us to study the effect of different § directly on the
smoothed populations in the next step. Since ¢ controls the sparsing of V,,
the background of this error estimator is perturbation analysis of the effect
of the elements of V_, on the smoothed populations. In Section 4 all these in-
vestigations lead to the construction of an adaptive QRS—-algorithm (AQRS).

a

Ck,

Finally, in Section 5, the performance of AQRS is demonstrated in several
real life applications from “Laser—Assisted Molecular Control”. We observe
that, applied to these test problems, AQRS works reliably, smoothes the
populations, and leads to speedup factors of the order of 10? in most test
problems. The limits of its smoothing properties are demonstrated, as well.
In cases of extremely high laser field strengths AQRS does not smooth the
populations but still works reliably — and efficiently. The general advantage
of AQRS, independent of any dynamic smoothing effect, is the reduction of
the number of operations needed in each evaluation of the right hand side of
(1.3): AQRS reduces the usual O(n?) complexity to just O(n).
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2 PRELIMINARY CONSIDERATIONS

This section contains contributions to two different questions which should
shortly be discussed before we start a detailed presentation of the promised
AQRS-algorithm. First, we give a short description of the quantum theo-
retical framework of the considered kind of laser-molecule interaction (Sec-
tion 2.1). In particular, some quantum theoretical aspects of model prepa-
ration and the corresponding interpretation context are explained, and a
derivation of the basic dynamical equation is given.

Second, we deal with the question of whether a new simulation technique
for solving the derived model equations is really necessary? Indeed, there
are several well-known numerical methods which we could take for promis-
ing simulation techniques in our context. In Section 2.2 these methods are
discussed in order to analyse their applicability and concrete efficiency with
respect to our kind of problem.

2.1 DESCRIPTION OF PROBLEM CLASS
2.1.1 Basic Quantum Chemical Equations

The physical systems we consider are samples of dilute gas molecules sub-
jected to monochromatic infrared laser radiation. We are only interested in
the population dynamics of a set of discrete states during the interaction of
a single molecule with the external laser field.

In this situation the standard method used is the electric dipole approxi-
mation: writing the molecular Hamiltonian in the form

H = Hy+ H (2.1)
H = —ji-E
where Hj is the pure molecular Hamiltonian, neglecting the field E(t) il is
the molecular dipole moment operator. All operators are Hermitian and act

on a separable Hilbert space H with scalar product < -|- >. For monochro-
matic radiation we may write

E(t) = f(t) coswt (2.3)
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with the pulse form function f, which in comparison with the light oscillations
coswt is a slowly varying function. To describe a constant light source we
may choose f = const; in order to model a short laser pulse, f may denote
the laser shape function.

We consider the spectrum o of Hy to be given. In most real life applications
o includes a discrete part D = {e;| k € J} with J C N and a nonempty
subinterval C' of R. Let ¢ be eigenfunction to €, € D:

Hypr = €k r, Yk € J.

The key for the description of the population dynamics is the time depen-
dent Schrodinger equation:

how = Hy. (2.4)
Let us use a Galerkin approximation of ¢(¢) € H in the linear subspace
H, := span{p, k=1...n}, n € N fixed (2.5)

of H, i.e. assume

n

U(t) = Y crlt) ¢ (2.6)

k=1
With this eigenfunction expansion of 1) Schrodinger’s equation is projected
into H, and can be transferred into an ODE—form:

By use of the assumption E(t)||7 with - E = f(t) cos(wt) pu we deduce
from (2.4):

thoy < prlv > = < @glihop >
< @p|Hop > — f(t)cos(wt) < prlpuyp > .

Inserting (2.6) gives
ihoie = (Q + f(t)cos(wt) Vo) ¢ (2.7)

In (2.7) ¢ = (¢x) € C™ is the n-dimensional (complex) vector of the expansion
coefficients, 2 the real and diagonal matrix of the molecular eigenvalues
Q = diag(er,...,€,) and V., = (Vi) the dipole matrix defined by:

Vi = — <@ulpor>. (2.8)
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Thus, according to (2.6), a solution ¢(t) of (2.7) gives us an approximation
1(t) of the solution of Schrédinger’s equation (2.4) up to a certain projection
error. Certainly one has to analyse the quality of the approximation, i.e. its
projection error, but this is not the task of this paper (see Remark 1). It
rather is a part of the task of model preparation in each single application.
Herein the concrete model is always assumed to be given, including a choice
of a n € N which leads to a sufficiently small projection error and including
the specification of the data (f,w, ), V., ). Thus, once and for all, let us re-
place the Schriodinger equation (2.4) as the basic equation of evolution by the
finite ODE system (2.7) and the solution (¢) of (2.4) by the eigenfunction
expansion in (2.6), i.e. by the solution ¢(t) of (2.7).

Normally (2.7) is transformed to dimensionless units by the substitutions:

~ €y — €1 ~ 1
t = ——t d Q = Q 2.9
h an €y — €71 ( )
- 1 h
V., = V., and @ = d
€9 — €1 €2 — €
from which results
idic = (Q + f(f) cos(@l) Vo) e (2.10)

For simplicity the old symbols without tildes are held, so that the final
standard form of the basic equation of motion is written

10 = (2 + V() cos(wt)) ¢, (2.11)
with
Vit) = Vi S0

Q = diag(w,...,wn)
€k

W = .
€2 — €

Equation (2.11) can be transferred into the so—called “interaction picture”
(which plays a central role in Section 4.1) by the wunitary transformation

b(t) = exp(iQt) c(t) (2.12)
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The result is the interaction picture version of (2.11)

i0b = e V(t) cos(wt) e b, (2.13)

Physically the expansion coefficients are not observable. Only the popula-
tions pgi of the molecular eigenstates are measurable. They are given by the
probabilities

pee(t) = [ <ol > = |al? (2.14)

and are the diagonal elements of the probability matriz

p(t) = c(t) ® &), (2.15)

In (2.15) ¢ denotes the complex conjugate of ¢ and ® the common tensor
multiplication which, using vectors a and b, is defined as

(CL X b)kl = ayb. (216)

Hence it is more than sufficient for our task to know the expansion coeffi-
cients ¢(t) = (cg(t)) or any unitary transformed set of coefficients ¢ = U ¢
(unitary U with U*U = 1), for example the interaction picture coefficients b
(the solution of (2.13)).

Equation (2.11) should be completed by introducing an initial condition.
From the assumption that at t = 0 all systems occupy the initial state s we
get

lej*(0) = 4y (2.17)

which (by phase choice) leads to the initial condition

c;(0) = ™ty = %(1+i) Ssjs V3. (2.18)

In most cases the initial state is the ground state s = 1 of the quantum
system.



2.1 Description of Problem Class 17

2.1.2 Physical Interpretation

In Quantum Theory a system is a statistical sample of a lot of identically
prepared subsystems (in our case each subsystem is a single molecule in in-
teraction with the external field). The solution 1 of the Schrédinger equation
(2.4) is called the state of the considered system while an eigenfunction ¢y
of Hy is called a molecular eigenstate with energy €. If a system remains in
a molecular eigenstate, i.e.

P(t) = @r exp <z%f> (2.19)

the system is said to allow a sharp energy measurement (with result € at
each subsystem). In this case only one expansion coefficient ¢, is different
from zero (¢;(t) = exp(ieg/fit)oy). If there are some nonvanishing ¢ in
(2.6) for the system’s state 1), the system is interpreted to occupy a mizture of
eigenstates simultaneously. Hence on the basis of the statistical interpretation
of Quantum Theory the value

prk(t) = | <0(t), 01> 7 (2.20)

is interpreted as the probability of the fact that a system which is in state
1) occupies the molecular eigenstate ¢j. This probability is equal to the
rate of subsystems at which the energy €, can be measured at this moment.
Therefore a pgi is often called the occupation rate or simply population of
(eigen)state k. In this manner of speaking our basic equation (2.11) de-
scribes the dynamics of the interactions between the (occupations of the)
(eigen)states.

Let us use the following overloaded notation:
For a matrix A € C™", A = (Au)
diagA = (Apr...Am) (2.21)
denotes the n-tupel of the diagonal elements of A, while for a n-tupel (z1 ... z,)
diag (x1...2,) = A € C™" (2.22)

denotes the diagonal matrix A with diagonal elements x;. In the following
this notation is only used in situations in which “confusion is impossible”.
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Thus in the herein considered systems the physical observables which we
are interested in are

diagp(t) = (Jerf*(t).. [eal(t)) (2.23)
These values are called probabilities. Therefore they all should fulfil the
property
pek(t) = |en2(t) € [0,1] (2.24)
for all t > 0. Indeed this is the fact. It follows from the conservation property
of the Schrodinger equation

O <), v(t)>=0 (2.25)

and its corresponding formulation

Sl () = X Jel?(0) = 1. (2.26)

REMARK 1. Above, the dynamical evolution of our quantum system has
been projected into the linear subspace

H, = span{p, k=1...n} (2.27)

of the considered Hilbert space H. We have already noted that the projection
error of this Galerkin method has to be analysed before we can take the
evolution of the populations |cy(t)|? in H,, as sufficient approximations of the
exact populations | < ¥(t)|px > |? computed using the exact solution () of
Schrodinger’s equation. The quality of the Galerkin approximations is not
discussed in this paper because it is another aspect of work and belongs to
the task of model-preparation in each single application. But we can give a
short experience—based statement which shows the physical background of
the usefulness of the considered Galerkin approximations. For field strengths
which are not too large an essential occupation of “states” x € /D = C'is
“nearly impossible” if the initial state s lies “deep enough”:

formostl€ J: |e;—etw| < m%1|65 —ztuwl. (2.28)
TE

Therefore we can hope to find a subspace H, C span{py, k € J}, i.e. a
n € N, with sufficient approximation properties.
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2.1.3 Application Problems

The application problems considered herein may be separated into two classes:
1. selective excitation of vibrational states and
2. selective configuration changes (selective isomerizations).

For both problems the modelling can be done as explained above with (2.11)
as equation of motion for the populations. A detailed description of the
chemical background of the single examples and of the respective specification
of the data V, Q, w and f is given in Section 5. In general, the form of
the laser shape function f must not be fixed. But in this work the model for
the laser pulses always are sin’ shapes (adopting the choice in the chemical
literature), written in the dimensionless time coordinate of (2.11) as

ft) = E, sin’(nt) (2.29)

with n = #ﬁm describing a pulse length 7 of e.g. one picosecond. As

briefly mentioned above the essential property of f is its slow variation with
respect to the light frequency w which can be expressed as

N < w. (2.30)

Now, assume c/“)(t) to be the solution of

i0e = (Q+ f(t) cos(wt) V) c, ¢;(0) = (1+1) 05 V5 (2.31)

Sl

for given (f,w) and fixed (2,V,,) and let
PI(r) = ding(c!) @ e )(r) (2:32)

be the corresponding final populations. In Section 5 we will see that some im-
portant chemical applications require a solution of the following optimization
problem: determine a laser pulse (f,w) which leads to an optimal population
lci(7)]? of a given target state [. The parameters of this variational problem
are clearly fixed if we assume that e.g. the pulse form function f is given by
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(2.29):

“Determine (E,,w) so that |c¢"*)(r)]? = max/.

Obviously this optimization problem includes the evaluation of the popu-
lations | (t)[? of (2.31) as an inner problem. In this text we deal with
the inner problem mainly: an adaptive algorithm is presented which is con-
structed for use as a highly efficient integrator for the solution of the inner
problem. But we have to remember that there is sometimes a demand for
solving the optimization problem, too. In particular this is important for the
discussion in Subsection 2.2.6.

REMARK 2. Our molecule-light interaction model does not include the
essential process of energy redistribution. For the two classes of application
problems named this fact restricts the range of validity of our model to laser
pulse lengths 7 in the range of a few picoseconds. The period T' = 27 /w of the
used infrared light is about 10°-10% femtoseconds. Hence the light-periods
per pulse length 7/7T" is mostly of the order of 10%.

2.1.4 Tllustrative Example

In Section 2.2 we will analyse the difficulties which arise from a numerical
solution of (2.11). Therefore, an illustrative example is needed, i.e. a set of
concrete data for (f,w,Q, V,,). For this purpose a relatively simple example
is used, named “the OH test problem”: concrete data are computed for a
sample of one—dimensional anharmonic oscillators modelling the vibrational
degrees of freedom of single OH-bonds. Remember: the vibrational excita-
tion of an OH-bond was already considered as part of a selective dissociation
process of HOD in the introduction.

More details and a description of the chemical scope in which this problem
appears can be found in Section 5. For the time being, we are content with
Figure 1 which exemplifies the structure of the solution ¢(t) of (2.11) and
(2.13) for our test problem "OH’.
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Fic. 1. Real- and imaginary part of the coeflicient ¢; of a solution ¢ of (2.11) versus
time in picoseconds. The data (f,w, Q, V) are taken from a real life test problem 'OH’,
see Table II. In this case we have w; = 0 for the first component of Q. Thus, the graphs
simultaneously show the coefficient by = exp(—iwit)cq of the solution b of (2.13). Note

the highly oscillatory character of the solutions.
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2.2 COLLECTION OF COMPETING APPROACHES

Figure 1 demonstrates that the solutions of (2.11) can be characterized as
highly oscillatory. There are several methods constructed by mathemati-
cians and physicists which deal with the task of efficiently solving ODEs
with highly oscillatory solutions. In this section these methods are collected
and evaluated with regard to our specific class of problems (solving (2.11):
the inner problem; the optimization problem). For this purpose we will go
through some details of these methods. We will observe that each of them is
based on certain construction principles, each depending on basic properties
of a specific class of ODEs. In the following our task is to analyse whether
the properties of our kind of problem meet the requirements of these con-
struction principles or not, thus deciding whether the corresponding methods
are appropriate or inappropriate for solving our kind of problem. The per-
formance (and efficiency) of appropriate methods is discussed and compared
with that of the algorithm AQRS to be presented later on.

2.2.1 Inapplicability of Linear Smoothing Techniques

First, the basic idea of a common class of filtering and averaging techniques,
herein called “linear smoothing techniques”, should shortly be explained, i.e.
the idea of spectral analysis of the right hand side of the considered ODE. For
this purpose, let us first consider the linear, autonomous ODE (our “model
problem”)

i0iu = Au, u(to) = ugp (2.33)

with a constant coefficient matrix A € R™ "™, which is assumed to be sym-
metric. This is often written as a second order ODE

a” + A%z = 0, z(0) = Re(up), 2’(0) = AIm(uy). (2.34)
We can find an orthogonal C' € R™ ™ with

A = CACT = diag(\i,...,\), i eigenvalue of A (2.35)
and the solution of (2.33) is

u(t) = CT exp(—iA(t—ty)) Cug (2.36)
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Thus u can simply be characterized as highly oscillatory (or not) by checking
the eigenvalues \; of the linear right hand side of (2.33):

Ji: |N|>p  ~  whighly oscillatory. (2.37)

There are different linear transformations & = Pu which allow us to reduce
(2.33) to an ODE
iou = CTPCa (2.38)

with smooth, i.e. slowly varying solutions. For example take P = Pg or
P = PA with

. . 0 : |N| >
PC = dlag(pl7"'ap”)7 with pi = { 1 I)\I <Z}

= (2.39)
Py = diag(qi,---,qn), with ¢ = %%2)

The solution of (2.38) with P = P, is the running average (Aru)(t) of the
original solution u of (2.33)

) +T/2
(Aru)(t) = / u(s) ds. (2.40)

t—T/2
The corresponding method is called “averaging”. The solution corresponding
to Pc is the slowly oscillating part of the sum (2.36); this method is called
“filtering”. These solutions are smooth (i.e. not highly oscillatory) and can
therefore be numerically integrated more easily than u itself. We may draw

the following conclusion:

In (2.33) the knowledge of the spectrum of A contains the whole structure
of oscillating behaviour of its solution u. This total information can be used
to essentially reduce the complexity of numerical evaluations of properties of
u (e.g. its running average).

This leads us to a general basic idea: use spectral information to facilitate
numerical computations concerning ODEs with oscillating solutions. We can
take the usage of averaging (P,) or filtering (Pr) as examples for techniques
based on this idea; let us call them “linear smoothing techniques”.
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Up to now, we have only analysed (2.33). But we are not really interested in
linear, autonomous ODEs. Thus, are linear smoothing techniques applicable
to nonlinear, nonautonomous ODEs? Linear smoothers are restricted to the
significance of the eigenvalues )\;, i.e. they rely on the possibility of a (local)
“linearization” of the considered ODE.

iy = f(ty) (a)
d Linearize

iOhu = A(t)u, A(t)sym. (b)
A Freeze Coefficients

iy = Awu, Asym. (¢)
+ Diagonalize

W0y = Au (d)

F1c. 2. The standard paradigm of characterization of fast oscillations: reduction to a

collection of scalar model problems.

Figure 2 summarizes the standard paradigm for the reduction of a non-
linear, nonautonomous ODE to linear model problems like (2.33). We begin
with the ODE (a) of dimension n with differentiable f. The first step is to
linearize (a) by assuming that we can find a substitution y(t) = yo(t) + u(t)
with small v and a particular solution yo of (a) (e.g. its slow oscillating
part). Now we pass from (a) to (b) by neglecting terms in «? and denoting
the Jacobian of f in t as

A(t) = 0, f(t.pol0)). (2.41)

The second step is to freeze the coefficients in A by setting A = A(to) for
some tg. The idea here is that the problem of characterization of oscilla-
tion in solutions of ODEs is the imaginary—azis—analogy to the problem of
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characterization of stability and stiffness. Assuming A is diagonalizable, the
third step is diagonalization as shown above. By this standard paradigm the
characterization of oscillatory behaviour of nonlinear ODEs is transformed
to the above discussed case of linear model problems, analogous to the char-
acterization of stiffness and stability.

In [24] some difficulties of the stiffness—standard paradigm are collected
which can be identically transferred into a criticism of the presented oscillation—
standard—paradigm. There is one key argument: In general, oscillatory be-
haviour is a deeply transient phenomenon and the significance of the eigen-
values cannot be extended to a sufficiently large finite time scale. But even
this extension to a sufficiently large time scale is essential because smooth-
ing or averaging are deeply nonlocal operations (cf. (2.40)). This mainly
criticizes the second step “Freeze Coefficients” in Figure 2: The spectrum of
A = A(ty) cannot characterize the oscillatory behaviour of (b) in [to, Lo + T
if A(t) itself oscillates (or: is of fast variation) in [to,to + T']. Take

10w = Qu — f(t) cos(wt)u, aeR QeR (2.42)

as a simple example. Its solution

u(t) = u(0) exp (z / f(s) cos(ws)ds — iQt) (2.43)

u(0) exp (z (g sin(wt) — Qt)) it i) =a  (2.44)

contains double—trigonometric functions, e.g.

cos (a sme_wt)) = cos (« sinc(wt) t) (2.45)
with time-dependent frequencies, e.g. n(t) = « sinc(wt). The spectral in-
formation (eigenvalue of the Jacobian: A(to) = @ — a cos(wtyp)) is oscillating
and characterizes the oscillating solution only in a period [to, to + T] with
T < 2 /w. If these T are not sufficiently large, i.e. if w is comparatively
large, we cannot construct a smoothing technique via use of spectral infor-
mation only (cf. Figure 3).
But the class of herein considered ODEs (2.11)

10 = (Q + f(t)cos(wt) V) ¢



26 2 Preliminary Considerations

1 4

0.8 -

0.6 -

o.4- h

0.2 h

ol 4

0.2} 4

_o0.al 4

0.6+ 4

0.8} 4

Ak 4

a B ES I ) 1 2 3 a
F1a. 3. The dense line represents a typical highly oscillatory solution (2.43) of the ODE
(2.42). The dotted line shows the corresponding (real part cos((€2—a)t) of the) solution of
i0yu = ( — a)u which represents the characterization of the oscillatory behaviour which
would have been made using the eigenvalue A\(0) = Q — « of the Jacobian in ¢y = 0.
Note that this dotted line only approximates the dense line (= real solution) within an
extremely small neighborhood of tg = 0 (which is not sufficiently large for means of
any nonlocal averaging operation). Compare the dense line with Figure 1 and note the

structural similarities of the oscillatory behaviour.

definitely belongs to the case of model problem (2.42). Indeed, (2.42) is
just the one dimensional version of (2.11) and w is comparatively large in
the above sense. Thus, (2.11) leaves the domain of the applicability of the
oscillation—standard—paradigm — its solutions show multifrequency highly
oscillatory behaviour. Furthermore we see no hope in the use of linear trans-
formations like (2.39) to efficiently solve our problem (2.11):

Linear smoothing techniques are bound to fail in our kind of problem.

