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Computing the nearest reversible Markov chain

Adam Nielsen∗and Marcus Weber†

Abstract

Reversible Markov chains are the basis of many applications. However,
computing transition probabilities by a finite sampling of a Markov chain
can lead to truncation errors. Even if the original Markov chain is re-
versible, the approximated Markov chain might be non-reversible and will
lose important properties, like the real valued spectrum. In this paper, we
show how to find the closest reversible Markov chain to a given transition
matrix. It turns out that this matrix can be computed by solving a convex
minimization problem.

1 Introduction

A Markov chain with n ∈ N states is described through a transition matrix
P ∈ Rn×n, i.e.

n∑

j=1

Pij = 1 and Pij ≥ 0

for i, j = 1, . . . , n. A vector π ∈ Rn is called a probability distribution if

n∑

i=1

πi = 1 and πj ≥ 0

for j = 1, . . . , n holds. A Markov chain or its corresponding transition matrix
P is called reversible according to a probability distribution π if the following
equation

DP = PTD

is valid for the diagonal matrix D = diag(π1, . . . , πn). In this case, π is a
stationary distribution of the Markov chain, i.e.

πTP = πT .

The main result of this article is that for any transition Matrix P , any proba-
bility distribution π, and any norm || · || on Rn×n which is induced by a scalar

product, there exists a unique transition matrix P̃ which is reversible according
to π and has minimal distance to P with respect to the norm || · ||.

This article is structured as follows. First, we will prove the above conjecture.
Then, we show how to numerically obtain the reversible matrix P̃ , and discuss
the computational cost and include a perturbation analysis. Finally, we will
give an application and a numerical example.

∗nielsen@zib.de
†weber@zib.de
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2 Existence Proof

Given a stochastic matrix P and a stationary distribution π, it will be proven
in the following that there exists a unique transition matrix P̃ which minimizes
||P̃ − P || and is reversible according to π.

First, let us consider

U = {A ∈ Rn×n | DA = ATD and ∃k ∈ R with

n∑

j=1

Aij = k for all i = 1, . . . , n}

where D = diag(π1, . . . , πn) denotes the diagonal matrix with values πi on the
diagonal. Notice that U is a subspace of Rn×n because for A,B ∈ U with∑n
j=1 a1j = k1 and

∑n
i=1 b1j = k2 we obtain for any α, β ∈ R that

D(αA+ βB) = αDA+ βDB = αATD + βBTD = (αA+ βB)TD

and
n∑

j=1

αaij + βbij = αk1 + βk2 for all i = 1, . . . , n.

We can show the following property:

Lemma 2.1. For A ∈ U with
∑n
j=1Aij = k it holds πTA = kπT .

Proof. Since A ∈ U , we have πiAij = πjAji. Therefore, we obtain

(πTA)i =

n∑

l=1

πlAli = πi

n∑

l=1

Ail = πik.

For an understanding of the space U , the following matrices are of interest:

A
[r,s]
ij =





πs if i = r and j = s,

πr if i = s and j = r,

1− πs if i = j = r,

1− πr if i = j = s,

1 if i = j and s 6= i 6= r,

0 else,

and

δ
[r,s]
ij =





1 if i = j and i 6= r,

1 if i = r and j = s,

0 else.

Proposition 2.1. The set

{A[r,s] | (r, s) ∈ IA} ∪ {δ[r,s], δ[s,r] | (r, s) ∈ IB} ∪ {Id}
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is a basis of U where Id is the identity matrix and

I = {(r, s) | 1 ≤ r < s ≤ n},
A = {i : πi 6= 0},
B = {i : πi = 0},
IA = {(r, s) ∈ I | r ∈ A or s ∈ A},
IB = {(r, s) ∈ I | r, s ∈ B}.

The dimension of U is given by

dim(U) =

(
n

2

)
+ 1 +

(|B|
2

)
.

