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Integrated Line Planning and Passenger Routing:
Connectivity and Transfers”

Marika Karbstein™*

1 Introduction

The integrated line planning and passenger routing problem is an important planning prob-
lem in service design of public transport.

The infrastructure of the public transport system is represented by a graph where the
edges correspond to streets and tracks and the nodes correspond to stations/stops. We are
further given point-to-point demands, i. ., the number of passengers that want to travel from
one point in the network to another point. A line is a path in the network, visiting a set
of stops/stations in a predefined order. Passengers can travel along these lines and they can
change from one line to another line in a stop/station if these lines intersect. Bringing capac-
ities into play, the task is to find paths in the infrastructure network for lines and passengers
such that the capacities of the lines suffice to transport all passengers. There are two main
objectives for a line plan, namely, minimization of line operation costs and minimization of
passenger discomfort measured in, e. g., travel times and number of transfers.

In general, the computed line system should be connected, i.e., one can travel from one
station to any other station along the lines. Associating cost with the lines and searching for
a cost minimum set of lines such that all stations are connected, gives rise to a combinatorial
optimization problem which covers the connectivity aspect of integrated line planning and
passenger routing. We denote this problem by the Steiner connectivity problem. The solution
of a Steiner connectivity problem gives a lower bound on the costs of a line plan.

In this paper we introduce some results for the Steiner connectivity problem and show that
they can be used to handle the transfer aspect for the line planning problem. In Section 2, the
Steiner connectivity problem is introduced in more detail. Here, we focus on the special case
to connect two nodes (terminals) via a set of lines or paths. In Section 3, we propose a new
model for the integrated line planning and passenger routing problem that handles transfers
in an approximative way and involves a type of the 2-terminal Steiner connectivity problem
as pricing problem. We briefly discuss computational results in Section 4 and the optimized
line plan for ViP Potsdam of the year 2010 in Section 5.
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Figure 1: Example of a Steiner connectivity problem. Left: A graph with four terminal
nodes (T' = {audae7f}) and six paths (':P = {pl = (abvbc70d)7p2 = (ef7fg)7p3 = (ae)7p4 =
(ef.fc),ps = (gd),pe = (fg,gc,cd)}). Right: A feasible solution with three paths (P =

{p3. Ps, Pe}).

2 Steiner Connectivity Problem

The Steiner connectivity problem is a generalization of the well-known Steiner tree problem.
Given a graph with costs on the edges, the Steiner tree problem is to find a cost minimum
set of edges that connects a subset of nodes. The Steiner connectivity problem is to choose a
set of paths instead of edges. Steiner trees are fundamental for network design in transporta-
tion and telecommunication; see Dell’ Amico, Maffioli, and Martello [1] for an overview. In
fact, the Steiner tree problem can be seen as the prototype of all problems where nodes are
connected by installing capacities on individual edges or arcs. In the same way, the Steiner
connectivity problem can be seen as the prototype of all problems where nodes are connected
by installing capacities on paths which is exactly the case in line planning. Hence, the signif-
icance of the Steiner connectivity problem for line planning is similar to the significance of
the Steiner tree problem for telecommunication network design.

A formal description of the Steiner connectivity problem (SCP) is as follows. We are
given an undirected graph G = (V, E), a set of terminal nodes T C V, and a set of elementary
paths P in G. The paths have nonnegative costs ¢ € IRZO. The problem is to find a subset of
paths P’ C P of minimal cost ¥ ,c 5 ¢, that connect the terminals, i. e., such that for each pair
of distinct terminal nodes #1,#, € T there exists a path g from #; to #; in G such that each edge
of g is covered by at least one path of P’. We can assume w.l.o.g. that every edge is covered
by a path, i. e., for every e € E there is a p € P such that e € p; in particular, G has no loops.
Figure 1 gives an example of a Steiner connectivity problem and a feasible solution.

Main results about complexity, approximation, integer programming formulations, and
polyhedra can be generalized from the Steiner tree problem to the Steiner connectivity prob-
lem, see [5, 7]. In the following we want to consider the two-terminal case of the Steiner
connectivity problem, see also [3]. The problem is to find a minimum set of paths connecting
two given nodes s and .