This conclusion is also supported by the fact that it would simply be useless
to compute the smoothed solution of (2.11) or (2.13) in a considered case: Let
¢(t) be the solution of (2.11) or (2.13) and assume that we know (Azck)(?).
Unfortunately, we have to recognize that in general

(Arlenl?) (1) # [(Are) (O, (2.46)
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i.e. that smoothing the solution ¢(t) leads to totally wrong smoothed pop-
ulations (Ar|cg|?)(t) (cf. Figure 6 on page 45). But, lately, we are only
interested in these smoothed populations! Because of this, (Arck)(t) (or
similarly smoothed data) is of no interest in our scope.

Surely, we can try to avoid this problem by using an ODE directly for the
populations. For the probability matrix p = ¢ ® ¢ we easily derive

i0p = [Q+ f(t)coswtV, , p], p(0) = o ® 7T (2.47)

with the matrix-commutator [A, B] := AB — BA. The averaged trajecto-
ries Arp of (2.47) would directly give us the averaged populations Ar|cy|* =
Arprr of (2.11). Despite of this, we cannot get an increase in efficiency if
we integrate (2.47) instead of (2.11), because (2.47) is an ODE of dimension
n? if (2.11) is of dimension n. But perhaps, we can learn how to construct
(nonlinear) smoothing techniques for (2.11) if we formally analyse the effects
of linear smoothing techniques on (2.47)! Unfortunately, the right hand side
of (2.47) is highly oscillating, just as the right hand side of (2.11) is. This
leads to the same difficulties as mentioned above. Thus, linear smoothers are
inappropriate also for studying the effect of averaging on (2.47).

Thus, our final conclusion is:

‘Lmear smoothing techniques are inappropriate for our kind of problem. ‘

And we add: the whole smoothing idea (linear as well as nonlinear tech-
niques) must be transformed into an alternative concept: “Compute smoothed
populations instead of smoothed solutions”. In Section 3 QRS is introduced
as being, firstly, based on this new concept and, secondly, as being an exam-
ple for a nonlinear smoothing technique.

In addition to the initially described linear smoothing technique there are
several other approaches which use (a-priori given) spectral information. Al-
together they are also inappropriate to our kind of problem, again for one or
both of the above listed reasons:

First, let us continue discussing alternative smoothing methods. Several
authors have proposed algorithms to solve oscillating problems by computing
running averages of the solutions y(t) of specific ODEs. On one hand, there
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are alternative linear smoothing techniques like that documented in [34].
Therein a family of stable, A-dependent discretizations is worked out for
computing Ar(y)(t) for nearly linear problems

Gy + Ny = [f(y.t) (2.48)

with a small perturbation f.

On the other hand, indeed, there are nonlinear averaging techniques: In
Russian (Celestial) Mechanics the time averaging idea (cf. Ag) has been
worked out for multifrequency systems using perturbation theory and/or
resonance relations between the frequencies (cf. [1], [4], [37], and the work
cited therein). But the Russian authors only pay attention to the running
average of the solutions because they are dealing with problems from (Celes-
tial) Mechanics. Thus, these techniques also are inappropriate for our kind
of problem, again because of our smoothing problem (2.46).

Second, there are lots of investigations which propose different discretiza-
tion schemes intended to efficiently deal with highly oscillatory behaviour.
Altogether they are linear methods in the sense that they need a single, a-
priori known frequency which dominates the oscillatory behaviour. Thus,
these methods are only appropriate for nearly linear problems of type (2.48).

For these methods the restriction to the existence of a dominating fre-
quency is already necessary for conceptual reasons. Two examples may
demonstrate this:

One class of methods is based on construction principles like “principle of
minimal phase lag” (cf. [8][9][44]) or “principle of coherence” (cf. [12][13]).
These principles demand discretization schemes which “conserve the con-
stant phase of the oscillation” or which are of the sort for which “successive
approximations do not contradict each other”. Both demands can only be
formulated if there is something like a “constant phase” caused by the dom-
inating frequency.

Since Implicit Runge-Kutta (IRK) methods are in some sense equivalent
to Collocation Methods (cf. [21], p. 206) they exactly integrate algebraic
polynomials of given degree. In analogy one can construct discretization
schemes which exactly integrate appropriate trigonometric polynomials as it
is done in [18], for example. But even in this case a main frequency A must
be known in advance and the method is bounded to problems corresponding
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to (2.48), too.

2.2.2  Damping Properties of Implicit Runge-Kutta Methods

It is known, from the analysis of stiffness and stability of ODEs, that some
(Semi-)Implicit Runge-Kutta (IRK) schemes show damping properties for
fast oscillations (cf. [22], p. 43). Can we use these damping properties for
our purpose?

In Mechanical Engineering it is well known that some mechanical systems
with highly oscillatory solutions and strong potential forces F' = *512 VU
remain close to a manifold of “smooth” solutions. In [31], Ch. Lubich has
shown that this manifold is associated with the limit ¢ — 0 and that specific
IRK methods, using stepsizes larger than an ¢y, approximate such smooth so-
lutions. Thus lower stepsize bounds in Implicit Runge-Kutta (IRK) methods
can be used for efficiently solving these mechanical systems.

In some sense there is an analogy between this investigation and the
AQRS—-algorithm which will be presented later on: We can rewrite (2.13)
as

10:b, = @ zl: Vi (x,fl + CB];Z) by, bk(O) :Ck(O)

(2.49)
il = —(wp — w + w) of, r5(0) =1

If you integrate (2.49) using e.g. the semi-implicit IRK method EULSIM
with lower stepsize bound and exploiting its damping properties for large
frequencies you obtain the “die out” of all frequencies |wy — w; +w| > p and
smooth solutions for b. Equivalently we can cancel the corresponding dipole
elements:

Vi =0 o lwr — wi £ w| > p. (2.50)

Indeed, this is very similar to the fundamental idea of AQRS (cf. Section 3).
But we will neither construct nor discuss AQRS on the basis of this concept,
because

e the blow—up of (2.13) to (2.49) is not necessary,

e in the class of problems (2.13) there is no analogous parameter € which
allows an asymptotical analysis like that given for mechanical systems,
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e in the previous subsection we have seen that we may not ask for the
smoothed coefficients b, but for the smoothed populations py.

2.2.3 Multirevolution Methods

For astronomers one key problem is the accurate computation of the long time
behaviour of periodic orbits of celestial bodies including small perturbations
of their exact periodicity by others. This problem has become more and
more important since the long term behaviour of artificial satellites had to be
computed. Originally, multirevolution methods [20][48] were introduced for
use as fast integrators concerning the problem. But for these methods first,
little theoretical justification has been attempted, and second, some physical
a-priori knowledge about the orbits is needed. R. Gear and L. Petzold took
some central ideas of multirevolution methods, constructed a more general
quasi—envelope method, and gave a theoretical justification of it [19][38]. We
will observe that this method is no competitor of AQRS — not in the class
of problems (2.11) considered herein. But it should be explained shortly
because it can be taken as a model for all methods which use information
from one oscillation to jump over a few oscillations in one single integration
step:

The central idea of the quasi-envelope method is shown in Figure 4: As-
sume the solution y(t) of

y = f(ya t)> y(O) =Y (2'51)

to be highly oscillatory but nearly periodic. In this situation one disclaims
following each oscillation of y but integrates a quasi—envelope only. If the
solution is nearly periodic, this quasi—envelope is of slow variation in time
t and can therefore be integrated using very large time steps (“large” in
comparison to those which must be chosen for an integration of y itself). The
following inexact but short and formal introduction schematically explains
how Gear and Petzold propose to compute the quasi—envelope of (2.51):

Assume that we know the evolution T'(¢) of the “quasi—period” of y. Then
we can use a substitution, which is implicitly given by

ts+1) = t(s) + T(t(s)), (2.52)
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t t+T

Fic. 4. For explaining the idea of the quasi—envelope: On an oscillating curve some points
are marked which all have the same “phase of oscillation”: they mark the beginning and
end of each approximate period of the oscillation (period ~ T'). The smooth line connecting

them is called the quasi—envelope.

for transforming y to a nearly 1-periodic function y:
y(s) = y(t(s)) (2.53)
We find

gls+1) —gls) = y(t(s)+T(t(s))) — y(t(s)) = g(s,9)
t(s+1)—t(s) = T(t(s))

which we can understand as equations of the explicit Euler discretization
scheme for the ODE

0.7 = g(5,9) (2.54)
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if § is slowly varying with s (slow variation in each interval [s, s + 1]). The
solution ¢ of (2.54) is called the quasi-envelope of y and only (2.54) is in-
tegrated. Each evaluation of g(s,-) requires the integration of (2.51) with
initial condition y(¢(s)) = §(s) over one period T'(¢(s)). But if § varies very
slowly in s we can expect stepsizes As > 1. If we start at ¢ = 0 with
y(0) = yo and need y; = y(t1) so that [0, ;] includes many (m > 1) periods
of y we should

1. Compute g(m); this requires k < m g-evaluations, i.e. integrations of
(2.51) over one period.

2. Integrate (2.51) with initial condition y(T'(t(m))) = g(m) in [T (¢(m)), t1].

Thus, the quasi-envelope method will be more efficient (i.e. k will be in-
creasingly smaller than m) the more slowly ¢ varies with s. Surely one can
observe that the origin of this method is somewhat like computation of satel-
lite orbits: in these problems, ¥ is of very slow variation.

Inapplicability of the method to our kind of problem. It is easy to observe
that any trajectory which is oscillating but not nearly periodic will cause
difficulties for the method. These difficulties can be removable or not —
this depends on the character of the oscillations. In the best case, there
is a quasi—period T'(t) which is not nearly constant (not T'(¢) ~ T') but the
corresponding quasi—envelope  is slowly varying. Then the method will work
at a high level of efficiency only if the determination of T'(¢) causes only small
computational effort. In the worst case, y is highly oscillatory but there is
no quasi—period 7T'(¢) which makes § a slowly varying function. Then the
method looses its gain in efficiency because there are too many evaluations
of g.

Figure 1 (see page 21) demonstrates that the solution of our test problem
"OH’ is an example for the worst case: there is no quasi—period T'(¢) which
would lead to a reasonable, slowly varying quasi-envelope for the solutions
shown in Figure 1; it would rather make sense to work with two different
quasi—envelopes for this kind of solution. Indeed, the character of the oscil-
lations of the solutions is similar to that shown in Figure 1 in all real life
problems (2.11) which have come to my knowledge. Thus, unfortunately,
also the quasi—envelope method is inappropriate for our kind of problem.
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2.2.4 Fourier-Galerkin Method

If there is multifrequency oscillatory behaviour, the use of the Fourier trans-
formation (FT) often is a good choice. Indeed, there is some work applying
FT to nonlinear and nonautonomous ODEs with periodic solutions [45][46].
For explaining this idea it should directly be applied to our basic equation
(2.11). Therefore we first must symmetrically extend the solution ¢ of (2.11)
from [0, 7] to [0,27] for making it a periodic function. For simplicity as-
sume (2.29) and w = mn = mnx /T with m € N. Now insert the Fourier
representation of ¢

c(t) = D exp(iknt) (2.55)

keZ

into (2.11) and you get an infinite but linear system of equations determining
the coefficients v, € C". The ~y are the expansion coefficients of ¢ in the
orthonormal basis exp(ikn-) of the space P, of 2r—periodic L'-functions.
Hence we speak about a Galerkin Method if we drop all 4; with |I|] > N in
the computed linear equation, thus approximating ¢ in the subspace

Py = span{exp(ikn-), k€ N|k| < N}
The result is a finite system of linear equations
Fy =0 (2.56)

with v = (Y11, 71,25 -+, Yims V2,15 - -, Yvn) . € CV™ and a complex Nn x Nn
matrix F. In [45] it is shown that (2.56) has an unique solution ¥¥) and it
is discussed how the Galerkin approximation

dM) = > exp(iknt) (2.57)
k<N

approximates the exact solution c.

If ¢ always is close to a “smooth” curve & you can expect that ) already
approximates ¢ for small N. Unfortunately, in our case we must not smooth
the solution ¢ of (2.11) but only the corresponding populations. Test calcu-
lations have shown that we definitely have to consider the frequencies up to
2w to get a sufficiently good approximation of the populations. Because of
Remark 2 it is w/n = 10? (order of magnitude) and we have to take at least
N = 10%
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However, this FT-Galerkin Method obviously needs O ( (nN)?) operations
in comparison to AQRS which only needs O(kn®) operations with an « €
[1,2] and with the number of integration steps k = 103.

Thus our conclusion is: this Fourier-Galerkin method is appropriate in
principle, but inefficient with respect to our problems.

2.2.5 Quasiresonant Approximations

The quasiresonant approximation (often called rotating wave approzimation)
has received a considerable amount of attention in physics and chemistry.
Herein only the work of M. Quack is mentioned (cf. [41] and [42] and the
references cited therein). Quack has applied the more exact term weak field
quasiresonant approzimation (WFQRA) to this method. WFQRA was dis-
cussed as an efficient method for solving equation (2.11) in the case of pure
coherent, monochromatic light, i.e. for constant f(t) = E,. The follow-
ing short introduction to WFQRA demonstrates that it should be seen as a
purely heuristical method with less theoretical justification:

With Dy := wy, —w; — sgn(wy — wl)w we can rewrite the interaction picture
version (2.13) of our basic equation as

i O, = %f(t) zn: Vit b €xp(i Dpiet) (1 4+ exp(2isgn(Dyi) wt)), (2.58)

k=1
From this we come to
1 n
iatbm == if(t) Z mG: bk eXP(i D’mkt)? (259)

k=1

by neglecting the high frequency term exp(2isgn(Dyx)wt). According to
[42] this is valid (in the sense of getting a “good approximation”) if the two
conditions

fO) Vo <€ w, (2.60)
Dy <€ w (2.61)

are fulfilled.
We can introduce the level scheme integer Ni by defining it as that integer
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which fulfills
) w w
wry = Nww + x, with — 5 < < 5" (2.62)
Hence equation (2.59) gets the form
1 )
i0bm = 3 FOC Y Vi by e lommoelt (2.63)
k

|Nm—Ng |=1

+ Z mG bk ez (zm—zk)t e:l:zwt
k
|Nm —Nj |=0,2

+  terms with e*™“! m =23 ...).

Now a second approximation is made by removing all terms with |N,,, — Ny| #
1. Following [42] again, this shall approximately be valid if the conditions
(2.60) and (2.61) are fulfilled. Let us do this approximation and write

1

10by, = if(t) i Bk b exp(i (T — xx)t) (2.64)
k=1

with the sparse dipole matrix

_ mG . |Nm — Nk| =1
Bt = { 0 : otherwise (2.65)
Finally this can be brought into an interesting form by use of the unitary

transformation

X = diag(zy,...,z,) (2.66)
a = exp(—iXt)b. (2.67)

We obtain a system
i0w = (X + %f(t)B) a (2.68)

which in the case f(t) = E, is a system with constant coefficients.

For some cases this is a very useful and reasonable method. But condition
(2.61) is nearly never fulfilled. This reminds us that we should use WFQRA
carefully. Indeed, WFQRA is successful in some of the herein considered
applications but obtains totally wrong results in most cases. Moreover, if
successful it is less efficient in comparison to AQRS (for details see [43]).
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2.2.6 Floquet—Analysis

As an introduction let us state a specialized version of the general Floquet—
Theorem:

THEOREM 1. Let be T € R* and let A(t) € R™™ be symmetric for all

t > 0 and T—periodic. In addition let U(t,ty) be the time propagation semi-
group of

i0c = A(t) c (2.69)

(i.e. ¢(t) = Ult,to)co is a solution of (2.69) for each c(ty) € ¢g € C™™).

Then there exists a T—periodic function P : Rt — C™" and a symmetric
matriz G € R™" with

U(t,0) = P(t) exp(—=iGt), Vt>0 (2.70)

As a consequence of the periodicity of P we find
exp(—iGT) = U(T,0) (2.71)

so that the spectrum of G can easily be evaluated by diagonalization of
U(T,0), but only modulo 27r/T! Assume that ¢ are the eigenvalues of G
computed from (2.71). The evaluation can be made definite by the condition
e € |[—m/T,w/T]. These definite eigenvalues ¢, € [—7/T,w/T| are called
Floquet quasienergies of (2.69).

This is the starting point of the ideas of Holthaus et al. [5][7][6][29] for
an analysis of the structure of the above mentioned optimization task (cf.
page 20). It is useful to follow their thoughts through a few details:

Let us discuss (2.11) with the specific form function f(t) = F

10 = (Q + F cos(wt) V) ¢, (2.72)

remember 2 = diag(wi, ..., w,) and let us denote the quasienergies of (2.72)
as ex(F). For F' = 0 we simply find

(ex(0) = wi) mod w. (2.73)
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One can find an interval F = [0, Fp] in which each state k is uniquely related
to a curve g, : F = R, F — g4,(F) with (e4(0) = wy) mod w.
Let us now fix two states k, [ as initial state (k) and final state (1) and let
us choose the laser frequency
~ WE — Wi

o= — for a certain m € Z. (2.74)
m

We can determine m in a way that makes £,(0) = £;(0) degenerate quasiener-
gies. For this case and under some specific assumptions Holthaus et al. have

found the following result for the solution ¢/(t) of
1
10 = (Q+ f(t) cos(@t) V) ¢, ¢;(0) = —2(1—|—i) de; Vi. (2.75)

They showed that

)P = sin® (% [ ) — atsw) dt>. (2.76)

(=}

The most central of their specific assumptions is

max [£(0] < Fo (2.77)
te[0,7]
which guarantees the knowledge for computing (2.76). Thus, equation (2.76)
directly gives the population of the target state [, if the curves e (+) and &(-)
and the value F|, are already evaluated. In this case also the optimization
problem is simply solved by determining f due to

T

| @) — ag@) d = . (2.78)

0

Surely all this is interesting for analytical reasons (interpretation of the op-
timization problem as a search for constructive resonances between Floquet
states), but: What can we learn from this previous investigation about the
comparative efficiencies of Floquet Analysis and AQRS? To answer this ques-
tion sufficiently we have to name some properties of the AQRS—algorithm in
anticipation of its concrete construction. The answer is split into four items
because we have to distinguish between efficiency with respect to the opti-
mization task and with respect to an inner problem:
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e For the determination of the curves ¢;(-) an evaluation of U(T,0) is

necessary in some points F,. Each computation of U(T,0) for a given
F requires the solution of the ODE

i0U(t,0) = (O + F cos(@t) Vo) U(t,0), U(0,0) = 1 (2.79)

in [0, 7], an ODE with dimension n? (n = number of states). In contrast
to this AQRS needs the integration of a sparsed version of (2.11) in the
interval [0, 7] to determine |¢;(7)|? for given (f,w). For picosecond laser
pulses 7/T is of the order of 10? (see Remark 2).