Proof. One may notice that the row sum of Id, A[r,s] and δ[r,s] is always one
and that

DA[r,s] =
(
A[r,s]

)T
D

holds. The latter can be seen by

(
DA[r,s]

)
ij

=

n∑

k=1

DikA
[r,s]
kj

= πiA
[r,s]
ij

(∗)
= πjA

[r,s]
ji

=

n∑

k=1

A
[r,s]
ki Dkj

=
(

(A[r,s])TD
)
ij
,

where (∗) holds because for i = r and j = s or vice versa we have

πiA
[r,s]
ij = πrπs = πsπr = πjA

[r,s]
ji ,

for i = j the equation in (∗) is trivial and in all other cases we have A
[r,s]
ij =

A
[r,s]
ji = 0, and therefore A[r,s] ∈ U . Also, we have

Dδ[r,s] = δ[r,s]TD

for all (r, s) ∈ IB . This is because πr = 0 and, therefore,

Dδ
[r,s]
i,j =

{
πi if i = j,

0 else.

Since Dδ[r,s] is just a diagonal matrix, it is in particular symmetric and we
obtain

Dδ[r,s] = (Dδ[r,s])T = δ[r,s]TD,

the argument is analogous for δ[s,r]. To prove that these matrices are indeed a
basis of U , it remains to show that they are linearly independent and that they
span the subspace U .
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To see the linearly independence, consider now an arbitrary linear combina-
tion of zero:

∑

(r,s)∈IA

αr,sA
[r,s] +

∑

(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r] + αI = 0.

For (r, s) ∈ IA the matrix A[r,s] is the only matrix in the above linear combina-
tion that could have a non-zero entry in row r and column s and in row s and
column r. Therefore, we obtain

0 = αr,sπs and 0 = αr,sπr.

Thus, πs 6= 0 or πr 6= 0 provides αr,s = 0. For (r, s) ∈ IB , we obtain analogously

αr,s = 0 and βr,s = 0.

The linear combination reduces to α Id = 0 which, finally, leads us to α = 0.
It remains to show that the given matrices span the subspace U . Thus, let

us consider a matrix C ∈ U with
∑n
j=1 Cij = k for some k ∈ R. For (r, s) ∈ IA

define αr,s := Csr

πr
if πr 6= 0 and otherwise αr,s := Crs

πs
. From πrCrs = πsCsr we

get that
αr,sA

[r,s]
rs = Crs and αr,sA

[r,s]
sr = Csr.

For (r, s) ∈ IB choose

αr,s = Cr,s and βr,s = Cs,r.

Since each off-diagonal element appears in exactly one matrix, C differs from

C̃ :=
∑

(r,s)∈IA

αr,sA
[r,s] +

∑

(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r]

only in the diagonal. We also know that there exists l ∈ R with
∑n
j=1 C̃ij = l

for i = 1, . . . , n since C̃ ∈ U . Therefore, the matrix Ĉ := C̃ + (k − l) Id has
row-sum k and

Ĉii = k −
n∑

j=1,j 6=i

Ĉij = k −
n∑

j=1,j 6=i

Cij = Cii,

holds. Therefore,
C = Ĉ ∈ U,

which shows that the given matrices span U . Furthermore,

dimU = |IA|+ |IB |+ |IB |+ 1 = |I|+ |IB |+ 1.

The statement follows from

|I| =
(
n

2

)

and

|IB | =
(|B|

2

)
.
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Our goal is to find a matrix

P̃ ∈ X = {A ∈ U | Aij ≥ 0 for i, j = 1, . . . , n and

n∑

j=1

a1j = 1}

such that:

||P̃ − P || ≤ ||A− P || for all A ∈ X. (1)

To do so, let us characterize the set X. To simplify notation, let us denote the
basis of Proposition 2.1 by (vi)i=1,...,m with m = dimU and vm = Id.

For any A ∈ X we have a unique coefficent vector x ∈ Rm with A =∑m
i=1 xivi. From

∑n
j=1 aij = 1 we get that

1 =

n∑

j=1

aij =

n∑

j=1

(
m∑

l=1

xlvl(i, j)

)

=

m∑

l=1

xl




n∑

j=1

vl(i, j)




=

m∑

l=1

xl.

