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Abstract

We prove a mathematical programming characterisation of approximate partial
D-optimality under general linear constraints. We use this characterisation with a
branch-and-bound method to compute a list of all exact D-optimal designs for
estimating a pair of treatment contrasts in the presence of a nuisance time trend up
to the size of 24 consecutive trials.

1 Introduction
Consider the linear regression model Y = Fβ + ε , where Y = (Y1, . . . ,Yn)

T is a
vector of observations, β ∈ Rm is an unknown parameter, F = (f(x1), . . . , f(xn))

T

is an n×m design matrix, and ε = (ε1, . . . ,εn)
T is a vector of random errors with

E(ε) = 0n, Var(ε) = σ2In, σ2 ∈ (0,∞). Suppose that the function f : X→ Rm,
where X is a finite design space, is known and fixed, but the design points x1, . . . ,xn
can be chosen in X according to the objective of the experiment, see, e.g., [6, 8, 2].

A typical objective is to estimate a linear parameter subsystem AT β , where
A is a full-rank m× s matrix, s ≤ m. It is a well-known fact that an unbiased
linear estimator of AT β exists if and only if the estimability condition C (A) ⊆
C (M) is satisfied, where M = FT F is the moment matrix and C denotes the linear
space generated by the columns of a matrix. In this case, the best linear unbiased
estimator of AT β is β̂A = AT M−FTY , and the estimator does not depend on the
choice of the generalized inverse M−. Moreover, Var(β̂A) = σ2AT M−A is non-
singular.

Let NA(M) = minL LMLT , where the minimum is taken on the set of all s×
m matrices L such that LA = Is, with respect to the Loewner ordering � (for
symmetric s× s matrices N1,N2 we define N1 � N2 iff N2−N1 is non-negative
definite). The matrix NA(M) can be interpreted as the amount of information that
the experiment conveys about AT β , see [8, Chapter 3]. Hence, NA(M) is called the
information matrix for AT β . The information matrix is non-singular if and only if
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the estimability condition is satisfied, in which case NA(M) = (AT M−A)−1. For
estimating the entire parameter β , we have NIm(M) = M.

To measure the quality of estimation of AT β , we will use the criterion of D-
optimality defined by Φ(N) = (det(N))1/s for N ∈S s

+, where S s
+ is the set of all

non-negative definite s× s matrices. Note that Φ is concave, continuous, positive
homogeneous and Loewner-isotonic on S s

+, i.e., it is an information function [8,
Chapter 5]. The composition Φ(NA(·)) : S m

+ → [0,∞) is again an information
function, and it is called the criterion of partial D-optimality, or DA-optimality
(e.g., [6, Section IV.3] and [2, Section 10.2]). Explicitly, the criterion of DA-
optimality is ΦA(M) = (det(AT M−A))−1/s if C (A) ⊆ C (M) and ΦA(M) = 0
otherwise.

Since the moment matrix M = ∑i f(xi)fT (xi) does not depend on the order of
x1, . . . ,xn, we can represent an exact experimental design by a function ξ : X→
{0,1,2, . . .} such that ξ (x) means the number of trials to be performed in x ∈ X.
We will denote the set of all exact designs by ΞE . Note that the moment matrix
corresponding to ξ ∈ ΞE can be written as M = M(ξ ) = ∑x∈X ξ (x)f(x)fT (x).

An approximate experimental design is any function ξ : X→ [0,∞), which we
understand as a relaxation of an exact design. The set of all approximate designs
will be denoted by ΞA. The moment matrix M(ξ ) of any ξ ∈ ΞA is defined by the
same formula as for the exact designs. For all ξ ∈ ΞA, let NA(ξ ) := NA(M(ξ )).

The usual constraint on an experimental design is that we are given a required
size n of the experiment, i.e., we restrict the search to the designs ξ satisfying
∑x∈X ξ (x) = n. Such designs will be called size-n-constrained. However, in prac-
tice the designs must often satisfy additional constraints, which can represent re-
strictions on the experimental budget and the availability of material, see, e.g., [3].
Moreover, the ability to compute approximate optimal designs under more general
constraints may be used as a key component of algorithms for computing optimal
exact designs, such as the branch-and-bound (BNB) method that we propose in
Section 3.1.

In this paper, we will consider general linear constraints of the form

∑
x∈X

c( j,x)ξ (x)≤ b( j) for all j = 1, . . . ,k, (1)

where c : {1, . . . ,k}×X→ R and b : {1, . . . ,k}→ R. Given any fixed ordering on
X, the coefficient c( j,x) can be arranged to a matrix C of type k× |X| and b( j)
can be arranged to a vector b of length k. Note that each design can be represented
by an |X|-dimensional vector with non-negative components. Accordingly, ΞE

corresponds to {0,1,2, . . .}|X| and ΞA corresponds to [0,∞)|X|.
The designs satisfying (1) will be called (C,b)-designs. We will assume that

there exists at least one exact (C,b)-design ξ , such that AT β is estimable under
ξ , and the set of all approximate (C,b)-designs is bounded. The sets of all exact
and approximate (C,b)-designs will be denoted by ΞE

C,b and ΞA
C,b respectively.

Evidently, ΞE
C,b = ΞA

C,b ∩Z
|X| is a finite subset of the compact and convex set

ΞA
C,b.