Thus, for large n a determination of U(T, 0) is tremendously inefficient
compared with an AQRS—integration on [0, 7].

For small n the fact should be stated that an AQRS-integration on
[0, 7] results in about the same computational effort as an integration
of (2.11) on [0, 7] with an efficient but usual integrator. For this reason
the evaluation of U(T,0) (=n integrations of (2.11) on [0,7]) again is
more expansive than any AQRS—integration.

This means that AQRS is much more efficient than Floquet Analysis
with respect to the solution of a single inner problem.

Can we, from this statement regarding the higher efficiency of AQRS
in solving a single inner problem, make the further step in showing that
AQRS is also more efficient in the solution of the optimization task? If
the form of the laser shape f is fixed in some way, e.g.

ft) = E, sin’*(nt), with given n = T (2.80)
T

the optimization problem is based on a low—dimensional space (here
one-dimensional: variation only in F,, @ is fixed) and only a few inner
problems must be solved, i.e. only a few AQRS—integrations are needed
for determining the optimum. Indeed, this is the fact in all investi-
gations concerning the optimization problem in real life applications
(see Section 5) which have come to my knowledge. But, particularly
for large n, these few AQRS—integrations surely are cheaper than the
number of U(T,0)—computations which are at least necessary in the
Floquet method for construction of the curves e(-).
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Thus, AQRS also is more efficient than Floquet Analysis with respect
to the solution of optimization problems with fixed laser shapes.

e If you want to extend the optimization problem to the study of the
effect of various different form functions, Floquet Analysis would be a
wonderful tool: after the evaluations of the curves ¢;(+) the effect of the
variations can be studied without any additional integrations. Thus,
this extended task can be solved more efficiently by use of Floquet
Analysis than by use of AQRS.

e Later on we will see that the scope in which AQRS is of high efficiency
is limited by the condition that max . |f(t)| may not be too large.
Exactly the same limitation holds for the use of Floquet Analysis in
the form of condition (2.77). But since the Floquet Analysis presented
herein simply doesn’t work at all if this condition is broken, AQRS may
be regarded, in comparison, to still work well, although with a smaller
gain in efficiency.

2.2.7 Concluding Remarks

Many of the herein collected competing methods are inappropriate for appli-
cation to our kind of problem, in particular all linear smoothing techniques,
all proposed specific discretization schemes, the WFQRA method and the
quasi—envelope method. Others are appropriate in principle, but not effi-
cient enough: the Fourier-Galerkin method, the damping method from Sub-
section 2.2.2 and the Floquet method (at least for the inner problem and for
the “customary” optimization problem).

So, there is a real need to develop a new approach in view of both, efficiency
and reliability with respect to the problems considered herein.



40 3 Basic Ideas of Quasiresonant Smoothing

3 BaAsic IDEAS OF QUASIRESONANT SMOOTHING

The following Section introduces the basic concept of “quasiresonant smooth-
ing”. The subsections follow the way this idea was initially found. This way
joins the effects of two basic ideas

1. The solutions of the considered class of problems can be characterized
as highly oscillatory. We ask for an integration tool which solves (2.11)
or (2.13) with a remarkable gain in computational efficiency. Thus,
we must look for an algorithm which computes only smooth solutions,
i.e. solutions without “fast” oscillations. This smoothness would allow
an integrator to make much larger time steps.

2. A basic physical interpretation of the dynamics described by (2.11)
leads to the expectation that a certain sparsing process of the con-
sidered dipole matrix V., will not change the main characteristics of
the considered solution. These main characteristics appear to be the
averaged populations (the running average of diagp).

It is demonstrated that these basic ideas are linked by the fact that, indeed,
the named sparsing process also leads to the required smoothness of the
solutions: A well-controlled sparsing process causes a damping of the high
frequency oscillations and leads to smooth solutions from which the averaged
populations can be computed. The introduction of a sparsing or damping
parameter ¢ allows the construction of a class of basic algorithms QRS(¢). For
this Section the pursued way ends in a study of the properties and problems

of QRS(6).

3.1 REDUCTION OF COMPUTATIONAL COMPLEXITY BY SMOOTHING

In this section we consider the task of computing the populations of the dy-
namical equation (2.11) (or (2.13)) for given data V., Q, w, and f (i.e. the
“inner problem” from page 19). Let us assume, that we want to solve this
equation by use of a numerical integrator. So our first question is: How can
we find a computationally cheap solution of our inner problem using integra-
tors.
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To answer this we may take a closer look to Fig. 5 on page 44, which shows
data from an accurate solution of (2.11) for our real life test problem 'OH’
(cf. Section 2.1.4). All over Section 3 test problem ‘OH’ is used to explain
the basic pattern of QRS.

On the left top of Fig. 5 we see the population py; = |¢1]? of the ground
state (k = 1) dying out and the evolution of the desired full occupation
ps5(7) = 1 of the 5th state. On the left bottom of Fig. 5, as an example
for the trajectories of the solution of the considered problem, the imaginary
part of the first expansion coefficient ¢(t) is shown. Most of the high com-
putational complexity of numerically computing this solution is caused by
the oscillations with high frequencies and large amplitudes: they force the
integrator to choose very small time steps.

Physically, namely for the class of real life applications considered herein,
the knowledge of the running average Arpyi of the populations prx = |cx|?
would be sufficient. This average may be defined by introducing the average—
operator Ar:

DEFINITION 1. For integrable functions f : [to,t1] CR — Cand a T >0
the (time) average operator is defined by

(Ar f) (1) = % [ sy, viefto+Ta] (3.1)

ifto+ T < t1. For matriz—valued, componentwisely integrable maps

M : [to,t1] — C™™ the corresponding average operator is defined simply
componentunse.

Let c(t) be the solution of (2.11) with given data V., Q, w, and f and p(t)
the corresponding probability matriz according to (2.15). In addition let ¢
and p be extended tot < 0 by

1 .
Chlyeo = 7§(I+z)5ks Vke{l...n} (3.2)

(s: initial state) and the corresponding extension of p. The data from the
solution of (2.11), in which we are physically interested only, is given by
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diag 7 (t) where 7 is the smoothed probability matriz

7(t) = (Arp)t) = 7 [ (c@e)s)ds (3.3)

with T big enough in comparison with the fast oscillation’s periods.

The effect of this averaging can again be seen in Fig. 5: At the right top
we see a section from the left top picture showing pss(¢) and its local time
average Arpss(t); at the right bottom the smoothed probabilities m1; and 755
corresponding to py; and pss are shown.

But let us return to our question of how to find an appropriate integrator
for solving the inner problem efficiently. We want to construct an algorithm
which computes the averaged populations m, = Agrpgi instead of the oscil-
latory populations pgr. We will do this in a way which can be described by
the following reformulation of the inner problem:

Replace equation (2.11) by a similar one for which the populations q(t)
(computed from its solution) are good approximations of the averaged popu-
lations mx(t) of (2.11).

Later on this ’similar one’ will be called smoothed equation. We should call
qrr @ good approximation of mgr = Arpr if at least for some norm:

| Arqee — Arpek|| < tol, (3.4)

for a given tolerance tol > 0.

But there is a central smoothing difficulty: Using an integrator for solving
the smoothed equation we can only realize the expected gain in efficiency
if one condition is fulfilled: the solution of the smoothed equation must be
smooth, i.e. it must allow large stepsizes of the integrator. Maybe, one firstly
assumes that these smooth solutions should be the averaged solutions Azc
of (2.11). But unfortunately, the solutions of the smoothed equation must
be different from Arc if we want to approzvimate Ar|ck)?, because in general
we have

AT|Ck|2 7& |ATCk|2. (35)



3.1 Reduction of Computational Complexity by Smoothing 43

An impressive example for this inequality is given in Figure 6 (see page 45).
For a simple formal example set ¢ (t) = exp(int). Then, we observe

(ArleP)(t) = 1 # sinc(ED) = |Arai (1),

Thus, we can put our task in a more concrete form:

Construct a smoothed equation with a smooth solution d(t) so that the corre-
sponding populations qrx = |di|* are good approzimations of the populations
pre of (2.11) in the sense of (3.4).

In addition to all this we may remember the fact that the solution b of
the interaction picture version (2.13) of equation (2.11) can also be used to
compute the required probabilities:

diag p(t) = diag ((b ® l_))(t)) (3.6)

As a consequence of this we can also try to find a smoothed equation to (2.13)
instead to (2.11). Again this leads to the same central smoothing difficulty,
but, in fact, it has got some advantages.

For simplicity let us make the following agreement: The averaged or
smoothed outlines of the basic magnitudes are denoted using the Greek letter
instead of the Latin letter which denotes the original magnitude. Hence we
write v = Arc, 8 = Arb, or m = Arp.

In the next section a heuristical solution of the reformulated problem will
be presented.
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Fi1c. 5. For explaining the smoothing idea, data from the solution of our test problem
"OH’ are shown here: At the left top two populations corresponding to the exact solution
of the considered problems are shown (drawn against time in picoseconds). The right top
picture shows a section of one of these populations and its local time average. For showing
one of the really computed trajectories of the considered problem at the left bottom the
highly oscillatory imaginary part of the corresponding expansion coefficients ¢; is drawn.
The right bottom picture shows the averaged outlines of the populations from the left top

one.
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Fic. 6. This Figure demonstrates that it cannot be sufficient to smooth the coefficients
directly. It shows trajectories from the test problem ‘OH’: On the left side from top
to bottom the coefficients Re(c1), Im(c1) and the corresponding population p1; = |e;]?
of the exact solution of the problem. On the right side the corresponding smoothed
coefficients Re(y1) and Im(71) and the smoothed population Re(y1)2 + Im(v;)? which we

would compute from them. Note the essential difference between the both populations.
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3.2 PHYSICAL MOTIVATION OF QRS

There are several ways to give a formal heuristic which leads to the basic
idea of QRS. Herein the shortest one is used. It is presented only for the
reason of introducing the method and will not appear in the later sections.
In the first part the reason for the name “quasiresonant” cannot be seen. It
results from the physical interpretation which closes this section.

Cutting smoothers We consider functions from

L = {f:R—R| f(t) =) oy explint) with nx € R,a € C}. (3.7)
%

For simplification of the heuristical reasoning let us assume that in the fol-
lowing the considered functions are such sums of exp(i-)-terms from L. For
i > 0 the operation

G,:L— 1L with
f(t) =" ap exp(imet)  —

(G NH(t) = Xk: . exp(ingt) (3.8)

Ing1<p

can be called a ’cutting smoother’.

Heuristical smoothing. Using coswt = (e’ + =) and the definition
Amp = wm — wg
one can rewrite our dynamical equation (2.13) (interaction picture):

1 n ) .
iatbm _ 5f(t) Z ‘/mk bk (61 (A tw)t + et (Amk—w)t) ) (39)
k=1

We are interested in the effect of changes in the dipole matrix. Therefore,
we consider the following class of equations:

1 n . )
i = (1) 3 (A et Bmtl AL elBmimalt) gy (3.10)
k=1
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If we assume dj, € L, di(t) = Zal(k) exp(imt), one obtains from (3.10) by
7

integration:
dn(t) = d ) ® (At 1t 4+ AT 3.11
m(t) = dm(to) + 9 Y q ( mk dmier T Apg mk,l) (3.11)
k=1 1
with
+ _ i - t
Irrzk,l(t7t0) - 777[+Amkiw eXp(Z(??l+Amk:|:W)t)|t0. (312)

We want the d,,, to be smooth trajectories, i.e. d,, = G,d,, shall hold for
a small y1. Then, at least, all 15, with A, £+ w > p must vanish. The
simplest choice in order to realize this is

Vi - |Amk:l:w|<5w

+ —
Au0) = { 0 otherwise (3.13)

where 6 > 0 is a free parameter.

This observation already gives the rather simple idea of the QRS(d) algo-
rithm (Quasi-Resonant Smoothing):

e Choose ¢ heuristically by physical insight (see below).
e For this 6 compute the solution d of (3.10) with data (3.13).

e take |d,,|? as an approximation for the smoothed populations |b,,|* =
|cm|? to be computed from (2.11) or (2.13).

Because of later advantages let us introduce another notation of the smoothed
equations (3.10):

e write Vz = AT(d) to denote the origin of V5 in V. (at this point the
notation V,, itself can be understood) and

e use the variables b5 to denote the solution of (3.10) for given §; this
reflects that the solutions of (3.10) are discussed as approximations of
the solutions of the basic equation (2.11) (respectively (3.9)).
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Because of Vj = A~(§) we may write as another version of (3.10):

i Obsm = % £ ké e A e ) R TR G R EY
This is the “smoothed equation” of QRS(J).

Interpretation. A basic physical insight into molecule-light interaction
processes is the observation of so—called transition conditions: The interac-
tion between states k and [ can only be important for the evolution of the
populations if the frequency @ fulfills the “resonant” first order transition
condition

Each present frequency w; effects transitions according to the corresponding
condition |A,| ~ w;.

Let us now consider our case of a laser pulse with a form function f which
is slowly varying in comparison to the “light—oscillation” coswt. The effect
of f can be understood as a splitting of the inducing light frequency w. Take
e.g. f(t) = E,sin®(nt) with n < w. In this case w is split into (w2, w+n,
w). This splitting softens the hard first order transition condition

|Amk| >~ W = |Amkiw\ ~ 0.
to a “quasiresonant” condition like
Ak T w| < dw (3.16)

with a small § > 0. § has to be chosen in a way which reflects these con-
nections between frequency—splitting and importance of single state-state—
interactions.

Hence only those “interaction—elements” V., have to be considered, which
belong to interactions fulfilling (3.16). Exactly this concept is realized in
QRS(4): the matrices V5 = A*(§) and Vi/' = A=(4) only consist of these
quasi—resonant elements in V..
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Fic. 7. QRS(6)-solutions for different § compared with the exact solution of the con-
sidered test problem. All subfigures are showing the same section of the pss—trajectory

introduced in Figure 1. Note the increasing damping of the high frequency oscillations

with decreasing §.
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Fi1c. 8. Additional zoom of the pss—sections shown in the previous figure for different
QRS(d). Each single time step of the algorithms is marked by an ’o’. Observe the increase

in the stepsize with decreasing d.
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3.3 QRS ALGORITHM WITH FIXED SPARSING PARAMETER §

A few lines above the class of QRS(d)-algorithms has been introduced. In
this section some of its basic properties are presented:

Figure 7 above shows QRS(d)-solutions for different 6 compared with the
exact solution of the considered test problem ’OH’. All six subfigures of Figure
7 are showing the same section of the pss—trajectory introduced in Figure 1.
The QRS(d = 2.0)-population is very similar to the exact solution for ps;
whereas the QRS(d = 0.5)—population approximates its smoothed outline
Ar pss. In general we observe an increasing damping of the high frequency
oscillations with decreasing 4.

In addition it must be said that all QRS(4 < 0.2) obtain wrong results while
QRS(§ = 0.2) still works well. Obviously, the QRS(d)—algorithms reproduce
a (more or less) smooth approximation of the exact averaged populations
until § undergoes a critical value dg. According to the above given physical
interpretation one may assume that for 6 < o the sparsed dipole matrices
A (respectively V;) from equation (3.13) do not include the most important
state—state—interactions furthermore.

For the implementation of all QRS(0) algorithms a highly efficient numer-
ical integration tool with an adaptive order and stepsize control should be
used. It automatically adapts the stepsizes to the obtained smoothness of
the solution of the current d-smoothed equation (3.14). In the scope of this
work this “background—integrator” is always basing on extrapolation meth-
ods due to [14], [15]: all presented QRS-realizations are using the C++-—
implementation of the extrapolation code EULEX described in detail in [25]
(for a C—version of EULEX see [26]).

From the definition (3.13) of the sparsed dipole matrices V5 = AT(d) we
easily can see that QRS(0 = o0) is nothing more than the used standard
background-integrator itself. Hence, QRS(6 = oo) produces an approxima-
tion of the ezact solution of (2.13) up to the accuracy tol which is chosen in
the used EULEX-tool (tol = 10~ in all following cases). For simplification
we call the QRS(0 = oo)-solution “exact” in the following.

Definitely, we have started the discussion of the QRS—idea for reducing the
computational complexity of finding sufficient information about the popula-
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tion dynamics of the considered problem. For this purpose we need a com-
plexity measure, which allows to compare the computational effort produced
by QRS(4) with that produced by QRS(6 = 00). To prepare this note that
the computational complexity of QRS(d) mainly depends on two effects:

e the number of evaluations of the right hand side of equation (3.14)
made in the whole integration process,

e the number of flops each single evaluation of the right side of (3.14)
costs.

1
1/delta

Fia. 9. Effort C(d) versus 1/6 for QRS(4) on the considered test problem. The effort

measure C(d) is defined on page 53.

Hence let us assume that the different QRS(0)—versions are basing on the
same background—integrator and are controlled by the same given accuracy
tol.
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DEFINITION 2. Let P = (V,,Q,w, f) denote the specific data of the prob-
lem (“solve the basic equation (2.11)” ) and I the considered integration in-
terval. Let Np(8,1) be the number of evaluations of the right hand side of
(3.14) which QRS(§) needs for the considered computation. In addition let
#(A) be the number of nonvanishing elements in a matric A € C™". Now
#(Vs) can be taken as a measure of the number of flops each evaluation of
the right side of (3.14) costs. Hence the complezity of a QRS(0 )—integration
on P, I is measured by

Cp’[(é) = #(V;;) . NP(5,1> (317)

In the following we should simply write C'(8) and N (0) if the choice of problem
P and interval I is clearly fized.

As a representative example Figure 9 shows the graph of C(6) = Cp;(d)
versus 1/4 fixing the problem P as our test—problem 'OH’ and fixing I as the
integration interval which corresponds to the pulse length of the considered
laser pulse. We observe:

e (C(0) increases with & — oo (1/d — 0); for well-chosen § a speedup
factor of about 100 is observed:

~ 100 (3.18)

e ((9) exhibits a remarkable jump at § = 1.