This can be rewritten in 1Tx = 1 where 1 ∈ Rm is the constant vector 1i = 1
for i = 1, . . . ,m. Further, we have aij ≥ 0 for all i 6= j if and only if xl ≥ 0 for
all l = 1, . . . ,m − 1. This can be rewritten as −xei ≤ 0 for i = 1, . . . ,m − 1.
The diagonal entries of A can be positive even if xm is negative. Let us quickly
go back to the old notation to see how we have to define the restriction here.
So let A be given by

A =
∑

(r,s)∈IA

αr,sA
[r,s] +

∑

(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r] + αId,

thus,

aii =
∑

(r,s)∈IA

αr,sA
[r,s]
ii +

∑

(r,s)∈IB

αr,sδ
[r,s]
ii + βr,sδ

[s,r]
ii + αIii.

Which leads to

aii =
∑

(r,s)∈IA
r=i

αr,s(1−πs)+
∑

(r,s)∈IA
s=i

αr,s(1−πr)+
∑

(r,s)∈IA
r 6=i 6=s

αr,s+
∑

(r,s)∈IB
r 6=i

αr,s+
∑

(r,s)∈IB
s6=i

βr,s+α.

The condition aii ≥ 0 is equivalent to −xgi ≤ 0 where

gi(j) =





1− πs if vj = A[i,s] for some s > i,

1− πr if vj = A[r,i] for some r < i,

0 if vj = δ[i,s] for some s,

1 else,
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for i = 1, . . . , n and j = 1, . . . ,m. Given the matrix

C = −1 ·




eT1
...

eTm−1

gT1
...
gTn




∈ R(n+m−1)×m,

the condition that A =
∑m
i=1 xivi is in set X is equivalent to

Cx ≤ 0 and 1Tx = 1.

In order to find a matrix P̃ ∈ X which satisfies inequality (1), let us recall that
the norm || · || is induced by a scalar product 〈·, ·〉, i.e.

||A|| =
√
〈A,A〉

for any matrix A ∈ Rn×n. We want to minimize the term

∥∥∥∥∥
m∑

i=1

xivi − P
∥∥∥∥∥

2

=

m∑

i,j=1

xixj 〈vi, vj〉 − 2

m∑

i=1

xi 〈vi, P 〉+ 〈P, P 〉

=
1

2
xTQx+ xT f + c (2)

with
Cx ≤ 0 and 1Tx = 1,

where
Q(i, j) := 2 〈vi, vj〉 , f(i) = −2 〈vi, P 〉

and
c = 〈P, P 〉 .

Since Q is a Gram matrix of linear independent vectors, it is positive definite.
This follows because for any x ∈ Rn it holds

xTQx =
∑

i,j

xiQijxj =

〈
n∑

i=1

xivi,

n∑

i=1

xivi

〉
.

Since v1, . . . , vn is a basis, we have that
∑n
i=1 xivi 6= 0 for x 6= 0 and, in

consequence, xTQx > 0 for x 6= 0. Since Q is positive definite, the quadratic
function (2) is strongly convex. Therefore, we have formulated the problem
into a strongly convex quadratic programming problem that attains its global
minimum, since the quadratic function is coercive, continuous and the set X is
non-empty because of Id ∈ X, see [9] Theorem 1.15. Also, the global minimum
is unique because the quadratic function is strongly convex.

Thus, we have proven the existence of a unique matrix P̃ ∈ X which fulfills
inequality (1). We will now discuss how to compute this matrix.
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3 Complexity and Perturbation

To avoid technical difficulties, we will assume in this chapter that πi > 0 for
i = 1, . . . , n. For A ∈ Rn×n the trace tr(A) is given by the sum of the diagonal
elements

tr(A) =

n∑

i=1

Aii.

It is known that
〈A,A〉F := tr(ATB)

is a scalar product on Rn×n for A,B ∈ Rn×n. This scalar product induces the
Frobenius norm

||A||F =
√
〈A,A〉F =

√√√√
n∑

i=1

n∑

j=1

|aij |2.