We call a set of paths P’ C P an st-connecting set if s and t are connected in the subgraph
H = (V,E(?")), i.e., P’ is a solution for the Steiner connectivity problem with T = {s,7}. A
set P’ C P is st-disconnecting if P\ P’ is not an st-connecting set.
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Algorithm 1: Primal-dual minimum sz-connecting set algorithm.

Input : A connected graph G = (V,E), a set of paths P with costs ¢ € ]Rzo that covers
all edges E, s,t € V. N

Output: The value of a minimum cost st-connecting set.
d(s):=0,d(v) == Vv e V\{s}
all nodes are unmarked
while 7 is unmarked do
Choose v with v = argmin {d(u«) : u unmarked}
for all p € P withv € p do
for unmarked w with w € p do

if d(w)>d(v)+cp then

| dw):=d(v)+cp

end
end
end
mark v
end
return d(t)
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Algorithm 1 computes the cost of a minimum s7-connecting set. It generalizes Dijkstra’s
algorithm to our setting. The distances from node s are stored in node labels d(v). The
algorithm can be extended such that it also determines the minimum s7-connecting set &’

A cut formulation for the SCP with T = {s,1} is:

(MCS) min Y cpxp
peP
(i) st Y x>1 VseW CV\{t}
PEPsw)
x, €{0,1} Vpe?d.

Here, x, isa 0 /1-variable that indicates whether path p is chosen (xp = 1) or not (x, = 0).
Furthermore, Pgy) := {p € P : §(W) N p # 0} is the set of all paths that cross the cut
O(W)={{u,v} €E : [{u,v}NW| =1} at least one time.

Theorem 1. The inequality system of (MCS) is TDI.

This can be shown by extending Algorithm 1 to a primal-dual algorithm that defines
integer solutions for (MCS) and its dual program.

Setting ¢ = 1 in Algorithm 1 and interpreting the set of paths P as lines and s and ¢ as
origin and destination stations, then the algorithm computes the minimum number of lines
that are necessary to connect s and . This number corresponds to the minimum number of
transfers minus 1 that are necessary to travel from s to . The calculation of the minimum
number of transfers is the basic idea of the model introduced in the next section.



3 A Transfer Model for Line Planning

In this section we want to propose a model for line planning and passenger routing that
account for the number of unavoidable transfers. Each passenger path is associated with
its number of minimum transfers with respect to the given set of all possible lines. More
precisely, considering a certain passenger path, it may not be possible to cover this path by
a single line or even by two lines, i.e., in any definition of a line plan, passengers on the
path under consideration have to transfer at least once or twice, respectively. We call such
transfers unavoidable.

We use the following notation. Consider a public transportation network as a graph N =
(V,E), whose nodes and edges correspond to stations and connections between these stations,
respectively. Denote by .Z the line pool, i. e., a set of paths in NV that represent all valid lines
and by .# C N the set of possible frequencies at which these lines can be operated. If line / is
operated with frequency f, ky r € Q4 denotes the capacity and ¢ y € Q. the operation cost of
this line. Let further (dy) € szv be an origin-destination (OD) matrix that gives the travel
demand between pairs of nodes, and denote by D = {(s,z) € V x V : dy > 0} the set of all
OD-pairs with positive demand. Derive a directed passenger routing graph N = (V,A) from
N by replacing each edge e € E with two antiparallel arcs a(e) and a(e). Denote by Ps,r) the
set of all possible directed (s,7)-paths in N for (s,¢) € D, and by & =5 yep Z(s,) the set of
all such paths; these represent travel routes of passengers. Associated with each arc a € A and
path p € & are travel times 7, € Q4 and T, = Y, , T4, respectively, and with each transfer a
(uniform) penalty o € Q. Let k,, be the minimum number of transfers that passengers must
do on path p if all lines in .Z would be built. A path p € & with k, unavoidable transfers
has travel and transfer time 7, ; = 7, +k,0. Let e(a) be the undirected edge corresponding
to a € A, and let us interpret a(n undirected) line in N in such a way that passengers can travel
on this line in both directions in N. The unavoidable transfer model is then