The first fact is not surprising whereas the second one should be explained:
At 0 = 1 the diagonal elements of the dipole matrix V,, are set to 0 in
Vs. This has got a tremendous effect on the computed trajectories of the
expansion coefficients bs. This is exemplarily demonstrated in Figure 10:
At 0 = 1 the character of the shown QRS(d)-solution changes from highly
oscillatory to smooth. For this smooth trajectories big integration stepsizes
are possible. (It should be stated that this effect is particularly large in the
coefficient Im(bs1) of the test problem ’OH’ which is shown in Figure 10 for
demonstration. In other coefficients the effect is merely similar to the slow
damping process which is demonstrated in Figure 7.)
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Fic. 10. Different QRS(d)-trajectories for the imaginary part of the first expansion
coefficient (bs 1) for the considered test problem. While the QRS(1.05)—trajectory is still
similar to the exact solution the one of QRS(0.95) demonstrates the tremendous smoothing

effect which happens at § = 1.

Figure 10 demonstrates that our above central smoothing difficulty is re-
moved in the case of ‘OH’: Both, the probabilities |b|? and the corresponding
coefficients by, are simultaneously smoothed by QRS(0.5). But ‘OH’ is only
one example and therefore we ask now and answer later: Is it always possi-
ble to smooth coefficients and probabilities simultaneously? Only a positive
answer to this question can lead to a reliable QRS algorithm.
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4 ApAPTIVE QRS ALGORITHMS

In the early beginnings of numerical integration there were discretization
schemes which were used with a fixed integration stepsize h in simple, uncon-
trolled integrators. Indeed, theoretical propositions about the convergence
of these methods with A~ — 0 have been known. But mostly there was no
way to guarantee that a solution computed with a certain fixed h met the
required accuracy. In addition it mostly was impossible to a-priori choose a
stepsize h which would lead to a sufficiently accurate solution but which at
the same time would not produce more computational effort than necessary.

In this situation the saving idea has been the idea of stepsize control in
connection with a valid estimation of the integration error: After the kth step
the stepsize hyyq for the next step is automatically determined. Therefore an
error model is constructed which is used to compute an estimation {(¢(h)) of
the integration error e(h) made in the (k + 1)th step if h is used as stepsize.
Then hyy1 is chosen due to the required accuracy ({e(h+1)) < tol).

The above constructed QRS(d) methods have got a structurally analogical
problem:

e In QRS(J) the (sparsing) parameter ¢ is fixed during the whole inte-
gration process; theoretically it is known that for 6 — oo the result will
converge to the exact solution,

e the smaller § can be chosen the bigger is the gain in efficiency,

e if you use a small ¢ there is no way to guarantee that a QRS(J)—solution
meets the accuracy requirement.

We use this analogy § <> h for constructing an adaptive )—control in connec-
tion with a valid error estimation.

Inspired by the preceding, my proposal for this control scheme starts from
the following items

e divide the whole integration interval into several subintervals [, =
[tk, tx + Hg], on which the smooth laser shape function f from equation
(2.11) is nearly constant,
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e use QRS(d%) for the concrete integration of (2.13) on each subinterval
I, (the “kth step”),

e determine the sparsing parameter dx.; (used for the (k + 1)th step)
with respect to a given accuracy which the solution should meet. For
this purpose construct an error model which allows us

— to reliably estimate the integration error made on [}, using
QRS(g11) and

— to compute this error estimation cheaply,

e and care about the effect of the initial choice of d; on the control mech-
anism — if necessary construct an automatic method to make a good
initial choice.

This should be the program of the next sections. Executing it, the central
task is getting sufficient but cheap a-priori information about the solution on
the interval I, after having done the kth step. Herein, this key problem is
solved by studying a perturbation theoretical analysis of equation (2.11): per-
turbation theory of the effect of the dipole matrix on the interaction between
the states. The basic idea is to use the first order correction of perturbation
theory as an approximative solution on I;,;. This approximation shows to
be sufficient for studying the effect of d—variations on the future integration
€erTor.

Thus, the proposed error model depends on analytical realizations of prop-
erties of the considered problems. It consists of analytical formulae which
use information from the last integration step only.

But these formulae are not used in the error model only. They are also used
for answering some open questions which occur in the construction process
of é—control:

e how should the length of the subintervals I be chosen?,
e what should be the basic length 7" in our average operator Ar?,

e can we always expect to get smooth trajectories ¢, and smooth proba-
bilities |cx|? simultaneously?,
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e how can we make a good a-priori d—choice for the QRS(d)-algorithms
constructed above?

As in all adaptive algorithms (especially in stepsize-controlled adaptive in-
tegrators) the presented error estimation for QRS is ezact in a more or less
small subclass of problems only. In solving problems not belonging to this
subclass, the guaranteed accuracy of the solution is reduced to a heuristi-
cal accuracy. Therefore it should be discussed how this “exact” subclass of
problems can be described in our case and what can make us believe in only
heuristical accuracy?

Thus, the segmentation of the following explanations is determined: First,
we extensively discuss the perturbation theory of the effect of the dipole
matrix on the interaction between the states. Therein, we have to watch out
not only for the effect on the trajectories, but also for the effect on the original
and smoothed probability matrices. This causes many details in notation and
some unsightly analytical expressions will unfortunately appear, but it must
be done... Based on this analysis we are able to work out the required error
estimator, to answer the above collected questions, and to construct the
whole d—control. All this results in a brief presentation of a basic adaptive
QRS-version.

4.1 TiME DEPENDENT PERTURBATION THEORY

The aim of this section is the introduction of the basic concept and notation
of perturbation theory for the equation

10 = (Q + eV(t)) ¢ c(to) = co (4.1)

with Q = diag(ws,...,w,) and a perturbation V' with the special structure
known from above:

V(t) = VT exp(iwt) + V™ exp(—iwt). (4.2)
If we compare (4.2) with equations (2.11) or (3.14) we observe that we have

to set f(t) = const, V¥ = Vs, and V- = V{'. In the following it is very
helpful to use the following summation convention:
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A sum like A, (27) + A_(27) consists of two analogically built summands,
which only differ from each other by the replacement of an index “+” by
“—7_ If such a sum appears in an equation it will be shortened by A, (x%).
For example, the perturbation V(t) from (4.2) can be written as

V(t) = V* exp(Liwt). (4.3)
In addition to equation (4.1) we consider its non—disturbed form

i0c = Qec,  cty) = co. (4.4)

4.1.1 Perturbation Theory for the Time Propagator

Let us denote the time propagation half group of (4.1) by U€(t,s). We will
discuss the expansion of U¢ in terms of €. For the case e =0, U¢ = U is the
time propagator of (4.4) and well-known:

Up(t,s) = exp(—iQ2(t—s)). (4.5)

Both, (4.1) and (4.4) are Schrodinger equations and therefore the time prop-
agators Uy and U€ are unitary. According to [33] (pp. 207-209) the following
theorem holds:

THEOREM 2. The asymptotic expansion of U is given by

oo

Us(t,to) = Uo(t,to) + > €™ Unl(t,to) (4.6)
m=1
with
t ™ Tm—1
Un(tito) = (—i)™ /// Un(t, 1)V (1) Us (71, 7) -
to to to

'V(TQ) e UO(Tm—l’ Tm)V(Tm)UO(Tm7 t()) dTm e dTl. (47)

(4.6) converges for any € € R in arbitrarily chosen operator norm.
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REMARK 3. Note that this is nothing else than a special form of Picard’s
iteration. More clearly this can be seen in section 4.1.2 using the “interaction
picture” transformation.

In the following we assume a specific norm || - || for the solutions ¢ € C"
to be chosen, e.g.

el == D owlel®,  Vk: B £0. (4.8)
k

As a consequence the operator norm is fixed (as that one which is induced

by [ - 1])-

In the following there will often appear sums A+ A* of a matrix A € C™*"
and its adjoint. Hence

R:C™" - C™" with RA) = A + A (4.9)
will be used for keeping the notation short. The symbol R is used because
symmetric matrices (A = AT) lead to R(A) = 2 Re(A) where Re(A) de-
notes the real part of an A € C™*",

Now, ¢“(t) = U€(t,ty)co is the solution of (4.1) for a given e. We are
interested in its probability matrix p¢ for which Theorem 2 gives us

pit) = (@)
= US(t,to) p(to) U™(t,1o)
= Up(t,to) plto) U(t, to) +
2¢ R (Ur(t,t0) plto) Ug(t, o)) + O(?) (4.10)

where p(ty) = ¢o ® ¢ and its property p(to)* = p(to) is used in addition to
the fact that U is unitary because of V' = V*. Hence, if we want to compute
the first order correction of p© in an elementary, i.e. integral free, form we
have to evaluate the integral

t
Ui(t,ty) = —i / Uo(t, s) V(s) U(s, to) ds. (4.11)
to
This can be done in a global notation which is prepared in the next section
and can be used in further sections, too.
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4.1.2 Interaction Picture

In the following let us consider equation (4.1) to be fixed, i.e. assume Q =
diag(wi, ..., wp) € R™" V* and w € R as fixed given. Hence Uy (and with
it all U,,) are explicitly computable. For simplification of those computations
we need the definition of two helpful operations:

DEFINITION 3. Let T be the set of maps [tg, 00) — C™™ and ~y the set of
maps [tg,00) — C". The actions of the bijective, linear operators
T:T — T, T(B)(t) = Ug(t,to) B(t) Us(t,to)
Ty =7, T(e)(t) = Us(t,to) c(t)

are called transformation into interaction picture. For simplification it will

be written
Bi(t) := T(B)(t) and ¢(t) = 7(c)(¢) (4.12)

The maps Q4 : I' — T are called resonance denominators and are compo-
nentwisely defined as

B
(QiB)kl = A_];l with A%l = wk—wl:tw. (413)
kl

Basic Calculus In addition to the obvious linearity of ()., we need two
other important properties of the resonance denominators: First, let A, D €
I' and let D be diagonal. We observe

Q. (AD) = Q.(A)D and Qs (DA) = DQ.A. (4.14)

Second, by a simple componentwise evaluation we see that the ()4 could also
be defined as solution operators of a class of matrix equations:

Qv —v(QFwl) =B = v =0Q.B (4.15)

The transformations T' and 7 essentially reduce the effort of notation.
This starts with the behaviour of equation (4.1) under transformation to
interaction picture: The transformation

b(t) = () = e )es(t) (4.16)
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of the solution ¢¢ of equation (4.1) fulfills
10 = eVi(t) b°(2), b(to) = c(to) (4.17)

and the probability matrix (b ® b°)(t) of equation (4.17) is nothing else than
g

pi(t) = Ug(t,to) (¢ @ ) (1) Un(t, to) = (b @b9)(1) (4.18)
In addition, Theorem 2 gives us an integral form of U; which due to trans-
formation of V' into the interaction picture can be written as (cf. (4.11))

Ui(t,t)) = —i Uplt.to) / Vi(s) ds. (4.19)

With (4.19) we get another version of the first order formula (4.10):
pi(t) = p(to) + 2eR(Us(t, to) Ur(t, to) p(to)) + O(€?)  (4.20)

p(to) + 255}%(2' / Vi(s)ds p(t0)> + O(€)

Hence the following propositions are of some interest

LEMMA 1. Let B € T' be of the form B(t) = B* exp(Liwt). Then the
following formula for By = T(B) holds:

/ Bi(s)ds = —i ((QuB¥)i(t) ™ — (QuB¥)i(ty) =) (4.21)

t
Proof. Simple partial integration of v(t) := [ By(s)ds gives
to

o(t) = ()7 [Bi(s)]:2,
= (@) () (~i(QFwl)).
From multiplication with €2 on both sides results

Qv —v(QFwl) = —i[B(s)]"= (4.22)

s=tg

which together with (4.15) gives the proposition of the lemma. O
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Perturbation Theory and Picard-Iteration. Now, we are able to fulfill the
promise from Remark 3, i.e. to discuss our perturbation theory Theorem 2
as a special case of Picard’s iteration.

Let us start with the time propagator U¢(t,t) of b = c§:

U(t,to) = Ug(t,to) US(t, to). (4.23)
Because of equation (4.17) this fulfills the following differential equation:
i@tué(t,to) = 6‘/[(15) Z/lé(t,tg), ue(to,to) =1 (424)

Hence, applied to this equation, Picard’s theorem gives us

t
Ui, (tt)) = 1 —ie / Vi(s)US(s, to) ds (4.25)
to

Z/{é(t,to) =1
U‘(t,to) = khm Z/{;(t,to)

Obviously, the limes exists in any operator norm. By induction it is simple
to prove that

k
Up i (tto) = 14 > ™ unlt, to)
m=1
t T Tm—1
Um(t,to) = (—i)m//--./ Vi(r) - Vi) dr - - dry.
to to to

But now we remember the U, from Theorem 2 and we find
Un(t,to) = Us(t, to) um(t, to) (4.26)
so that Theorem 2 is proved by using
Ut(t,to) = Uo(t, to) U(t, o)

= Up(tto) + S Unlt,to) it o)

m=1

Hence, a perturbation correction of order m in € is nothing else than the mth
Picard-iterate (cf. (4.25)) in the interaction picture.
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4.1.3 First Order Perturbation Theory

With Lemma 1 we are able to rewrite formula (4.20) with the first order
perturbation correction to p§. If this is done the first order form of our
smoothed probability matrix II(t) = L [} ;. p¢(s)ds can be computed due
to integration. The results are given in the next theorems:

THEOREM 3. The solution b¢ = ¢§ of equation (4.17) and its probability
matriz ps = b @ b fulfill

be(t) _ C(to) — (eiﬂ(t—to) (ini) e—iQ(t-tO) pEiwt _

(QeVE) eh0) c(tg) + O(€) (4.27)

pit) = plto) + 2eR(QLVF =% p(ty))
_2€%<eiﬂ(t7to) (ini) e~ Ut~to) Fiwt p(ﬁo))
+ O(e?) (4.28)

Proof. To proof the first formula use Theorem 2 and equation (4.19) to get

be(t) = Ug(t,to) (Uo(t,to) + eUi(t, to)) c(to) + O(e?)

(1 — € / Vi(s) ds) c(to) + O(€?)

and insert the equation from Lemma 1. The second formula analogically
follows from Lemma 1, formula (4.10), and the definition of the interaction
picture. 0O

Again using Lemma 1 direct evaluations of II€(t) = % [/, p5(s)ds lead
to

THEOREM 4. The smoothed probability matriz

. 1 rtot+T P
(to + T) = ?/ b @ be(t) dt (4.29)

to
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of the solution b¢ of our basic interaction picture equation (4.17) fulfills

Mt +T) = plto) + 2eR (QuVE = p(ty))
_ 9% <7% [eiQT (ini) o~ il _ (in:{:)] pl(to) 6:{:iwto>
+ O(é?). (4.30)

This looks really terrible, but it contains a lot of usable and interesting
structure. The best way for discovering this structure is to rewrite componen-
twisely the formulae in Theorems 3 and 4 for the elements on the diagonals.

4.1.4 Componentwise First Order Corrections

THEOREM 5. The diagonal elements of the probability matrices p§ and
II¢ of the solution b° of equation (4.17), the transformation of equation (4.1)
into the interaction picture, are fulfilling

B = Jex(to)? (4.31)
VJ — iAE (t—to) +iwto
—2¢ Z Re AL (cicx) (to) <e ki - 1) e
l ki
+ O(?)
M (to+T) = |exlto)” (4.32)
Vid . _ AT — 1 +iwtg
—2¢€ zl: Re (Az:l (Cle)(t()) (zA%l’]_' -1 (&
+ O(€)

whereas the components of b° itself are given by

+
bi(t) = cilto) — € Z%q(to) (emi‘z“—to) - 1) et 1 O(e?)  (4.33)
l kl

Proof. The three formulae are direct results from the corresponding theo-

rems. In the evaluation of pg, (t) = |c5(¢)|? the being diagonal of all exp(if2s)
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terms eases the calculations of the matrix products. Exactly the same prop-
erty simplifies the expression for IIj,. O

It should be remarked that the diagonal elements of I1¢ are equal to those
of m¢(t) = %f,f_T(c6 ® ) (s)ds.

4.1.5 Normwise Concepts for Error Estimation

We have made a lot of effort in order to evaluate an elementary formula for
the first order correction of perturbation theory. One will guess that this
first order correction could be a good approximation of the real properties
of equation (4.1) if € is sufficiently small. In this section that guess will be
investigated. Hence, first of all, we have to define what is exactly meant by
“mth order correction”:

DEFINITION 4. Let ¢¢ denote the family of solutions of equation (4.1)
for e € R and p° = ¢ ® ¢ the corresponding probability matrices. The
perturbation theory correction of the orders m € M C N is defined as

) (r) ¢
) (1) ¢

For simplicity let us write the summands of order m € N with single indices
. and the sum of the summands of order < m with cZ,,:

. ok ¢

- 5 (G
1S

8k:p5

pult) = (aek

keM

m

€

“— € € o €
Cp = Comy  and ¢ 1= (4.34)

This is analogically defined for p°.

Furthermore the exactness of an approximation needs a measure in which
it can be formulated. Naturally, this measure will be a normwise one. And
if we are just involved in definitions of particular norms, we can define them
in a generality which will be sufficient for the description of the algorithm
following later:
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DEFINITION 5. A ¢ € R™ with ¢ # 0 Vk = 1...n is called weight vector
and a & € R™™ with &y # 0 Yk, weight matriz. They define weighted
2-norms || - |l and || - ||e in the linear spaces C* and C™ ™ by

llellg == Z or Jexl? for ¢ = () €C?
k=1

Alle = > P |Aul? for A = (Ay)eC™"

k=1

For simplicity the matriz norm induced by || - - - ||¢ is written

1All* = sup [|Ac]|s (4.35)

lellg=1
For a weight vector ¢ the notation |¢| = 3, & is defined. A weight matric
D is called multiplicative iff there are weight vectors ¢,¢ with ® = ¢ @ .

LEMMA 2. Let Uy be the time propagator of equation (4.4) and U, the
time propagators which occur in the asymptotic expansion in Theorem 2.

In addition let b,c € C* and ¢, be weight vectors. Then the following
propositions hold:

a) |16 @ ellsgy = [lbllo [I¢]ly

b) | Uo(t,to) [I* = 1

¢) For our V(t) = V*e*“ from above we define vy := max, ||V (1)
For all m € N it s

1 m m
|| Un(t, to) || < — v (t —to) (4.36)
d) The perturbation theory correction of ordersm € M C N to the solution
¢ of equation (4.1) can be estimated as

gl < 5 T2 oy ettoll, (437)

|
meM m:
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Proof. Written in components a) is trivial just as b) if we remember
Up(t,to) = exp(—ifd(t — to)) with real Q. For c) we take a look at Theo-
rem 2, exchange integration and norm, use the submultiplicativity of || - ||,
and the fact that

Tm—1

t T
1
// / dry - -dr = m(75—750)’”, (4.38)
to

to to

With ¢), proposition d) follows directly from

Si(t) = D0 €™ Un(t, to) c(to). (4.39)

meM

Now, it is easy to give an estimation for the exactness of the perturbation
theory corrections. We observed above that our asymptotic expansion (The-
orem 2) is a special case of Picard’s iteration. Thus, we cannot be surprised
about the particular form of our results.