The following complexity analysis will be given according to the Frobenius norm.

3.1 Complexity

Unfortunately, the matrix Q is quite large, in particular we have Q ∈ Rm×m
where

m = dim(U) = 1 +
n2

2
.

Each entry of Q is given by a trace of two sparse matrices which can be computed
by the following formula

〈
A[r,s], A[r′,s′]

〉
F

=





n− πr − πr′ − πs − πs′ if r, r′, s, s′ are distinct,

n− 1− 2πs + (1− πr)(1− πr′) if r 6= r′, s = s′,

n− 1− 2πr + (1− πs)(1− πs′) if r = r′, s 6= s,

n− 1 + (1− πs)(1− πs′) + (1− πr)(1− πr′) if r = s′ or r′ = s,

n− 2 + (1− πr)2 + π2
r + (1− πs)2 + π2

s if r = r′ and s = s′.

.

Note that because of r < s and r′ < s′ other cases are not possible. We only
give a proof for the case r 6= r′ and s = s′, all other cases can be obtained

analogously. First, if A
[r,s]
ij 6= 0 for i 6= j it follows that either i = r, j = s or

i = s, j = r holds. Since r 6= r′, s = s′ we have A
[r′,s′]
ij = 0, therefore,

〈
A[r,s], A[r′,s′]

〉
F

=

n∑

i=1

A
[r,s]
ii A

[r′,s′]
ii

= n− 3 +A[r,s]
rr A[r′,s′]

rr +A
[r,s]
r′r′A

[r′,s′]
r′r′ +A[r,s]

ss A[r′,s′]
ss

= n− 3 + 1− πs + 1− πs′ + (1− πr)(1− πr′)
= n− 1− 2πs + (1− πr)(1− πr′).

Therefore, the computational cost to evaluate a single entry of Q does not
increase with n and the effort to compute and store Q is O(n4).

The convex minimization problem can be solved with a barrier method, e.g.
the interior point method. The method consist of N Newton iterations.
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The number N of Newton iterations to find a strictly feasible point is
bounded by

N ≤
√
n+ n2/2− 1 log

(
n+ n2/2− 1

ε

)
γ

where ε > 0 is the demanded accuracy and γ is a constant depending on
the choice of backtracking parameter, see [1], section 11.5.5. Therefore, the
amount of Newton iterations is bounded by O(n log n). Unfortunately, each
Newton iteration has to solve a linear equation system and cost O((n2)3) since

Q ∈ R( n2

2 +1)×( n2

2 +1). Therefore, the total cost for the optimization problem is
bounded by O(n7 log n).

In the field of convex optimization, the upper bound for the amount of
Newton iterations is known to be a large overestimation [1]. If we assume this
amount to be independent from n, then we can expect that the time to find a
solution with the convex optimization problem should be given by

g(n) = αn6

where n is the size of the matrix P ∈ Rn×n. If we include the bad estimation
for the Newton iteration, then the time should be represented by

f(n) = βn7 log(n).

In order to explore the computation time of the convex optimization problem,
we generated for each n = 10, . . . , 100 a stochastic matrix P ∈ Rn×n and a
stochastic vector π ∈ Rn where each entry was drawn from the standard uniform
distribution on the open interval (0,1) and then we normalized P and π. We
used Matlab R2012b on a 3 gigahertz computer with 8 gigabyte memory. We
solved the convex optimization problem with the interior-point-convex algorithm
from the provided Matlab method quadprog with default options, i.e. relative
dual feasibility =2.31e − 15 with TolFun=1e − 0.8, complementarity measure
=1.68e − 10 with TolFun=1e − 0.8 and relative max constraint violoation =
0 with TolCon=1e − 0.8. For n = 45 the execution time was about 12.46
seconds. The scalars α, β where chosen such that f(45) = g(45) = 12.46

60 holds.
In Figure 1 one can see that g seems to be a reasonable approximation of the
execution time. Also one can see that the execution time takes only seconds for
matrices in R50×50, but already 32 minutes for matrices in R100×100.