(UT) minA Z Z cz’fxgvf-—k(l—l)( Z T,,_ykpyp,kp>

e’ feF peP
Y yor, =dy V(s,t) €D )
peyst
Y vk, <X ) Ky VacA (2)
pEP:.acp leZLe(a)el feF
Y xp<1 Vie ¥ A3)
fez
xer€{0,1} Vie L NfeF 4)
Ypk, =0 Vpe 2. (5)

Model (UT) minimizes a weighted sum of line operating costs and passenger travel times.
We use binary variables x, s for the operation of line / € . at frequency f € .%. The contin-
uous variables y, x, account for the number of passengers that travel on path p € & doing at
least k, transfers. Equations (1) enforce the passenger flow. Inequalities (2) guarantee suffi-
cient total transportation capacity on each arc. Inequalities (3) ensure that a line is operated
at one frequency at most.

Algorithm 1 can be extended such that it computes a travel-time minimal path from a
given node s € V to all other nodes including a uniform transfer penalty ¢ € ) for each
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transfer w.r. t. a given set of lines .Z”. More precisely, replacing c,, by the travel time on line
¢ from v to w in lines 7 and 8 of the algorithm and adding a ¢ for v # s in the same lines,
yields the following proposition.

Proposition 2. The pricing problem for the passenger path variables in model (UT) can be
solved in polynomial time.

The number k, accounts for the minimum number of transfers w.r.t. all lines .Z. In a
final line plan usually only a small subset of lines ¥’ C .Z is established, i.e., the number
of necessary transfers on a path p might be much larger. Since offering direct connections
is a major goal in line planning, we included constraints to ensure enough capacities for
passenger paths considered as direct connections. Let .Z5; be the number of lines supporting
a direct connection from s to 7, %y (a) = {{ € Zy : a € {} be the direct connection lines for
(s,t) containing arc a, and P = {p € P : k, = 0} be the set of all passenger paths from s
to ¢ with 0 unavoidable transfers. Then we can define direct connection constraints for each
arc and each OD pair

Z Z Ypo < Z ZK£7fX£7f Va€A,(s,t) €D. (6)

(uv)eD peP), acp, Liw(a)CLa(a) teZy(a) feF

These constraints are a combinatorial subset of the so-called dcmetric inequalities [4] that
enforce sufficient transportation capacity to route all sz-paths with O transfers via arc a. For
each path p € 20 = U(s.nepPs: we then have an additional variable yp, 1 which come into
play if the associated direct connection constraints for y, o are not satisfied. Then the path
can still be chosen in the optimization model but it is associated with at least one transfer and
incurs one transfer penalty.

4 Computational Results

We made computations for several instances, e.g., a SiouxFalls instance from the Trans-
portation Network Test Problems Library of Bar-Gera, a Dutch instance for the train network
introduced by Bussieck in the context of line planning [6], an artificial China instance based
on the 2009 high speed train network and some real world instances provided by our cooper-
ation partner Verkehr in Potsdam GmbH.

For the SiouxFalls, Dutch, and China instances it turned out that it already suffice to dis-
tinguish passenger paths on direct connections and passenger path with one transfer and to
consider the direct connection constraints. Indeed, evaluating the computed line plans shows
that each passenger path of these instances is either a direct connection path or involves
exactly one transfer. Since the Potsdam instances are real multi-modal public transportation
networks, there exist several passenger path containing two or more transfers. However, mod-
eling transfers between different transportation modes via transfer arcs (including a transfer
penalty) and distinguishing direct connection paths from paths with at least one transfer for
paths of one transportation mode via the direct connection constraints (6) yields a tractable
model also for the Potsdam instances that estimates the travel times and transfers quite accu-
rately.



5 Line Plan for Potsdam 2010

A reorganization of the line plan in Potsdam became necessary when the public transport
company of Potsdam, ViP Verkehrsbetriebe Potsdam GmbH, took over six additional bus
lines that were formerly operated by Havelbus Verkehrsgesellschaft mbH. The new line plan
should minimize the travel time at a same cost level, and ViP emphasized the importance of
a minimal number of transfers.

Our mathematically optimized solution for the Potsdam line plan 2010 minimizes the
total number of transfers by around 5% in comparison to a “hand made” plan on the basis of
experience, see [2]. It further reduces the cost by around 4% and the perceived travel time
by around 6%. ViP also certified that this line plan was indeed practicable and established a
slightly modified version of our optimized solution.
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