THEOREM 6. ¢° denotes the solution of equation (4.1) and p° = ¢ Q€ its
probability matriz. Let ¢ be a weight vector, vy the time independent mazimal
norm of the perturbation matriz V(t) and g(x) = exp(z) —x — 1. Then the
following formulae hold:

a) [[e(t) = (@l < g(evs (t—to)) [le(to)llo

b) [p(t) = i (t) [loge < g(2€vs (t—t0)) llc(to)lls

€

Proof. Because of ¢ — ¢y = ¢y _,, a) follows directly from Lemma 2, d).
For b) let us start with

Pora = ) 600, (4.40)
m,keNq
m+k>1
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Inserting Lemma 2, d) gives for p(t) := || p(t) — p%;(t) ||¢@e:

o < S X I ) el

M=2 mkeNg

m+k=M
< (t —to)™ (evy)™ [lc(to)ll YR
= o lletollle 2 =

The last inequality gives b), because of

M 1 oM
2 (M —m)Im! Vil (4.41)

m=0

REMARK 4. Obviously, we can give another version of Theorem 6 d) with
a nonmultiplicative weight matrix ®. Therefore, we may start at

(" = 1) ) = > UL L) plto) Uy (1 to) (4.42)
k,leNg
k+1>1
with the Uy from Theorem 2. Let || - ||® be the operator norm which is

induced by || - ||ls. We again find ||Uy(t,t9)||® = 1 for all ¢ > ¢, and again
define vg := max;, ||V (t)||®. All this results in

1
10t 20)I1" < o5 ve (8= o) (4.43)

By using (4.43) for estimating (4.42) we finally find

(=) Olle < i (t —to)" (eva)™ [Ip(to)o 2_:0 (M_lm)!m!

< g(2evs (t —t0)) lIp(to)lle (4.44)
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4.2  A-Priori ERROR ESTIMATION FOR QRS

In Section 4.1 we had worked out that we need cheap approximate knowledge
about the solution of our basic equation

i0ke = (Q 4+ fOV()) c c(to) = o (4.45)

in the interval [to, to + H] with V(¢) according to (4.2); more exactly about
the diagonal elements of its smoothed probability matrix

1

(1) = 7 / (c®8)(s) ds. (4.46)

t—

Instead of m we can also ask for the interaction picture probability matrix

-

—_

0 = 7 [ (cr@a)(s)ds (4.47)

t—

~

because we have got diagm = diagIl.
Let the laser shape function f(t) again be approximately constant in
[to, to + H]

Hlpotorm = E (4.48)

For getting a cheap approximation we consider the first order correction
c<; of the disturbed equation

i0e = (Q + V() ¢ c(ty) = co. (4.49)
More exactly we define
ét) == et _,  and b(t) = (&

respectively their smoothed magnitudes

)@ (4.50)

plt) =

() = (b® br)(s) ds. (4.51)
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For ¢, l~7, and ﬁ, Theorems 4 and 5 give analytical formulae. Hence both can
be computed cheaply ~(See Subsection 4.3.5). The next subsection demon-
strates that ¢, b, and II are worth to be considered.

4.2.1 An Exactly Approximated Subclass of Problems

We can easily prove the following approximation proposition:

THEOREM 7. Let H, T, E, II, 11, ¢, and & be as defined on top of this
section and assume H > T. Beside this, let ¢ be a weight vector, vy =
max, ||V (t)||® the mazimal norm of V(t), and let N(a) be the unique zero of
the equation exp(z) —x —1=a fora>0. For anyn > 0 it holds:

1 n
v < 2EHN(||c<to)|¢> = (452

(I = I)(to + H) [loe < 1

Proof. With I = [to+ H — Tty + H] it is
| (IT = T)(to + H) [lpgs < max [[(c®@ ¢ — €@ &)(s)llses (4.53)

from which the whole proposition easily follows with Theorem 6 and € = E.
0

Thus, we have found a non-empty subclass of problems (for which the
. . . . 1 .
dipole matrix fulfills the m?quahty vy < sz N (”C—(;z))l—lo) ). For this subclass
the first order correction II can serve as an “exact” (up to a small error )
approximation of II. But let us generally call ¢, b, II approzimative solutions
of (2.11) in [to, to + H] even if the above inequality is hurt.

4.2.2 Construction of the Error Estimation Scheme

But now, let us step forward to our aim (the construction of an error estima-

tion for QRS) and remember: The approximative solution ¢ (II) should serve
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for an a-priori study of the effect of changes in the dipole matrix V' on the
solution ¢ (IT) of (4.45). Therefore we must think of V(¢) as a free parameter
in (4.45) and (4.49). In the original ("exact”) problem it has got the form

V(t) = Ve + Ve ™! (4.54)

with the full molecular dipole matrix V,,. In each QRS(d)-interval we want
to use

V(t) = Vet 4 Vet (4.55)
with Vs computed according to (3.13) depending on the used sparsing pa-
rameter 9.

To denote the dependence of the solutions on the used dipole matrix let
us write

Vi), &¢{(VI(t), T{V}({t), TI{V}(t), andsoon (4.56)
if the solutions for
V() = Vet + Ylet (4.57)
are meant.

Collecting the notations of the last few paragraphs we can finally define
our error estimation scheme:

DEFINITION 6. Let ¢{V} be the solution of our basic equation (4.45) with
dipole matriz . 4
V() = Vet + Ylet (4.58)

and let b{V} be its transformation into interaction picture and

M=

¢

IV = o [ GOV ds (4.59)
i

the corresponding smoothed interaction picture probability matriz. We are
interested in the difference between TI{V,} (smoothed probabilities for the
exact problem) and II{Vs} (those for a §-sparsed dipole matriz). Let ® be a
weight matriz and || - ||e the corresponding norm. The considered difference
("sparsing error”) can be measured by

ca(t,0) = [| (I{Ve} — T{V5}) (2) || (4.60)
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As an estimator of e we define
(ea(t,0)) = || (T{Vae} — T{V5}) (1) lle (4.61)

using the approzimative smoothed probability matriz I constructed above (cf.
equation (4.51)).

Now, let us consider one of the problems which do not belong to the “ex-
actly” approximated subclass described in section 4.2.1. Theoretically we do
not know anything about the question of whether ¢, IT are still approxima-
tions of ¢, I, or how good approximations they are. Why shall we trust the
error estimator (eq) in this case?

First, we should remember the fact that this question often appears in the
context of adaptive algorithms! Even the error models of adaptive ODE-
integrators with stepsize control are heuristical ones.

In our case the error estimator is based on the effect of changes in the used
dipole matrix V' on the first order perturbation theory correction ¢é. From
equation (4.50) and Theorem 7 it can easily be seen that the estimate is
an “exact” approximation (for every considered problem) if the external field
strength F is small enough. Thus the considered error estimate is basing on a
“blow-up technique”: it is reliable under the assumption that the effect, which
changes in V cause in the considered smoothed probabilities, can linearly
be extrapolated from sufficiently small to bigger values of the external field
strength E.

There are some heuristical reasons which can make this assumption reli-
able:

e The physical interpretation of QRS given above (see Section 2.1) and
the connected success indicates that the herein considered optical ex-
citation processes are pure first order effects. This statement cannot
surprise: it appears in the discussion of nearly all direct light—molecule
interactions with moderately large field strengths. This fact is in deep
connection to the next item.

e The assumption named is a wise restriction of the considered class of
problems: In Section 2.1 we had deduced the model equations using the



4.3 Control Mechanisms for Adaptive QRS 73

electric dipole approximations for the construction of the basic Hamil-
tonian. This approximation is only valid for external field strengths
which are not too large. The electric dipole approximation itself is
only a first order term of a multipole expansion. Hence we may trust
our assumptions above as long as the physical model itself is reliable
(i.e. as long as the field strength E is small enough to remain in the
framework of the electric dipole approximation).

e Another important reason for the acceptance of a heuristical assump-
tion is the success of its consequences. In Section 5 the performance
of the QRS—error estimator is demonstrated. The success of the error
model documented therein speaks: “it works well”.

Now, we can start to design the required §-control for QRS by studying
the properties of the approximations (eg), II, and @ (instead of those of €,
IT, and c¢: the assumption, on which the error model depends, should even
be the base of the details of the §-control).

4.3 CONTROL MECHANISMS FOR ADAPTIVE QRS

In the introduction to Section 4 the basic mechanism of an adaptive QRS-
version was introduced: the division of the integration interval in subintervals
Iy, = [ty, ty + Hy| and the choice of § for the action of QRS(d) on I using an
a-priori error estimator (e)(d). After we have already constructed (ep) we
can answer the four questions collected above:

e How should the length of the subintervals I be chosen?
e What should be the basic length T' in our average operator Ar?

e Can we always expect to get smooth trajectories by and smooth prob-
abilities |by,|? simultaneously?,

e How can we make a good a-priori §—choice for QRS(4) in the first step?

For this purpose let us consider any subinterval I = [t, o + H| and a given
initial value ¢(tg). But before turning to each single question in detail let
us collect some notations and some basic properties of our approximations
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II and b. In all subsections 4.3.x we should remember the notation from
Subsection 4.1: V* = Vs and V— = Vi for a given ¢ € [0, oc].

4.3.1 Interaction—Contribution Measures

If we go back to Theorem 5, we find

M(to+T) = |er(to)?
EVZ eiduT — 1 .
—2) Re Mo(em)(to) | —gm— — 1] eFlo
Zl: ( Afl ZAET
and
~ EV: , ,
be(t) = crlto) — D Afl alto) (dAfl(t_to) - 1) S (4.62)
7 il

Hence we can call the expressions

Evi iNET —1 )
Riulto, T) = —2 "M Re ((Clc_k)(to) (6“ - 1) eiw) (4.63)

iAET

the contribution of the state k—state [—interaction to the smoothed populations
of state k. The decision to write Ry, as a function of (only) to and T reflects
the scope of the following discussion: We should have a closer look on the
effect of changes of T' on II while fixing the problem-dependent data E, V*,
A% w. For studying the structure of these expressions let us define

DEFINITION 7. The two functions &g, & : R— R

b : oo Lz — 1) for x#£0
0 for =0

l=cosz for 240
& x’_>{0.5 for x2=0

are called interaction—contribution measures. The matriz R(ty, T) € R™",
R(to, T) = (Rkl(t(hT)) with
Ri(to,T) = —2EVETRe ((agr)(ty) e (Ea(AFT) + i&(AET)))
(4.64)
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1s called interaction contribution matriz.

The two interaction contribution measures can be seen as weight functions
in R(to,T) if we want to discuss the dependence of R(to,T') from the choice
of the average length T in Ag.

r()

0 1 2 3 4 y/o 5

&i(x)
0.6

0.4} ]

0.2 1

4 x/2m 5

FiG. 11. Outlines of the above defined interaction contribution measures {g and &;.

Figure 11 shows the graphs of {r and &;. In both measures the damping
of large values x := AET is relatively strong. This reflects the damping
of oscillations with large Af—frequencies: with increasing T only the slow
oscillations survive.

In equation (4.64) both, g and &7, appear with two different arguments:
Er(AET) and &;(AET). For studying the structure of the corresponding sums
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let us assume that tg = 2mm/w and T = 2j7 /w with m, j € N. These specific
values are preferred because they are significant and simplifying and because
they will play a central role later on. Before evaluating the considered sums
we should note that

AT = ART — 20T = AT — 4nj. (4.65)
With this we get
Vi Re (e (€a(ART) + i &(AET)))
= Vi &r(A0T) + Vig Sn(AGT —4mj) (4.66)
= GR(VEZLv Vias AZZT’ ])
and
Vit T (50 (€n(ART) + i&(ART)))
= Vil &(ALT) + Vig &(AGT — 4mj) (4.67)
= @](V,:l'7 Vias AETv 7)
We are talking about the QRS-idea (“cutting the dipole element V,¥ if
|AE] € [0,w)”). Hence, we should give priority to the following task:
Let be A}, € (—w,w) (the case Ay € (—w,w) is analogical) and compare
the two cases

L Vi = Vg = Vi (QRS(00)—calculation)
2. Vi =V, Vi =0 (QRS(d < 1)—calculation)

In these cases (4.66) and (4.67) get the form

L Ort(Vie, Vi, 2,5)/Vu = &ri(z) + Era(z — 4mj)
2. Orr(Vi,0,2,7)/Vie = &ri(w)

For comparing these two cases we should take a look at Figure 12 which
shows the two functions

p(z) = |er(@)]® + |&r(2)]? (4.68)
Ap;(x) [Er(x — 4mj)[* + |&1(x — 4mj)]® (4.69)
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Fic. 12. Outlines of the above defined function p and Ap; for j = 1,2. They demon-
strate that the contribution (to ) of the smaller of the both Akilffrequencies strongly

dominates that of the larger one. The value of j corresponds to the chosen average length
T =2mj/w.

in the most interesting interval
re0,2mj] + Af €0,u] (4.70)

for j =1,2.

It gets clear that the smaller frequency (Aj; herein) is strongly dominant in
this +-sums. As an example this demonstrates the rightness of the QRS—idea:
the contribution of the small frequency A}, & 0 to the smoothed probabilities
is much more important than that of the larger frequency Ay, > w.
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For short let us go back to equation (4.62). Therein, the V—-dependency
of b is omitted. But investigating the effect of its diagonal diag V' we find an
interesting result (notation from Section 4.2):

(b{V}(to+T) — b{V — diag V}(to +T))\T:Ww =0, VjeN
(4.71)
using A}, = tw.

Conclusion. The observations, which we have made when studying &g s,
p, Ap; and equation (4.62), tell us the story of the effect of the choice of the
average length T'. The main results of this subsection are:

e Using an average operator Ar we never reach the effect of cutting
smoothers G, (see Section 3.2) which simply kill all fast oscillations.
Only the A7 with very large T' act like cutting smoothers somehow.
Moderately large T' (~ 27 /w) lead to a pronounced damping of high
frequencies without killing them.

e The contribution of the state k—state [—interaction to the smoothed
populations is strongly dominated by the smaller of the Af—frequencies.
This effect grows with increasing 7' for which only frequencies AF;, ~ 0
are dominating.

e Choosing the average length 7' = 27 /w we do not get any effect of the
diagonal of the dipole matrix V' on the coefficients b.

4.3.2 Choice of Average Length T and Interval Length H

Let us now turn to the questions asked above:

How should the length of the subintervals Iy, be chosen? and What should be
the basic length T in our average operator Ar?

There are several requirements to which should be paid attention. We collect
them and then we look for a compromise:

e The adaptive control scheme needs an error estimate at the end of each
subinterval, i.e. the evaluation of (es)(d, %o + H). In that evaluation
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the knowledge of (l:[{Vm} - ﬁ{Vg}) (to + H) is demanded, i.e. the

knowledge of (5@7)) V' Hitor o1 t+1) With V2 =V V5. The (ep)—
computation has to be cheap and fast. Thus we get problemsif 7' > H,
because then we must use values II{V’} from [to + H — T, t). In that

case we would have to evaluate and store many data from the previous
QRS-subinterval. But if

(R1) T < H,
the needed approximative populations I:I{V’} are known analytically.

e The error estimator (€s)(-,¢) depends on results of a first order per-
turbation theory. Theorem 7 shows that this is only exact for small
(t — o). If we want to compute (e€g)(-,to + H) for large H this fact
demands us for care. We should require

(R2) H should not be too large.

This condition meets with the demand on the laser shape function f
to be approximately constant in [to,to + H]. (But remember: this
last demand on f is only needed in the error estimator not yet in the
QRS-integrations.)

e The previous subsection has told us that
(R3) T should be large enough
to give Ar sufficient damping properties for high frequencies (> w).

e In Section 3.3 the important influence of the diagonal of the dipole
matrix V, on the coefficients b was demonstrated. According to equa-
tion (4.71) diag V' effects oscillations with frequencies £w whose am-
plitudes are relatively large because of the relatively large Vj—values.
But according to Theorem 5, just this Vi,—values have no effect on the
IIj—values! Planing the construction of the “right” QRS-integration
interval [to,to + H] we have to consider the influence of the H—choice
on the initial value b(ty + H) for the next QRS-interval. If we are
able to suppress the effect of the large +w—oscillations on b(to + H) we
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should certainly do this. From equation (4.62) and the last item in the
previous subsection it gets clear that therefore we should require
(R4) H = % jeN
Let us draw some conclusions from the requirements (R1)-(R4). (R1)-
(R3) lead to
T = H, but H not too large. (4.72)

But the average length T must be fixed over all subintervals. Thus, we can
link (R4) and (4.72) together to a final compromise:

Choose T = 2mj/w with a small j € N as average length and fiz all
subinterval-lengths to H = T.

For all QRS-intervals I, = [t3, ¢{" + H] this choice implies that the values
of their left hand sides always are

omkj
0 = % kjeN (4.73)

But how to choose j7 One possibility for the proceeding is the following:
The user defines T' by choosing a small j € N and all subintervals are fixed
automatically. On the one hand giving limited choice of T to the user seems
to be the right idea. But on the other hand it must be checked whether his
choice does not hurt condition (R2). This can be realized by the following
checking procedure:

REMARK 5. Let us stop the QRS—integration on a subinterval [ iff the
change in the populations intermediately gets too large. This interrupt—
concept bases on the idea that the first order perturbation theory used in the
error estimator can only be valid if the change in the populations is a “small
correction”. Taking (R4) into account this can be realized in the following
way:

Assume that it is planned to take I;, = [t t{" + 27j/w] for j € N as
kth subinterval. In addition assume t*) € I, m = 1,..., M to be the
inner integration steps of QRS(8) on I; and p(t®) the populations computed
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therein. For each m =1,..., M define I[(m) € {1...;} by the condition

t® e (ﬁg"’) 2l =) o M(m)] (4.74)
w w
Inside QRS(dx) check after each step:
It (|[p(ef) = p(t§7)]] > ctol)
Then I = [t§, t +2ml(m)/w]

i.e. let the subinterval I, i.e. the actual QRS—integration, end at the next
possible time ték) + 27l(m)/w iff the change in the populations exceeds a

given limitation. The upper bound ctol and the norm || - || must be given
(in the implementation the maximum norm || - ||o is taken and it is set e.g.
ctol = 0.1).

REMARK 6. Surely, we should try to construct an adaptive j—control,
i.e. an automatic control scheme for choosing j according to the concrete
behaviour of the solution computed actually. Using the error estimator (ex)
this is no serious problem: Planing the QRS—interval I, we may determine
the j—choice j; on I by computing the maximal value 5 € N which leads to
the same §—choice as the initial proposal j]go)7 e.g. j,io) = 1. But the com-
putational effort of this additional control mechanism cannot be neglected.
Indeed, when implemented it led to an essential decrease in efficiency in all
considered real life applications. Thus, the idea was dropped. Nevertheless,
it can immediately be picked up if necessary.

We should shortly come back to the question: Can we always expect to
get smooth trajectories by, and smooth probabilities |by|* simultaneously? For
the following reason we (again heuristically) can answer this question with
“Yes!P”: Let us go back to Theorem 5, to equations (4.31) and (4.33). From
these equations we can observe the d—dependency of our approximations
be{Vs}(t) and |by|>{V5}(t): For both, approximated solutions and popula-
tions, all fast oscillations (those with frequencies > w) simultaneously vanish
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iff & < 1. Therefore § < 1 is called the smoothing domain of the QRS-
method. Thus, according to the first order approximation scheme, we expect
smooth coefficients by smoothing the populations and vice versa.