3.2 Perturbation analysis

For
k := min

r,r′,s,s′

〈
A[r,s], A[r′,s′]

〉
F

we obtain
k Id ≤ Q ≤ n Id

where the inequality has to be read componentwise. The upper bound follows
from

〈vi, vj〉F ≤
√
〈vi, vi〉F

√
〈vj , vj〉F ≤ max

l=1,...,m
{〈vl, vl〉F }

and the fact that
〈
A[r,s], A[r,s]

〉
F

= n− 2 + (1− πr)2 + π2
r + (1− πs)2 + π2

s ≤ n
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Figure 1: Duration of convex minimization problem to find closest reversible
Markov chain.

and
〈Id, Id〉F = n

holds. Since Q is symmetric, its condition number according to the spectral
norm is given by

κ(Q) =
λmax

λmin
≤ n

k
.

Since k = n− c for some 0 < c < 4 we have that

κ(Q) ≤ 1

1− c/n → 1

for n→∞. Therefore, Q is well conditioned.
We assume now that we are interested in finding a reversible matrix P̂ ∈ X,

but that we only have a perturbed version P = P̂ + E of P̂ which is not
necessarily reversible. With the above scheme, we can find a reversible matrix
P̃ ∈ X which is closest to P according to the Frobenius norm. The question
arises, how eigenvalues change between P̃ and P̂ .

In order to answer this question, the weighted Frobenius norm

||A||F̃ := ||D 1
2AD−

1
2 ||F

is introduced with

D = diag(π1, . . . , πn), D
1
2D

1
2 = D

and
D−

1
2 := (D

1
2 )−1.

Note that the weighted Frobenius norm is given by

||A||2
F̃

=

n∑

i,j=1

a2
i,j

πi
πj
.

We can then give the following estimation about the eigenvalues:
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Theorem 3.1. Let A,B ∈ X, let λ1, . . . , λn be the eigenvalues of A and
λ̂1, . . . , λ̂n be the eigenvalues of B. Then there exists a permutation σ of the
integers 1, 2, . . . , n such that

n∑

i=1

|λ̂σ(i) − λi|2 ≤ ||A−B||2F̃ .

Proof. The matrices A,B ∈ X are self-adjoint according to the scalar product
〈x, y〉π := xTDy. Lets denote with {w1, . . . , wn} a 〈, 〉π-orthonormal basis, and
denote with W the matrix whose columns contain the vectors wi, i.e.

W =


 w1 w2 . . . wn


 .

Then
A′ := W−1AW and B′ = W−1BW

are symmetric, see [3] Chapter 5.6.1. By the Hoffman and Wielandt Theorem
(see Theorem 6.3.5 in [5]) we obtain

n∑

i=1

|λ̂σ(i) − λi|2 ≤ ||A′ −B′||2F

for a permutation σ, because similar matrices have the same eigenvalues. It
remains to show

||W−1CW ||2F = ||C||2
F̃

or equivalently
||C||2F = ||WCW−1||2

F̃

for any matrix C ∈ Rn. By construction of W we have

WTDW = I and W−1D−1(WT )−1 = I. (3)

Therefore,

||WCW−1||2
F̃

= ||D 1
2WCW−1D−

1
2 ||2F

= tr(D−
1
2 (W−1)TCTWTD

1
2D

1
2WCW−1D−

1
2 )

(∗)
= tr(W−1D−1(W−1)TCTWTDWC)

(3)
= tr(CTC)

= ||C||2F ,

where in (∗) it is used that the trace is invariant under cyclic permutations .

This shows that in order to guarantee good approximations for the eigenval-
ues, one has to assure a good approximation of aij for those i, j where πj << πi.
These transitions are also known as rare events and often difficult to compute.

We will end this chapter with a short experiment motivated by Theorem 3.1.
We create 100 reversible Markov chains (P̂i)i=1,...,100 ⊂ R5×5 as follows. First,
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we generate a symmetric matrix A where each entry Aij with i ≤ j is chosen
equally distributed from [0, 1] and Aij := Aji for i > j. After normalizing A

the resulting matrix is reversible [7] and will be denoted as P̂i. We perturb and
normalize P̂i to obtain a perturbed version Pi of P̂i. For each Pi we compute
the unique reversible matrix P̃i which is closest to Pi according to weighted
Frobenius norm and according to the stationary distribution of P̂i. The matrix
P̃i exists and can be computed by the introduced convex optimization problem,
because the weighted Frobenius norm is induced by the scalar product

〈A,B〉F̃ = tr(DAD−1BT ).

Also we compute the unique reversible matrix P̌i which is closest to Pi ac-
cording to standard Frobenius norm and according to the stationary distribution
of P̂i. For each tuple (P̂ , P̃ , P, P̌ ) we compute the corresponding eigenvalues

(λ̂j , λ̃j , λj , λ̌j)j=1,...,5. Then, we compute the numbers

c1 = min
σ∈Π5

√√√√
5∑

j=1

|λ̂j − λ̃σ(j)|2, c2 = min
σ∈Π5

√√√√
5∑

j=1

|λ̂j − λσ(j)|2

and

c3 = min
σ∈Π5

√√√√
5∑

j=1

|λ̂j − λ̌σ(j)|2,

where Π5 denotes the set of all permutations of the numbers {1, . . . , 5}. The
experiment is visualized in Figure 2. The result is that the closest reversible
matrix P̌ according the Frobenius norm does not maintain the spectrum of P̂ .
However, the closest reversible matrix according the weighted Frobenius norm
P̃ gives a good approximation for the spectrum of P̂ and improves always the
spectrum of the perturbed version P .
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Figure 2: Comparison of c1 and c2.
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Figure 3: Comparison of c2 and c3.

Three remarks may be in order:

• The resulting matrix

P̃ =
∑

(r,s)∈I

αr,sA
[r,s] + α Id
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is reversible up to machine precision. In fact, it is reversible if πrαr,sπs =
πsαr,sπr holds1.

• A numerical error in the solution (x)i=1,...,m−1 = (αr,s)(r,s)∈I of the convex

optimization problem results in an error of the entry P̃ (r, s) = αr,sπs and

P̃ (s, r) = αr,sπr for r 6= s.

• In order to guarantee that P̃ has row sum one, it might be advantages to
set

p̃ii = 1−
∑

j 6=i

p̃ij .

4 Application and numerical example

In the past decades, analysis of a certain class of stochastic processes has been
formulated in terms of approximating a transfer operator T : L2(µ) → L2(µ)
[12, 8, 11] which is self-adjoint according to the scalar product

〈f, g〉µ =

∫

E

f(x) g(x)µ(dx),

i.e.
〈T f, g〉µ = 〈f, T g〉µ

for all f, g ∈ L2(µ), where (E,Σ, µ) is a measure space for some set E ⊂ Rn,
and

L2(µ) = {f : E → R | 〈f, f〉µ <∞, fµ-measurable}/N
with

N = {f : E → R | ∃A ∈ Σ with µ(A) = 0 and f(x) = 0 for all x ∈ E\A}.

Furthermore, the operator has the property that for f ∈ L2(µ) with f ≥ 0 it
follows T f ≥ 0 almost surely.

Let us assume that we have a set of non-negative functions {φ1, . . . , φn}
given, such that

∑n
i=1 φi(x) = 1 for all x ∈ E and 〈φi,1〉µ > 0 for i = 1, . . . , n

where 1(x) := 1 for all x ∈ E. If we define

πi := 〈φi,1〉µ
and

Tij :=
〈T φi, φj〉µ
〈φi,1〉µ

,

then it is straightforward to verify the properties

(i) πT = π,

(ii) DT = TTD ,

(iii)
∑n
j=1 Tij = 1 for all i = 1, . . . , n,

(iv) Tij ≥ 0,

1One may note that IA = I because of the assumption at the beginning of this chapter.
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where D = diag(π1, . . . , πn) denotes the diagonal matrix of π. In other words, T
is a reversible Markov chain. This matrix plays an essential role in the Galerkin
discretization of T .