4.3.3 Interaction Skeletons and Initial Choice of ¢

In Section 4.3.1 we have seen that the interaction contribution of the state k—
state [ interaction (“(k,[)-interaction”) depends on three parts: &% (AT,
ViE, and (c@)(to). Let us assume that we want to analyse these interaction
contributions a—priori, i.e. before any QRS(d)-subintegration. A-priori, we
have not got any information about the solution, i.e. no information about
(ck@)(to). In this situation (a—priori for the whole integration process) the
most useful contribution measures are the expressions

Vi Ger(AGT). (4.75)

Obviously, we should not consider (4.75) as the sum it is according to our
summation convention. Each of the +—summands should be considered sep-
arately. Therefore, we cancel our summation convention for this section.

The central question of the following paragraphs is this: If we fix the
problem (i.e. fix (V,, Q, w, f) and T; thus A*, VE = V) which (k,1)—
interactions are of most importance for the considered process? Can we con-
struct a kind of interaction skeleton representing these main (k, [)—interactions
and their interconnections?

In Section 4.3.1 we have clearly seen that the smaller of the both frequencies
A¥ dominates the interaction contribution. Thus one can make a distinction
between the (k,l)-interactions whether they are “+” (for |Af;| < |Ag]|) or
“ interactions (|Ag| < |Af;|). Thus, we separate + from — contributions,
in addition to the differentiation between real(R)- and imaginary part(I)
contributions.

Before we start, some assumptions should precede which can be made
without loss of generality. First, assume the eigenmatrix 2 to be ordered:
l <k = w < wg Second, let w be positive, and third, let the set of all
state(numbers) be J = {1...n}.

Now we can fix our above a—priori interaction measures and some neigh-
boring notations in a definition:
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DEFINITION 8. Let V*, A% be as above, £ as defined in Definition 7
and for k € J let us define

Je(k) = {leJ |Af| <|AFl} (4.76)

The following interaction measures are defined for all k,l € J:

pha(k D) = |VE| [ (AED)|
pra(k,1) = max piy (k1)

+ N +
)‘R,I(k) = lér}f(}i) MR,I(kal)

For any n € [0,1] the functions

rii(kn) = (kD) € I e Juk), pi(k,1) > A5 (k)}
T’RJ(k,’I’]) = r?_{,l(kan) U TI_%,I(]C777)7

rri(n), () 0 J = 27%7 are called sets of resonant indices.

Thus, the 7% ;(k, 7) are the sets of all (k, [)-interactions which possibly give
important (up to a safety factor n maximal) contributions to the smoothed
population 7.

To compose the wanted interaction—skeleton we still have to ask whether
(cxT)(to) can ever be big enough: If (c,7) is small all over the process the
interaction (k, 1) will not play a central role although it perhaps seems to be
important according to (k1) € rrr(k,n).

If we assume that |cx|? and |¢|? are small all over the process this also is
the fact for (cx7)(to) for all tg. Because we have got no a—priori information
about the |ci|? we should go on heuristically:

First of all it is clear that the initial state s € J (with |¢s[*(0) = 1) and all
main (s, !)-interactions play a central role: Starting with s all states | with
(s,1) € rri(s,m) are initially populated (“2nd generation”). After this the
population can eventually concentrate in all states connected to these 2nd
generation states ! via rr(l,n), and so on. Thus the construction of our
interaction—skeleton should be a recursive procedure representing this “grow
of generations”.
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DEFINITION 9. Adopting all notations from Definition 8 the following
recursive sets are defined for n € [0,1] and an initial state s:

Sl(‘i’l,)l(n) = rr1(S, n)
Sirm) = {0 e P\REV @), (k1) € rpa(k,n) and

there exists a p € J with (p, k) € S}Q,‘”(n)}

U S

k=1

s
B3
iy
=

I

The sets R%)I(n) are called sets of resonant indices of n generations.

Obviously the probability of high population in states belonging to the
nth generation drastically decreases with increasing n. In the definition of
the interaction skeleton this effect can be considered by a limitation of the
allowed recursion level: one may choose an m € Nand call R%n}(n) skeletons.
Here the choice of m is left to physical insight (or experience).

In this heuristical scope the limitation of the skeleton by choice of mazximal
state is just as good as the limitation by choice of maximal recursion level:
choosing a maximal state(number) m the index pairs in the skeleton must
not include state(number)s [ > m. (Physicists say “starting with s the
population will not come higher than m”). Let us fix these two different
skeletons in a definition:

DEFINITION 10. Adopting all notations from above and letting n € [0, 1]
the sets

Snaln) = REI () G S¥h(n) (4.77)
are called full interaction skeletons. Moreover;’or any m € N
Syl == R ) (4.78)
are called recursion limited skeletons while for m € J,m > s the sets

Sri(n,m) = {(k,1) € Sr1(n), k,l<m} (4.79)
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are called interaction skeletons limited by mazimal state. The choice of Sp 1
in all cases may be forgiven; it simplifies the notation and causes no confusion
because of the added indices and arguments.

REMARK 7. Obviously the construction of the interaction skeleton can
be formulated in a graph theoretical pattern: The two graphs Gg; = (J, J X
J) include connections between all states (=nodes). In boths graphs the
connections (k,1) € J x J are double-weighted by the two measures uE(k,1)
(with z = R, I). The skeletons are connected trees with father-node s. Their
connections fulfill some conditions (they must be locally maximal); together
they include the “paths of main population exchange”.

Now, let us construct the initial j—choice for QRS(d) answering the initial
question How can we make a good a-priori d—choice in the first step of a
d—controlled QRS—version or for a QRS(§)-solution in a single step?

If we have constructed interaction skeletons Sg; we can simply choose
the initial 0 ; so that the sparsed dipole matrix V; includes all interaction
coefficients Vi, with (k,1) € Sg,;. We find

. A
(%,lk = Vu V V;S,kl = V}cl) =2 Hlj}njkl < 4. (480)

Hence, this idea leads to

+
Akl

~H). (4.81)

dpy = max min
(kl)espr =

To denote this for the three cases introduced in the previous definition we
have to write

DEFINITION 11. According to any n € [0,1] and to the interaction skele-
tons defined in Definition 10 the real positive numbers

+
Akl

Ori(n) = max  min »

(kDesrr(n) =+
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55“)(77) = max  min |—&

, (k,z)esgﬁ(n) * w
Ai
) ,m) = max min | —&
R,I(n ) (kDesr,r(nm) *+ w

are used to define the initial §—choices up to a threshold value k > 0:

6(777 '%) ‘= min {"{7 maX{5R(77)7 51(77)}} (482)

alternatively for g 1, 6;{7) or dp (-, m).

REMARK 8. Using our approximate solution ¢ (II) we are able to measure
the contribution of each single (k, l)—interaction to the smoothed populations
Tkk- From this a question results: Why do we remain at the idea of an adap-
tive d—control taking a whole d—section of the dipole matrix? Why don’t
we try to consider the main (k,!)—interactions only: this would lead to a
much sparser dipole matrix? All attempts in order to construct such an
adaptive control mechanism have failed. The reason for this failure is the
loss of important interconnections between the states in this kind of con-
trol procedures: These interconnections may be measured as less important
for some subintervals (e.g. for the reason of small (cxg)(t9)). But they
belong to the interaction skeletons connecting each (important) state in -+
and — direction with its main interaction states. The effect of the proposed
control procedure (“main (k,[)-interactions only”) is the decomposition of
the above described interaction graphs in several non—connected subgraphs.
This destroys the “paths of main population exchange” between the states.
This destruction happens if some of these paths of main population exchange
are not sufficiently represented in a normwise concept (sign structure of the
lzlkkfexpressions). These experiences have finally led to the idea of interac-
tion skeletons which are used to “guarantee” or “conserve” these paths of
main population exchange. Thus, §(7, k) from Definition 11 should be taken
as a lower bound for all d—choices (6 < d(n, k) would destroy some important
interconnections of the interaction skeleton). Indeed, this is done in the final
adaptive QRS—algorithm (see Subsection 4.4).
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4.3.4 Automatic Scaling

In our description of the error estimator (¢e) we used an abstract norm || ||o.
The choice of a suitable norm plays an important role for the performance
of the algorithm. We require the algorithm to be scaling invariant. This
demands for the elements of ® to be solution dependent scaling weights. To
construct them we should use the above introduced analogy of d—controlled
QRS and integrators with adaptive stepsize control (see introducing remarks
of Section 4). In the case of integrators the current scaling of a vector y in a
subinterval [tg,to + H] with initial value y(to) is e.g. given by

%Z(i—;) with  sp = max{|yx(to)|?, s} (4.83)

k

lylly =

using a threshold value s > 0 (for more details see [26]). First of all let us
transfer this invariant scaling idea to the smoothed populations IT = Ar (b®

b) of a QRS-integration on [to, to+ T'] or more exactly to the approximations
M(to+ T) = Ar(b @ b)(to + T) starting at to with b(ty). Taking the notation
from Definition 5 and a threshold value o > 0 we introduce the scaling weight
matriz S(to) = (S (to)) with

Sulte) = o (maxto, [@d))[}) (1.8

We get the scaling invariant norm || - ||s) on the IT-level (which is needed
in our error estimator (eg)). Herein n = |.J| is the total number of states.

With |bg|%(t) < 1 for all k and ¢ we find for all k,[ € J:

|bk|2(t0) <oV |bl|2(t0) <o = Ekl(to) = Zlk(to) =0 (485)
Hence, with respect to || - ||sw,), the states from
Punlte) = (ke Ihil(to) < Vo) (46)

are less important. The Py(to) with small ¥ < 1 are called sets of less
populated states.
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4.3.5 Evaluation of the Error Estimate

Definitely we must try to minimize the effort which is caused by the compu-
tation of the error estimator

. . 2
(es) (6,t0) = 3 Tulto) |(MufVae} = Wl V3}) (to +T)[ . (4.87)
kl
Let us define the single (k, [)—contributions
. . 2
and the diagonal—contribution
0 = Z Okk - (489)
k
Surely we can neglect all (k, l)—contributions which fulfill
s
o S 50 (4.90)

with a small safety factor s (e.g. s < 10~!). Can we save the computations
of those g7 The following result is of some help for answering this question.

LEMMA 3. Assume k,l € Py(to) with 9 < \/o and let the vector v = (vy,)
be given by the line—sums

o =Y [Vigl (4.91)

J

of the dipole matriz. Then the (k,1)—contribution oy fulfills the following

inequality:
1 1
< — Z(ETY)? 4.92
o S 5y — (ETY)" (v +u) (4.92)

Let us displace the proof of this Lemma to the end of this subsection. We
should firstly use it to get another result which is implied directly:
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THEOREM 8.  Adopting the assumptions from Lemma 3, particularly k,l €
Po(to), the diagonal-contribution o from equation (4.89), and letting o be the
threshold value of the scaling matriz X(ty) we find:

1 2s0 s
P < —— = < — 4.93
- ‘EIT VE + U ¢ Ok = n? © ( )

Now we can collect our findings in a conclusion which describes the way of
how to compute the error estimate (es)) (6, to). We should drop certain [Ty~
computations in the evaluation of ¢ — the computations of the ﬁkgfvalues
which are indicated as unimportant by (4.93):

ALGORITHM 1.

Compute v = (vg)
o =0
For k=1 to n do
V= imr /e
If (k& Py(to)) Then
Compute o
0 = 0+ Okk
End of If
End of For
For k=1 to n do

For[=1tondo

— 1 250
U = \E|T v+ 0

If ((k#£1) and (k & Py(to) orl & Py(to))) Then
0 = 0+ 0Ou
End of For
End of For
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(es(t0))(0,t0) = 0

An analogical algorithm is used to reduce the effort of the computation of
the finally needed I (¢g + T') which have to be computed in the evaluation
of the considered gy;.

REMARK 9. The effort of each evaluation of (ex) is the more reduced the
more states are “less populated”. In real life applications, fortunately, nearly
all states are less populated (cf. Section 5.3).

But this is only one way which leads to a cheaply computable error esti-
mate. Another possibility is the choice of a simplified error estimator. For
example, we may choose

(4.94)

n
(€o(t0)) (0, T0) = D (o) ’(ﬁkk{Vm} - ﬁkk{%}) (to + T)’2
k=1
with a weight vector ¢(to) defined in analogy to X(tp). It can be shown
that (es()) contains information about the Ily-errors (k # ), too, and
that Theorem 8 can again be used for saving “unnecessary computations” .
In concrete applications (€4(;,)) mostly causes the same ¢-—choices as (ex))
does. Herein, (exy,)) is preferred for mainly conceptual reasons (it contains
the clearer concept of error control with respect to Iy, k # 1).

Let us return to the proof of Lemma 3:
Proof. According to Theorem 4 and its definition, Il has got the form

- E‘/kj; 6iAkijT -1 ‘
11 t T = cr)(t — LY ) (t P | Fiwto
(to+T) (cx@r)(to) ; Afj (¢ja)(to) ( iAij e
EVZ* - 1 — e_iAﬁT i
> Azi] (ex?5)(to) <7iAfT — 1| eFeto,
J

J J

This implies for the (k,l)—contribution

EVE (AT 1 ,
Okl S Zk:l(t()) Z A—f] (Cja)(to) W -1 €iwt0
jede(d) ki LR
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2

Evzi . 1 — e—iAle »
_ Z Aij (cxcy)(to) (W — 1| eFwto

jedi(d) lj
with
Jk(é) = {] c J, Vé,kj = 0} (4.95)
Because of k,1 € Py(ty) we have
1

and looking back to Section 4.3.1 we find a simple estimate for the +—sum:

1[5 —q
[
A,fj ZA,ij

In addition we have |¢;| <1 for all j € J so that we can finally estimate

2

1
< 5T%  VR4T. (4.97)

1 1

low| < 2—2—(ET19)2 ( >Vl + X |Vlj|2>
nta jeTu(8) jedi(6)
11 )

4.4 THE AQRS—ALGORITHM

After we have prepared all details, the adaptive, —controlled QRS—algorithm
(AQRS) should finally be formulated. Let us start with some concluding
remarks on the matter of notation: Let the problem data (V,,,,w, f) and
the initial state s be given, let the pulse length of the laser shape f be 7
(so that the integration interval is [0, 7]) and define 70 = 27/w. Moreover
assume that a small 7 € N is chosen so that
T

N LjTOJ e N (4.98)
With this j—choice the average and subinterval length is chosen to be T' = j
implying that there are N + 1 subintervals

I, = [tk7tk+T) with ¢ := ]{,’TfOI'kJE{O,...,N—l}
Iy = [NT, )
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Finally let us fix a formal notation for the statement “Use QRS() to compute
b(t2) as solution of the integration of (2.13) with initial value b(¢;) and data
(Veo, Q,w, f) on interval [t,ts]”:

b(t2) = QRS(9) [b(t1), 1, to] (4.99)

Remembering the interaction skeleton Sg (1, m) and the corresponding ini-
tial d-choice 6™ (n, k) from Definitions 10 and 11, the automatic scaling
matrix 3(t), the corresponding error estimator (ex) from Section 4.3.4, we
can denote the AQRS algorithm:

ALGORITHM 2.
AQRS—-Algorithm
Compute S}gf}) (n) and 5o = 6 (n, k)
Initialize  bx(0) = J5(1+ 1)

For k=0 to N-1 do

0 = o
Compute ¢y = (ex,))(0,t)
Repeat
Compute &5 = (exp,)) (6, tk)
If (|%|>0) Then 4§ =05+A0
Until (|] < 0)
b(tet1) = QRS(0) [b(tr), tr, tria]
End of For

d = do
Compute ey = (ex,))(0,tn)

Repeat
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Compute &5 = (exiy))(0,tn)
If (| >0) Then 4§ =45+A0

=23
€0

Until ( &

&s
€0

<90)

b(r) = QRS(9) b(tn),tn, T]

REMARK 10. Some comments should be given on the used local relative
accuracy control e5/eg < . In advanced integrators the stepsize control
scheme depends on a local absolute accuracy control {¢) < tol (see e.g. [14] or
[21]): the estimated local error must remain under the required accuracy. In
AQRS the é—control scheme depends on controlling the local error, too. But
instead of an absolute control scheme a relative one is used: € represents the
effect of all (k, I)—interaction contributions on the populations in (to+7") while
g5 represents the effect of those (k, [)—contributions which are neglected only
taking Vs as dipole matrix. Hence €5/¢o represents the percentage of effects
of (k,l)—contributions which are missed taking Vs instead of V.. e5/ep < 0
means that this missed percentage has to undergo a required value # which
should be called the allowed error percentage.

REMARK 11. For simplification of notation we have not included addi-
tional control procedures (concerning exceptional cases) in this first AQRS-
algorithm. There are the following two additional procedures:

1. the checking procedure from Remark 5 (see page 80) which saves the
interval lengths from being too large and

2. the switch to symmetric mode which will be described in the next
subsection.

In both cases it should be clear how to implement these algorithmic additions.

In the presented form AQRS is a family of algorithms which contains some
control parameters. For each specific AQRS—algorithm these parameters have
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Symbol Range Place of Use Recommended
Value
m N recursion limit (interaction skeleton) 10
n [0,1] safety factor (interaction skeleton) 0.9
K >0  threshold value (interaction skeleton) 0.9
o [0,1]  threshold value (automatic scaling) 101
j N factor for average and subinterval length C
ctol >0  upper bound for change in population 0.1
A6 >0  increment for § 0.1
0 [0,1] allowed error percentage c
s [0,1]  computation of error estimate 0.1

TABLE 1. Hidden parameters in AQRS and their place of use. The last column
of the table contains some values on which the corresponding parameters are fized

“c” in this column means “to

all over the AQRS-tests presented herein. An entry
be chosen”. It indicates that these parameters may be chosen problem dependent.

Methods of choice are given in this section.

to be chosen. Let us collect them and let us add a short description of each.
You find this collection in Table 1.

Before censuring “lots of parameters” you should notice the explanation
of Table I and pay attention to the following items:

e Only two parameters may be chosen problem—dependent. The others
are only hidden ones which are fixed. They only are remains of our
theoretical investigations but listed up frankly. In addition, j and 6
can be chosen automatically: j should be adapted to the property of
the laser shape f (according to its slow or fast variation), its default
value is j = 6; 6 leaves scope to the user and his accuracy requirements
(my usual choice is § = 107'). For m there is a dangerless choice
(m = n which is the implemented default value) but some physical
insight might imply a better choice which can gain a speedup factor up
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to 2.

e In the above sections we have always compared the §—controlled AQRS
with advanced integrators with stepsize—control. Even in the implemen-
tation of these advanced integrators “lots of parameters” are included.
Mostly they are hidden (scaling thresholds, different factors for stepsize
reduction, . ..). But some are elements of the user interface (tolerance,
initial stepsize).

4.4.1 Switch to Symmetric Mode

We have observed that AQRS works as a smoothing algorithm only if it
remains in its “smoothing domain” 6 < 1 (see Figure 8). We must expect
a decrease in its efficiency if the choice § > 1 is necessary (see Figure 9).
Thus, is there any possibility to damp this decrease? The answer is “Yes!”.
The basic idea starts at the fact that (k,[)-interactions with |AJ}| ~ w and
|A;;| & w become important if § < 1 but ¢ ~ 1. For them the contributions
of the “4+” and “~"—terms to Il are nearly equal (see Section 4.3). But
for considering both, “+” and “—”, AQRS is forced to choose § > 1. Maybe
other (k,l)-interactions which would lead to § > 1, are of no importance in
comparison to those ones. In this case we can remain at a § < 1 by using
the symmetrized dipole matrix

Vs = % (Vs + V") (4.100)

instead of Vs and V§' in the QRS(J)-integration in the considered subinterval.
Let us call this “Switch to symmetric mode”. In our AQRS-algorithm 2 this
can be inserted by changing the line

If( >9) Then 0§ =6+AS

g5
€0

to

g5
€0

it (

> 6‘) Then
If 0+A5<1)
Then 0§ =0+ A0
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Else 0 = 0y, symMode = true

starting with symMode = false and using Vs from (4.100) instead of Vs, Vi
in the error estimations and QRS(d)-integration iff symMode = true.

4.4.2  Adjustment of the background integrator

Assume we have done the QRS(d;)-integration on subinterval I and all
preparation for the integration on I,1. How must the accuracy requirement
tol®*1 and the initial stepsize hékﬂ) of the background integrator in the
next QRS-integration be adjusted?

For h(()kﬂ) the answer is simple: Let i be the last stepsize of the QRS(6x)—

integration on I = [t(()k),t(()k) + 7] and let K" be the stepsize choice the
integrator made in tS\’}) = t(()k) + T — h before restricting its stepsize to h to

exactly reach t(()k) + T'. Then, choose h(()kﬂ) = hE\’}’.

Now, let the AQRS—subintervals be I}, = [tgk)7tgk+l))7 k=1,...,N with

téNH) =7 and for given 4 let

b(tg) == QRS(8) [b(t”), 16", 1] (4.101)

be the numerical and b(tékﬂ)) the exact solution of (3.14) for this 6. In addi-
tion let B(7) be the final numerical solution of the whole AQRS-integration
and B(7) the corresponding exact solution of (2.13).
If (in the background integrator) tol®*1) is chosen as tolerance, we may
assume
b;(t6Y) = bt )| < € ol ®H, g (4.102)

with a constant C' > 1. From this follows via simple estimations

The choice of tol**V) is mainly limited by two demands: First, there is a
global accuracy requirement for the numerically computed final populations
|Br|?(7). For them at least the first two leading digits should be right.

b, by

() = [ (6] < 3= a € vl Vil (4.103)
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This forces us to note a stronger basic local accuracy requirement for the
intermediate populations |bj|2(ték“)) = |cj|2(tg“+1)), e.g.:

B2ty = [byPe™)| < 107%, v (4.104)

Second, those Bj l?l(t(()kﬂ)) which are used in the error estimator must be
exact enough. They are used in the error estimator iff their index pair is in

7 = {6,

bt > Vo (4.105)

and they must be exact enough not to disturb the evaluation of <62(t(k+1))>.
0
We can realize this by a condition like

|

by b ¢67) — Jos B (¢6)

< 107", V(1) e J. (4.106)

by b (85"
Taking (4.103) and (4.105) into account we can replace this by

1
730 tol ) < 107! or tol* ) < ;/—g -1071 (4.107)
ag

Making a “normal choice” o = 10~* we can “fulfill” (4.104) and (4.107) by
setting

tol D .= 1075 vk (4.108)

4.4.3 Complexity measures for AQRS

Let us first ask: How can we measure the computational effort produced
by the sequence of QRS(d)-integrations. Remember the construction of the
QRS(9) effort measure C'pr(d) (see Definition 2 in Section 3.3) depending on
the integration interval I and the problem data P = (V,Q,w, f). It leads to
the following definition:
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DEFINITION 12. Let P = (V,Q,w, f) be the data of the considered prob-
lem. Let I be the whole integration interval AQRS acts on. Assume the
AQRS-subintervals to be I, k =0...N and (g, ...,0n) to be the sequence
of d—choices made by AQRS on these subintervals. The integration complex-
ity measure of AQRS is defined as

N
ij] = Z CP,Ik((Sk) (4109)

k=0

which (using the notation from Definition 2) can also be written

N
IPJ = Z #(%k) . Np(ék,lk) (4110)
k=0

According to the algorithm given in Section 4.3.5 the costs of the compu-
tation of the error estimate (ex,)) (6, to) is dominated by

e the number of elements II; which really are computed,

e the number of flops the computation of each considered Il costs.

Therefore we define

DEFINITION 13. Let P, Iy, 0y be as in Definition 12. In addition let Xil
be the number of dipole matriz elements Vi, or Vi, which are really needed
in the computation of ﬁkl(tj + T) by the error estimation algorithm 1 from
page 89 preparing interval I;. Then we have X'iz =0 iff l:[kl(t]- +T) is not
needed. The error estimation complexity measure for AQRS is defined by

N
Epr = Y. > Xk (4.111)
j=0 ki

Finally the sum
CPJ = gpy[ + Ipy[ (4112)

1s called total complexity measure for AQRS.
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5 APPLICATION TO LASER—MOLECULE INTERACTION

In the following first few paragraphs the introductory explanations from Sec-
tion 1 and Section 2.1 are again summarized and complemented in some
points. This is made in order to prepare for the concrete description of the
real life applications which serve as test problems for the demonstration of
the performance of AQRS.

The field of Laser—Assisted Molecular Control has received a considerable
amount of attention recently (e.g. [2] and the lot of work cited in [32]). It
is of great importance in several areas of Physics and Chemistry, e.g. in the
attempt to control chemical reactions or isotope separation by laser pulses in
Chemical Physics. However, until the 1980’s the majority of previous investi-
gations remained restricted to a constant amplitude of the driving laser force.
But in a number of important cases, the physical situation forces us to allow
rapid changes of this amplitude: For instance, it is indispensable to work
with very short laser pulses if it is necessary to beat fast molecular processes
such as the redistribution of vibrational energy [3]. Because of this fact a
new working field has emerged which may be called “Selective Excitation of
Molecules using Ultrashort Laser Pulses”. Let us consider applications from
this field.

The key to the mathematical modelling of these laser-molecule-interactions
is the Schrddinger equation i0;¢) = Hi (see (2.4) in Section 2.1). The
starting point for a fully quantum mechanical treatment of the dynamics
of a molecule exposed to a laser field would be a Hamiltonian of the form
H = Hy+H,+Hy where Hy is the Hamiltonian of the unperturbed molecule,
Hy that of the electromagnetic field, and H; describes the laser-molecule in-
teraction. Hj represents electronic, vibrational and rotational degrees of
freedom. But in most cases it is sufficient to restrict Hy to only one kind
of these molecular degrees of freedom: one is allowed to assume that the
reaction path is decoupled from all other degrees of freedom. In addition,
the laser field needs mostly not be treated as a quantized electromagnetic
field (thus H; = 0), but rather, as a classical external force which acts on
Hy. Thus, in the framework of Born-Oppenheimer and semiclassical electric
dipole approximation one restricts the model to exactly the situation de-
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scribed in Section 2.1 with the ODE (2.11) as the basic equation describing
the dynamical process.

We pay attention to the field of “Laser—Assisted Molecular Control”. Therein,
one is interested in designing an external laser pulse which allows a controlled,
selective excitation of the molecule. For example, let all molecules of a sample
occupy the same initial (eigen)state of Hp, and assume that the requirement
is a strong occupation of another (eigen)state k, the stronger the better. In
the language of Quantum Theory and with respect to our basic dynamical
equation (2.11) (see Section 2.1) this task can be formulated as follows:

Determine the optimal laser data (laser shape function f, : [0,7] — R and
light frequency w,) with respect to the conditions

pO) =po and  pir(r) =[P (r) = max|e (), (5.1)
where ¢/9)(t) is the solution of (2.11) according to the laser data (f,w)
and fixed molecular data (£2,V,,). The first condition represents the initial
occupation of the molecule’s eigenstates and the second the requirement of
maximal occupation of the target state k after pulse length 7.

But there are additional conditions: f must be a technically producible
laser shape (changing smoothly in time) with a pulse length 7 short enough
to exclude the redistribution of energy in [0, 7] (see Remark 2). Thus, math-
ematically this is a formidable optimization problem with constraints. In the
chemical literature (e.g. [10][28][30][36][35][32]) the latter additional condi-
tions are considered by fixing the form of the laser shape: for example, one
restricts the optimization task to picosecond sin*-laser shapes (or analogical
pulse shapes [17][28]), e.g.

f(t) == E, sin*(nt), n = T with 7 = 1ps. (5.2)
T

Now the problem is simpler:
Determine (w, E,) so that \c,(f’ET)P(T) = max,
whereas the basic dynamical equation (2.11), its initial condition ¢(0) = c,
its molecular data (€, V,,), and the sin?*-shape and length 7 of f are fixed
given.

Whatever we should use as an algorithm for solving this optimization task
we definitely need a fast algorithm for solving the inner problem (“compute
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the populations of (2.11)”) for each given pair (w, E,) (and all other fixed
data). This is the field AQRS was designed for. Some real life applications
should be taken exactly from this field as test problems to demonstrate the
performance of AQRS.

5.1 SELECTIVE VIBRATIONAL EXCITATIONS

One way of controlling chemical processes of molecules is the selective exci-
tation of a certain single bond of a multiatomic molecule, e.g. the selective
excitation of the OD-bond in a H/O\D molecule. In this case the dis-
tinguished degrees of freedom are the vibrations of the molecule’s bonds,
which can be modelled as anharmonic oscillations. Thus, in this case, the
molecular Hamiltonian Hy is given by a sum of two coupled Hamiltonians
of anharmonic oscillators, both based on Morse potentials (see Figure 13:
Morse potential as a model for a single OH-bond and see [28] or [30] for
details).

2f

-3t

-4t

-5+

-6

2 a 6 8
F1c. 13. Morse potential v of a single OH bond versus space coordinate z/ag. The
horizontal lines represent the energy e, of the vibrational eigenstates k of OH. Both, v

and ¢y, are given in eV. The vertical vector symbolizes the excitation from ground state 1
to the 5th state.
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Some information about the vibrational eigenstates €, of this HOD—Hamiltonian
Hy is given in Figure 14.

Therein, the main location of the eigenfunctions ¢y is marked schemati-
cally. We detect states which are located “in the OD-bond” only (pseudo
pure OD-vibrations), e.g. state k = 24. Thus, we can take state k = 24
as target state of our optimization task “Excite vibrations of the OD-bond
only”. Assuming the molecule’s initial occupation to be |ck|?(0) = g1 (pure
ground state occupation) we have got the following optimization task:
Determine (w, E,) so that \céZ’ET)P(T) ~ 1.

This problem can be solved. Figure 15 shows a section of the parameter
space (w, E,) € R x R where |co4|*(7) has got a maximum with |ce4|?(7) &~ 1
(for more details see [35] or Figure 21 which shows the decay of |c1|*(t) and
the birth of |ca4|?(¢) in the optimally controlled process).

Two problems from the controlled HOD—excitation task will serve as test
problems for a detailed description of the performance of AQRS (see Table
II).

5.2 SELECTIVE ISOMERIZATIONS

For many molecules there are different stable configurations (isomers), e.g.
BeyH3D~ has got the isomers BeoH3D~(Co,) (with symmetry Csy,) and the
slightly less stable one BesH3D~(Cj,). The structures of these two configu-
rations are shown in Figure 16.

For controlling chemical reactions or for separating isotopes [11] it can be
very helpful to selectively switch to the configuration of the molecule which
e.g. is needed in the reaction [10]. In the case of BesHsD~ the ground state
configuration is the C,y, one. We are interested in a reaction path for a se-
lective isomerization Ca, — Cs,,.

The original study of the BesH3zD~ system [40] has shown, that both,
Cs, and Cjs,, isomers can be converted into each other by rotations of the
Be-H bonds. We restrict the investigation to these degrees of freedom (see
[32] for details). From these assumptions a first simple, one-dimensional
model Hamiltonian Hy for the BesH3D~ isomerization can be deduced (see
[32] again). Its investigation can be seen as a stimulating example for a
favourable strategy for the isomerization of other anions. Moreover, we can
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€L €k
la.u.] 39 40 38 [eV]
3 36
34 33 33
31 130 —32
28 2 07 29
0.1} 25 .
23 9 24
20 21 13
_16 g5 17
13 14
12
11 9 10
7 1
0.5} 6 : 4
4
2
1 15

-0.2

F1c. 14. Representation of the first 40 vibrational states of HOD. Each state is repre-
sented by its number k& and by a line which marks its energy €j (which is given on left axis
in atomic units, on the right in eV). The location of the lines with respect to the abscissa
represent the center of the corresponding wavepacket, i.e. if state k appears on the left,
then the OH bond is vibrating mainly, if it appears on the right hand side, then OD is

vibrating.

again use (2.11) as the basic dynamical equation.
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1-caa*(7)
0.8
0.6
0.4

0.2+ wla.u.]

0.01140

.12
0.01135
E.[a. 0.1 0.08

F1G. 15. Final population |co4|?(w, E,-) of the 24th vibrational state of HOD versus w and
E, in atomic units. Initial state was the ground state k = 1. Obviously several pronounced

maxima lay close to each other.

The computations of the dipole matrix V, and the molecular eigenenergies
2 are based on ab initio calculations of the potential energy surface and the
dipole function for the electronic ground state of BesH3D~ at the M P4/6
— 317G level. In these calculations we observe that the potential energy
surface is symmetric. This implies that the molecular eigenstates ¢y, of Hy
have gerade or ungerade parity. Since the ground state k = 1 has gerade
parity all states 2k + 1 have so also, whereas all states 2k have ungerade
parity. By usage of z-polarized light all matrix elements

Vorsr2t = — < Qapgr|pt o > = Voo (5.3)

between gerade and ungerade states (2k + 1) and (2) (k,I € N) vanish due
to the gerade parity of p. This implies: If we use z-polarized light and start
with an initial occupation with gerade parity (i.e. |¢1/2(0) = 1) we have to
consider the gerade states and their dipole matrix V only.
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CQVZ

ngi

Fic. 16. Two isomers of BeaH3D™: the stable configuration with Cg, symmetry (top)
and the slightly less stable one with Cs, symmetry (bottom).

For demonstration of the internal structure of the gerade dipole matrix
Figure 17 shows a level plot of V. The molecular eigenspectrum €2 is char-
acterized in Figure 18 restricted to the states with gerade parity. Appar-
ently, the states k = 1,3,5,... belong to the Cy, isomer while the states
k=17,11,... belong to the target Cs, configuration. Others (k = 21,23,...)
are delocalized.

Fixing the usage of z-polarized light the task of finding a selective iso-
merization reaction path can be formulated as: Start with |c1|*(0) = 1 and
optimize |c11]?(7). Unfortunately we cannot find a single optimal laser pulse
with |c11]2(7) & 1. But we can succeed if we search for series of picosecond
laser pulses. For example, Figure 19 shows such an optimized process: Four
single pulses are iterated. Each of them corresponds to a selective excitation
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15 20 25
Fic. 17. Level plot of the dipole matrix V. of the Bel test problem. The darker the

square at (k,[) the larger is |V/,|: the large values of V are concentrated near its diagonal.

(Pulse I: 1— 3, Pulse II: 3— 15, Pulse III: 15— 23, and Pulse IV: 23— 11).
Their succession effects the required selective isomerization Cy, — Cs,,.

Three problems from this “controlled BesH3D~ isomerization task” will
serve as test problems for a detailed description of the performance of AQRS
(see Table IT). Two of them (‘Bel’ and 'Be3’) represents the case of -
polarized light and a pure interaction of the states with gerade parity. 'Bel’
corresponds to above Pulse II. The other (‘Be2’) represents the “full” problem
including all states and the excitation of an ungerade state starting from an
gerade initial occupation.
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Fic. 18. Vibrational potential of BeaH3D™ together with the energies g1 and the
eigenvalues o941 of its vibrational eigenstates with gerade parity. The potential minima
on the left and the right represent the configuration with Csz, symmetry while the main
minimum corresponds to the stable Cj, isomer. Note that the eigenstates por+1(z) of
some states (e.g. 7 or 11) are mainly localized in the Cs,~minima while others (e.g. 1)
are localized in the main minimum only. Thus, the states 7 or 11, for example, represent

the Cgz,—isomer and the ground state 1, for example, the stable Cs,—isomer.
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- le u
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I D15,15
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F1c. 19. Isomerization process for BeosHsD™ consisting of four laser pulses each 8.35 ps
long. Each subfigure belongs to the evolution of the population of a single state. You see
the states 1 — 3 — 15 — 23 — 11 being totally occupied one after the other. Anyone, for
whom the 33.4 picoseconds needed for this isomerization appear too long, may look for a

shorter process in [32].
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5.3 PERFORMANCE OF AQRS

Selective vibrational excitation and selective isomerization are two fields
in which Quantum Chemical modelling leads to the basic equation (2.11).
AQRS is designed for efficiently computing the populations of (2.11), i.e. for
solving the corresponding inner problem. Hence, we demonstrate the perfor-
mance of AQRS in real life problems from the fields “vibrational excitation
of HOD” and “selective isomerization of BeoHsD~7”. Table II presents the
chosen test problems. Note that they represent all typical situations which
have been evoked in the previous subsections. The last test problem ('Be3’) is
something of a rare case: the field amplitude E, is extraordinarily high. ‘Be3’
is separated from the other ones and discussed at the end of this subsection.

The performance of AQRS in these test problems is presented in Fig-
ures 20-23 on pages 115-118 and Figure 25 on page 120. Altogether, these
figures are described in Table IV on page 114. Each figure is divided into 6
subfigures, fills one page and shows data which is significant for the AQRS—
performance on the current test problem. These significant data contain
answers to the most important questions concerning AQRS:

e Are the populations computed by AQRS sufficient approximations of
the smoothed exact populations? (Subfigures 1&2)

e How do the d—control and the local relative accuracy control work?
(Subfigures 3&4)

e Does AQRS essentially reduce the computational complexity of solv-
ing the original problem (2.11) (which is represented by the QRS(c0)-
solution)? (Subfigure 5)

e How much of the computational complexity of AQRS is caused by the
error estimator, how much by the pure QRS-subintegrations? (Subfig-
ure 6)

The control parameters of AQRS are equally fixed over all presented compu-
tations: the allowed error percentage was set to § = 0.1, the recursion depth
limit to m = 10. For all other control parameters the entries in Table I are
used. In all cases the subinterval length T = 2j7/w was fixed by the choice
j =6 (in no case this T—choice was corrected by the checking procedure).
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In addition to the graphical answer to the four questions named, Table III

problem | description parameters dim.
name | of problem w E, s| 7 | (ODE)
[du] | fau] | [au] [ps]

OH single OH bound 0.8866 | 0.0160 | 0.0658 |1 ] 1.0 44
excitation 1 — 5

HOD HOD-molecule 0.89752 | 0.0114 | 0.0960 |1 | 1.0 120
excitation 1 — 24

Bel BesHsD ™ gerade, | 1.13064 | 0.00255 | 0.0152 | 2 | 8.35 50
pulse IT of
isomerization

Be2 BesHsD~ full, 2.0628 | 0.00128 | 0.00712 | 5 | 8.35 100
nonoptimal
excitation 5 — 10

Be3 BeaHsD™ gerade, 3.383 ] 0.00763 | 0.2443 | 3| 1 50
isomerization,
pulse II in [32]

TABLE II. Specification of the considered test problems. The laser frequency w is
given in dimensionless units ([d.u.]) described in Section 2.1 and in atomic units
([a-u.]) normally chosen in Quantum Chemistry (w[a.u.]= 1 — w[Hz]=4.152-10'6).
In all test problems the laser shape f is a sir®—function; its field amplitude E,
is given in [a.u] (B Jau]= 1 — E.[V/m]=5.142 - 10!1), its pulse length 7 in
picoseconds ([ps]). s denotes the number of the initial state of the considered test
problem. The last column gives the dimension of the problem’s basic ODE (2.11).
In all cases V. and ) are computed as explained above. Note the extremely high
field amplitude E, in the last problem 'Be3’.
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contains conclusive comparisons of the different total computational com-

plexities.
-1
problem ( C}ff (; )) % x 100% | speedup factor
OH 120 14 % 90
HOD 30 04 % 40
Bel 180 26 % 150
Be2 330 23 % 285
Be3 12 29 % 10

TABLE III. Computational effort caused by AQRS on the whole integration inter-
val I for the test problems from Table II. The first column contains the reduc-
tion factor by which AQRS reduces the computational complexity of the “exact”
QRS(oco)—solution. The second column gives the share of computational effort pro-
duced by error estimation in AQRS in per cent. For a description of the complexity
measures Cpr, Cpr and Ep 1 see pages 53 and 98. In the last column the real-time
speedup factor for AQRS in comparison with QRS(00) is listed. 'Be3’ represents
the rare case “switching to symmetric mode” because of extremely high laser field

strengths (see page 113).