Theorem 4.1. Let {φ1, . . . , φn} ⊂ L2(µ) be a basis with 〈φi,1〉µ > 0 of a

subspace D, and Q : L2(µ) → D the orthogonal projection onto D. For any
self-adjoint continuous operator T : L2(µ)→ L2(µ) we have

M = S−1T, Tij =
〈T φi, φj〉µ
〈φi,1〉µ

, Sij =
〈φi, φj〉µ
〈φi,1〉µ

is a right matrix representation of QT Q according to the basis A = {φ1, . . . , φn},
i.e. for any

f =

n∑

i=1

αiφi, QT Qf =

n∑

i=1

βiφi

it holds
M(α1, . . . , αn)T = (β1, . . . , βn)T .

Proof. Consider the Gram matrix of {φ1, . . . , φn}
Ŝij = 〈φi, φj〉µ .

This matrix is invertible since {φ1, . . . , φn} is a basis and the orthogonal pro-
jection Q can be represented as

Qv =

n∑

i,j=1

Ŝ−1
ij 〈v, φi〉µ φj .

This can be verified by checking 〈Qv − v, g〉µ = 0 for all g ∈ D, v ∈ L2(µ).
From

S = D−1Ŝ with D = diag
(
〈φ1,1〉µ , . . . , 〈φn,1〉µ

)

we obtain

S−1 = Ŝ−1D and, therefore, Ŝ−1
ij = S−1

ij

1

〈φj ,1〉µ
= S−1

ji

1

〈φi,1〉µ
,

in the last step it was used that Ŝ−1 is symmetric since Ŝ is symmetric. This
implies

Qv =

n∑

i,j=1

S−1
ji 〈v, φi〉µ

φj
〈φi, 1〉µ

.

Therefore,

QT Qφk = QT φk =

n∑

i,j=1

S−1
ij 〈T φk, φi〉µ

φj
〈φi, 1〉µ

=

n∑

i,j=1

S−1
ij

〈Tφi, φk〉µ
〈φi,1〉µ

φj =

n∑

j=1

(
n∑

i=1

S−1
ji Tik

)
φj

=

n∑

j=1

(
S−1T

)
kj
φj .
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For the more general case that the operator is not self-adjoint, one can find
a similar Galerkin approximation, see [10], Theorem 3.

Note that S is a special case of the matrix T with T = I, where I denotes
the identity operator. Therefore, we can use our machinery to correct T and S
if π is given.

One possible choice for the functions φi are set based functions, i.e. we have
disjoint sets A1, . . . , An with ∪ni=1Ai = E and

φi(x) = 1Ai
(x) =

{
1 if x ∈ Ai
0 else.

In this case, the matrix S from Theorem 4.1 turns out to be the identity matrix
and we are only left with the task of computing T . Other possible choices are
radial basis functions or commitor functions which can be found in [13, 10]

So far, we know how to maintain reversibility for S and T separately. The
question arises, if S−1T also inherits some properties that might get lost due to
numerical errors. First, we can rewrite

S = D−1Ŝ, T = D−1T̂

with Ŝij = 〈φi, φj〉µ and T̂ij = 〈T φi, φj〉µ, hence

S−1T = Ŝ−1DD−1T̂ = Ŝ−1T̂ .

Analogously as shown for Q also Ŝ and Ŝ−1 are symmetric positive definite
matrices. Now, since Ŝ−1 is positive definite , we know the existence of a
symmetric square matrix A such that A2 = Ŝ−1. Thus,

A−1Ŝ−1T̂A = AT̂A.