Altogether, these tables and figures allow the following conclusions:

1. AQRS is a smoothing integrator. Its results give sufficient approxima-
tions of diagII(t), the smoothed evolution of the populations of (2.11).

2. In comparison to the usual (QRS(co))-integration of (2.11) AQRS ob-
tains a speedup factor of the order of 10? (for field amplitudes E, which

are not extremely high).
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3. The computational complexity of the QRS—subintegrations in AQRS
strongly dominate that complexity caused by the computations in error
estimation scheme.

The presentation of the performance of AQRS in our first four test prob-
lems still leaves some important questions unanswered:

First of all, let us discuss the case of nonresonant excitations. AQRS is
intended to be used as the internal integrator in an optimization procedure
used for determining the absolute maximum of the population py(w, E,.,7) =
lek|?(w, By, 7) in the parameter space (w, E,) € R x R. Altogether, our test
problems correspond to resonant cases (with |cy|?(w’, E., 7) > 0). Naturally,
nonresonant parameter sets (w’, /) will also appear in such optimization
procedures (|cx|*(w’, EL, 7) < 1). Is AQRS still reliable and efficient in such
nonresonant cases? The reliability is already demonstrated by Figure 15
which is computed using AQRS and which can identically be reproduced
using QRS(c0), i.e. an “exact” integrator. In all computations needed for
Figure 15 (for all used parameter sets (w, E,.)) the speedup factor of AQRS in
comparison to QRS(c0) was about 30, in resonant and in nonresonant cases.
Thus, AQRS is in nonresonant cases as highly efficient as in resonant ones.
A similar result is found in all considered test problems.

Second, we should still ask for a direct comparison of the estimated relative
error () = (ex)(t,0)/{ex)(t,0) and the ezactrelative error € = ex(t,0)/ex(t,0):
Can the estimate be taken as a good approximation of the original? Figure 24
shows a comparison of (g)(¢,0) and &(¢,d) produced for the test problem
‘HOD’: the estimate (¢) reproduces the original & beautifully. Again, a sim-
ilar result is found in all considered test problems.

Last, but not least, an example should be given in which the accuracy
requirement forces AQRS to leave its “smoothing domain” § < 1. This is the
case in our last test problem ‘Be3’:

‘Be3d’ is taken from a series of pulses leading to an isomerization of BeoH3D~
(Cay — Cs,) (cf. Pulse ITin [32]). Figure 25 shows the performance of AQRS
on the test problem 'Be3’. We observe that AQRS is forced to switch to its
symmetric mode in some subintervals. In these subintervals AQRS cannot
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work as a smoothing integrator: in the symmetric mode elements Vy,; of
the dipole matrix are considered which correspond to e.g. |Ap| > w. But
although AQRS doesn’t work as a smoothing integrator it obtains a speedup
factor of about 10 (in comparison with QRS(oc)). This is caused by the
usage of sparsed dipole matrices only; it is not due to stepsize increases.
The right bottom subfigure of Figure 25 shows the relative error estimate
computed by AQRS before the switch to the symmetric mode is done. The
estimated relative errors reach up to 40%, an effect we can explain looking
back to Figure 12: Dipole elements Vi with |Af/w| ~ 1 (corresponding to
d ~ 1) play a central role in the process. For them, both the +-terms give
similar contributions to Il as Figure 12 shows. Thus, we cause an error of
up to 50%, if we only consider the term miny |AF]|.
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Some selected components of the
“exact” QRS(oo)—populations p(t)
of the considered problem as func-
tions of time ¢ in picoseconds.

AQRS-populations p(t) of the con-
sidered problem as functions of
time ¢; same components as in the
left subfigure.

Sequence (do,...,0n) of the -
values 6 = ¢j, which are cho-
sen by AQRS on the subintervals
Iy... Iy, I, = [kT, (k + 1)T).

Estimated relative
local error (g5, /€0)(t) computed in
the local relative accuracy control
of AQRS as a function of ¢t. TIts
upper bound € (allowed error per-
centage) is shown as a dotted line.
See page 92 for an explanation of
the relative local error scheme.

Evolution of the cumulative com-
putational effort produced by
AQRS for problem P until time
t in comparison with that of
QRS(00): Zpo4/Cpog(00) and
Cr0,4/CPpjo(00) as functions of .
See pages 53 and 98 for a definition
of the complexity measures.

Evolution of the computational ef-
fort produced by the AQRS—error
estimator for problem P on subin-
terval I in comparison with the
pure AQRS-integration effort on
I: Epr./Ipy, as a function of t.
See page 98 for a definition of the
complexity measures.

TABLE IV. Explanation of the figures on the following pages: The 6 subfigures of
each figure contain essential information about the AQRS—performance on the 4
considered test problems.
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Fic. 20. Documentation of AQRS performance for problem ’OH’. See Table IV on page
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F1c. 21. Documentation of AQRS performance for problem '"HOD’. See Table IV on page
114 for description of the single subfigures.
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Fic. 22. Documentation of AQRS performance for problem 'Bel’. See Table IV on page
114 for description of the single subfigures.
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F1c. 23. Documentation of AQRS performance for problem 'Be2’. See Table IV on page

114 for description of the single subfigures.
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Fia. 24. Comparison of estimated relative error (€) = (ex)(¢,0)/{ex)(¢,0) and exact
relative error € = ex(t, d)/ex(t, 0) for HOD.
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F1G. 25. Documentation of the performance of AQRS on test problem 'Be3’. The top 4
subfigures show the evolution of the exact (|cx|?) and AQRS-populations (|bx|?) of initial
state 3 and target state 8. Bottom left the d—sequence chosen by AQRS is shown (with
separation of the single subintervals). In subintervals carrying a > AQRS was forced to

switch to its symmetric mode. Bottom right the relative error estimate before switching

to symmetric mode is shown.
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6 CONCLUSIONS

We presented a new adaptive algorithm for an efficient simulation of the
influence of short laser pulses on the dynamical behaviour of single molecules.
We observed that the solution of this simulation task is the indispensable key
problem with respect to the realization of a laser—assisted, optimally selective
vibrational excitation of a molecule.

The quantum chemical modelling of these laser-molecule interactions led
us to large ODEs i¢c = (Q + f(¢) coswtV)e. We saw that their solutions
¢ = (¢x) show multifrequency highly oscillatory behaviour, and that the cor-
responding populations |c;|?, or their running averages A7t |cx|? respectively,
contain all information of chemical relevance. A discussion of the applicabil-
ity of numerical methods which succeed in other highly oscillatory contexts
resulted in the conclusion that all these methods are inappropriate for solv-
ing this kind of problem efficiently. Thus, the efficient evaluation of these
averaged populations Ar |cx|? was discovered to be the numerical challenge.

Starting from an inspection in the physical interpretation of resonant tran-
sition conditions in light—matter interaction processes, we developed the basic
quasiresonant smoothing idea which claims that dropping specific elements of
the ODE’s interaction matrix V' does not disturb the evolution of its popula-
tions. Indeed, this idea allowed the construction of quasiresonant smoothing
algorithms QRS(0). In QRS(6), the proposed sparsing of V is controlled by
a splitting parameter 6 and leads to smooth solutions and smooth popula-
tions. The smoothness of the solutions allows comparatively large stepsizes
while the smooth populations approximate the running average A7 |cx|* of
the original ones. We observed that an integration using QRS(J) with a
well-chosen § obtains a large gain in efficiency in comparison with standard
integration of the original ODE.

We used perturbation analysis of the effect of V' on the running average of
the populations for developing an error estimator which allows an adaptive
choice of the splitting parameter § with respect to a given accuracy require-
ment. This led us to an adaptive QRS-version (AQRS) which can be used
as an efficient and reliable black box integrator for our kind of problem. Its
reliability was proved for a subclass of problems for which the error estimate
is exact. The performance of AQRS in some test problems demonstrated its
efficiency and reliability in real life applications: in comparison with standard

Cr Cp
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integrators it obtained speedup factors of the order of 10%.
Of course this is not the end of the story. The presented results draw
attention to further perspectives:

e So far, AQRS was not applied to very large real life problems, because
today extended chemical models are not available. This is because the
quantum chemical preparation of such models itself is an ambitious
problem. In the framework of [32] a first step in this direction will be
done.

e We observed that the simulation of laser—molecule interaction is only
the inner problem of a chemically fundamental optimization task (“de-
termine the most selective laser pulse”). Thus, the most important ex-
tension of our method is its incorporation into an adapted optimization
framework. This is already prepared by the object—oriented implemen-
tation of AQRS and QRS(4) and will be realized next.
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R, C
C nxn

VR w

{V}(#)
€q>(t, (5)
(€a(t, 0))
Ug(t, 8)
SR,I
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SYMBOLS

real and complex numbers

complex n X n matrices

usual tensor product of vectors v, w

number of states of the considered physical model
diagonal matrix of the eigenfrequencies of the molecule
light—frequency of the external laser pulse

shape function of the external laser pulse

matrix representation of the full electric dipole operator of the
molecule

local time average operator, see page 41

vector of expansion coefficients (see page 14), solution of the
basic equation of motion (2.11)

local time average of ¢(t): v = Arc

interaction picture expansion coefficients: b(t) = ¢/(t), see page
60

local time average of b(t): 8 = Arb

probability matrix of the problem: p = ¢ ® ¢, see page 16
local time average of p(t): m = Agp

local time average of p;(t): II = Arp;

approximative local time average of pr(t), see page 69.

solution of the basic equation (2.11) using dipole matrix V), see
71

probability matrix using dipole matrix V

sparsing error measure for smoothed probabilities
estimate for eg(t, )

time propagator of the non-disturbed problem, see page 58

real- or imaginary part interaction skeleton, see page 84.



REFERENCES

1]

2]

3]

V.I. Arnold. Geometrical Methods in the Theory of Ordinary Differential
Equations. Springer—Verlag, Berlin, Heidelberg, New York, Tokyo, 2nd
edition, 1988.

A.D. Bandrauk. Atomic and molecular processes with short intense laser
pulses. Plenum Press, New York, first edition, 1988.

N. Bloembergen and A.H. Zewail. Energy redistribution in isolated
molecules and the question of mode—selective laser chemistry revised.
J. Phys. Chem., 88:5459-5465, 1984.

N.N. Bogolyubov and V.S. Korolyuk. The research of Y.A. Mitropolski
in the realm of the theory of nonlinear oscillations. Ukr. Math. J., 29:3—
14, 1977.

H.P. Breuer, K. Dietz, and M. Holthaus. Selective excitations of molec-
ular vibrations by interference of floquet states. Preprint SC 93-10,
Universitat Bonn, Physikalisches Institut, 1990.

H.P. Breuer, K. Dietz, and M. Holthaus. Radiation Effects and Defects
in Solids, 122-123:91-106, 1991.

H.P. Breuer, K. Dietz, and M. Holthaus. Selective excitations of molecu-
lar vibrations by interference of floquet states. J. Phys. B, 24:1343-1357,
1991.

M.M. Chawla and P.S. Rao. Noumerov-type methods with minimal
phase—lag for the integration of second order periodic initial-value prob-
lems. J. Comput. Appl. Math., 11:277-281, 1984.

M.M. Chawla and P.S. Rao. Noumerov-type methods with minimal
phase—lag for the integration of second order periodic initial-value prob-
lems ii: explicit methods. J. Comput. Appl. Math., 15:329-337, 1986.

J.E. Combariza, B. Just, J. Manz, and G.K. Paramonov. Isomerization
controlled by ultrashort infrared laser pulses: Model simulations. J.
Phys. Chem., 95:10351, 1991.



REFERENCES 125

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J.E. Combariza and other, editors. Isotope Effects in Gas—Phase Chem-
istry, volume 502 of ASC Symposium Series. American Chemical Soci-
ety, Washington, 1992.

G. Denk. A new numerical method for the integration of highly oscil-
latory second—order ordinary differential equations. Applied Numerical
Mathematics, 13:57-67, 1993.

P. Deuflhard. A study of extrapolation methods based on multi-
step schemes without parasitic solutions. Angewandte Mathematische
Physik, 30:177-189, 1979.

P. Deuflhard. Order and stepsize control in extrapolation methods. Nu-
mer. Math., 41:399-422, 1983.

P. Deuflhard. Recent progress in extrapolation methods for ordinary
differential equations. SIAM Rewv., 27:505-535, 1985.

P. Deuflhard and A. Hohmann. Numerische Mathematik I — Eine algo-
rithmisch orientierte Einfihrung. Walter de Gruyter, Berlin, New York,
2nd edition, 1993.

Z.E. Dolya, N.B. Nazarova, G. Paramonov, and V. Sacca. Localiza-
tion of population at specific vibrational levels of molecules pumped by
ultrashort IR laser pulses. Chem. Phys. Lett., 145(6):499-504, 1988.

W. Gautschi. Numerical integration of ordinary differential equations
based on trigonometric polynomials. Numer. Math., 3:381-397, 1961.

C.W. Gear and K.A. Gallivan. Automatic methods for highly oscillatory
ordinary differential equations. Scientific report, University Urbana,
1982.

O.F. Graff and D.G. Bettis. Modified multirevolution integration meth-
ods for satellite orbit computation. Celestial Mechanics, 11:443-448,
1975.

E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential
Equations I, Nonstiff Problems. Springer Verlag, Berlin, Heidelberg,
New York, Tokyo, 1987.



126

[22]

(23]

[24]

REFERENCES

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II,
Stiff and Differential-Algebraic Problems. Springer Verlag, Berlin, Hei-
delberg, New York, Tokyo, 1991.

B. Hartke, J. Manz, and J. Mathies. Mode-selective control of unimolec-
ular dissociation:... Chem. Phys., 139:123, 1989.

D.J. Higham and L.N. Trefethen. Stiffness of ODEs. BIT, 33:285-303,
1993.

A. Hohmann. An implementation of extrapolation codes in C++4. Tech-
nical Report TR 93-8, Konrad-Zuse-Zentrum, Berlin, 1993.

A. Hohmann and C. Wulff. Modular design of extrapolation codes.
Technical Report TR 92-5, Konrad-Zuse-Zentrum, Berlin, 1992.

D.G. Imre and J. Zhang. Dynamics and selective bond-breaking in
photodissociation. Chem. Phys., 139:89, 1989.

W. Jakubetz, B. Just, and J. Manz. Mechanism of state—selective vibra-
tional excitation by a picosecond laser pulse studied by two techniques.
J. Phys. Chem., 94:2294-2300, 1990.

B. Just. PhD thesis, Freie Universitat Berlin, 1993.

B. Just, J. Manz, and G. Paramonov. Series of ultrashort infrared laser
pulses with analytical shapes for selective vibrational excitations. Chem.
Phys. Letters, 193:429-433, 1992.

Ch. Lubich. Integration of stiff mechanical systems by Runge-Kutta
methods. SAM-Report 92-04, ETH Ziirich, 1992.

J. Manz, G. Paramonov, M. Polasek, and Ch. Schiitte. Overtone state—
selective isomerization by series of infrared picosecond laser pulses:
Model simulations for BesH3sD~. Israel Journal of Chemistry, 34, 1994.

A. Messiah. Quantenmechanik, volume 2. de Gruyter, Berlin, New
York, second edition, 1985.



REFERENCES 127

[34]

[35]

[36]

[37]

[38]

[39]

[43]

[44]

[45]

W.L. Miranker and G. Wahba. An averaging method for the stiff highly
oscillatory problem. Math. Comp., 30:383-399, 1976.

G. Paramonov. Blue shift and ultrafast selective excitation of high-lying
molecular vibrational states. Phys. Letters A, 152:191-198, 1991.

G. Paramonov and V. Sacca. Resonance effects in molecule vibrational
excitation by picosecond laser pulses. Phys. Letters A, 97:340-342, 1983.

R. Petrishin. Averaging with regard to resonance relations between
frequencies in oscillatory systems. Ukr. Math. J., 33:204-208, 1981.

L. Petzold. An efficient numerical method for highly oscillatory ordinary
differential equations. SIAM J. Numer. Anal., 18:455-479, 1981.

G.C. Pimentel, editor. Opportunities in Chemistry. National Accademy
Press, Washington D.C., 1985.

M. Polasek and R. Zahradnik. International Journal of Quantum Chem-
1stry, 1993. in press.

M. Quack. Theory of unimolecular reactions induced by monochromatic
infrared radiation. J. Chem. Phys., 69:1282-1307, 1978.

M. Quack. Reaction dynamics and statistical mechanics of the prepara-
tion of highly excited states by intense infrared radiation. Adv. Chem.
Phys., 50:397-473, 1982.

Ch. Schiitte. A quasiresonant smoothing algorithm for the fast analysis
of selective vibrational excitation. Impact of Computing in Science and

Engineering, 5:176-200, 1993.

T.E. Simons and A.D. Raptis. Numerov—type methods with mini-
mal phase—lag for the numerical integration of the one-dimensional
Schrodinger equation. Computing, 45:175-181, 1990.

M. Urabe. Galerkin’s procedure for nonlinear periodic systems. Arch.
Rat. Math. Anal., 20:120-152, 1965.



128 REFERENCES

[46] M. Urabe and A. Reiter. Numerical computation of nonlinear forced
oscillations by Galerkin’s procedure. J. Math. Anal. Appl., 14:107-140,
1966.

[47] R.L. Vander Wal, J.L. Scott, and F.F. Crim. Selectively breaking the
OH-bond in HOD. J. Chem. Phys., 92:803, 1990.

[48] C.E. Velez. Numerical integration of orbits in multirevolution steps.
Technical Note D-5915, NASA, Goddard Space Flight Center, Green-
belt, Maryland.

[49] A.H. Zewail. Laser selective chemistry — is it possible? Physics Today,
33:27-33, Nov. 1980.