Consequently, Ŝ−1T̂ is similar to a symmetric matrix and hence diagonalizable.
This shows that the spectrum of Ŝ−1T̂ is real and that we know the existence
of a basis of eigenvectors of S−1T . For numerical estimation, the following
procedure may be advantageous: First, approximate T ∗ and S∗ by the convex
minimization problem stated above. Then, calculate DS∗ which is symmetric
up to machine precision. For the symmetric matrix (DS∗)−1 one can solve
a convex minimization problem that finds the closest symmetric positive semi
definite matrix ((DS∗)

−1
)∗ according to the Frobenius norm, see [4]. Finally,

((DS∗)
−1

)∗ T ∗ is the corrected matrix.
Also it would be possible to correct S−1 with our explained optimization

scheme, because this matrix has also row sum one and is reversible, this follows
from

S1 = 1 ⇒ 1 = S−11

and

DS = STD ⇒ (ST )−1D = DS−1 ⇒ (S−1)TD = DS−1.

Therefore, by dropping the constraints given by the matrix C, one can also
approximate S−1 as a convex quadratic programing problem with only linear
constrains.
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A Galerkin approximation of the transfer operator can be used to apply
spectral clustering algorithms such as PCCA+ [2] which relies on the real spec-
trum of TS−1. Especially for a set-based reduction, we can guarantee with our
machinery that T will have a real spectrum, and, therefore, spectral clustering
such as PCCA+ is applicable.

4.1 Numerical example

Consider the one dimensional, 2π-periodic function VB : R→ R

VB(x) = a+ b cos(x) + c cos2(x) + d cos3(x)

with a=2.0567, b=-4.0567, c=0.3133 and d=6.4267. This can be seen as an
approximation of a butane potential energy function, where x is the central
dihedral angle. We are going to realize a trajectory of the dihedral angles

Xt = X̃t mod 2π

of butane from the stochastic differential equation

dX̃t = −∇VB(X̃t)dt+ σdBt.

If we divide [0, 2π] in the sets Ai = [ i−1
30 ,

i
30 ] for i = 1, . . . , 30, then the

Galerkin discretization of T reduces to

Tij = P(Xτ ∈ Aj | X0 ∈ Ai),
see [8].

To gain the associated Markov State Model T ∈ R30×30, we compute a long-
term trajectory (Xi)i=0,...,n−1 by performing n timesteps of size dt using the
Euler-Maruyama discretization

X̃i+1 = X̃i −∇VB(X̃i)dt+ σ
√
dt ηi,

where ηi are i.i.d random variables distributed according to the standard normal
distribution. This trajectory is chopped into pieces of length 400 yielding M
subtrajectories (Xk

i )i=1,...,l := (Xlk, . . . , Xl(k+1)−1) for k = 0, . . . ,M − 1. We
can estimate T by counting transitions

Cij =

M−1∑

k=0

1Ai
(Xk

1 )1Aj
(Xk

l )

and

Tij =
Cij∑30
i=1 Cij

.

The Markov State Model created in this way becomes only reasonable when
considered for a trajectory longer then 106 timesteps, due to rare transition
events.

We will now compare the eigenvalues of the Markov State Model T to the
eigenvalues of the above introduced corrected estimation T̃ with respect to the
weighted Frobenius norm || · ||F̃ . We will also compare them for different length
of a given trajectory, starting from length n = 106 until n = 5 · 108. We used
the timestep dt = 0.001. Since the eigenvalues of T turned out to be complex
sometimes, we simply set the imaginary part to zero, in order to compare the
eigenvalues with T̃ .
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Discussion

In the figures the standard estimation and the corrected estimation do not
essentially differ for the eigenvalues close to 1. Our algorithm of finding the
nearest reversible Markov chain especially preserves the dominant eigenvalues
of the underlying operator and, thus, is suitable for cluster analysis2 of Molecular
simulation data.

In contrast to T , the resulting transition matrix T̃ from our algorithm is
guaranteed to be applicable to spectral clustering methods, such as PCCA+,
because of its real spectrum.

Acknowledgment We gratefully thank the Berlin Mathematical School for
financial support of Adam Nielsen.

2For the connection between cluster analysis and eigenvalues we refer to [6].
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