Let ξ ∗E be an exact (C,b)-design, AT β be estimable under ξ ∗E and Φ(NA(ξ
∗
E))=

sup{Φ(NA(ξE)) : ξE ∈ Ξ̃E
C,b}, where Ξ̃E

C,b := {ξE ∈ ΞE
C,b : C (A)⊆ C (M(ξE))}.

We will call ξ ∗E a DA-optimal exact (C,b)-design. Analogously, we define a DA-
optimal approximate (C,b)-design and the symbol Ξ̃A

C,b. Compactness of ΞA
C,b 6= /0
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and the continuity of ΦA imply the existence of a DA-optimal approximate (C,b)-
design ξ ∗A . The value Φ(NA(ξ

∗
A)) will be called the DA-optimal value of ΞA

C,b.
Computing DA-optimal approximate designs is a problem of convex optimiza-

tion. The size-n-constrained DA-optimal approximate designs can be computed,
to any given precision, by a Fedorov-Wynn vertex direction algorithm or by a
multiplicative algorithm (e.g., [15]). However, it is difficult to use the classical al-
gorithms to compute DA-optimal approximate designs under multiple linear con-
straints (cf. [3]). In this paper, we show that the problem of DA-optimal approx-
imate designs under (1) can be cast as a max-det programming problem ([13]),
which can be efficiently solved by readily available software.

Computing DA-optimal exact designs with constraints is in general a challeng-
ing problem of discrete optimization. To find the provably DA-optimal exact de-
signs in small to medium-size problems, it is possible to use the complete enu-
meration of all permissible designs, or more efficient enumeration methods. For
instance, in [14] a BNB method is used for computing DIm -optimal exact size-n-
constrained designs and in [11] a BNB method is used to compute DIm -optimal
exact directly constrained designs. In this paper, we propose a specific BNB al-
gorithm for computing DA-optimal exact designs for the estimation of a set of
treatment contrasts.

For large problems it is unrealistic to expect a rapid algorithm that always pro-
vides perfectly DA-optimal exact designs. To find an efficient size-n-constrained
exact design, it is possible to use an exchange heuristic, cf. [2, Chapter 12].

2 A mathematical programming characteriza-
tion of DA-optimal constrained approximate de-
signs.
The following lemma is a simple consequence of the Schur complement charac-
terization of positive semidefinite matrices (e.g. [8, Section 3.12]). Recently, this
lemma has also been used to compute the support points of optimal designs [7,
Section 6]. The symbol S s

++ denotes the set of all positive definite s× s matrices.

Lemma 2.1. Let A be an m× s matrix of full rank, m ≥ s, let M ∈S m
+ , and let

N ∈S s
++. Then the following two statements are equivalent: (i) C (A) ⊆ C (M)

and N� (AT M−A)−1 for any1 generalized inverse M− of M; (ii) ANAT �M.

Let I = {N ∈S s
++ : N = (AT M(ξ )−A)−1 for some ξ ∈ Ξ̃A

C,b} and let Ĩ =

{Ñ ∈S s
++ : AÑAT �M(ξ ) for some ξ ∈ ΞA

C,b}.

Lemma 2.2. I ⊆ Ĩ and for each Ñ ∈ Ĩ there is some N ∈I such that Ñ� N.

Proof. If N ∈ I then, trivially, condition (i) of Lemma 2.1 is satisfied for some
M = M(ξ ) such that ξ ∈ ΞA

C,b. Hence, the part (ii) of Lemma 2.1 holds, i.e.,
ANAT �M, which implies N ∈ Ĩ . Thus I ⊆ Ĩ . Let Ñ ∈ Ĩ and let M = M(ξ ),
ξ ∈ ΞA

C,b, be such that AÑAT �M. Note that by Lemma 2.1 we have C (A) ⊆
C (M), i.e., we can set N = (AT M−A)−1 ∈S s

++. Hence, also by Lemma 2.1, we
have Ñ� (AT M−A)−1 = N, which was to be proved.

1If C (A)⊆ C (M), then AT M−A does not depend on the choice of the generalized inverse of M.
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Theorem 2.3. (i) The set of information matrices of all DA-optimal approximate
(C,b)-designs is identical to the set of all solutions N∗ of the problem

maxΦ(N) s.t. N ∈S s
++, ANAT �M(ξ ), ξ ∈ Ξ

A
C,b. (2)

(ii) If N∗ is any solution of (2), and ξ ∗ ∈ ΞA
C,b is any design satisfying AN∗AT �

M(ξ ∗), then ξ ∗ is a DA-optimal approximate (C,b)-design.

Proof. (i). As Φ : S s
+ → [0,∞) vanishes on S s

+ \S s
++ and is positive on S s

++,
the set of information matrices of all DA-optimal approximate (C,b)-designs is
the set of all solutions of the problem maxΦ(N) s.t. N ∈I . Moreover, note that
Φ is strictly Loewner isotonic in the sense that if Ñ,N ∈S s

++ satisfy Ñ � N and
Ñ 6= N, then Φ(Ñ) < Φ(N). Therefore, we see from Lemma 2.2 that the set of
information matrices of all DA-optimal approximate (C,b)-designs is equal to the
set of all solutions of the problem maxΦ(Ñ) s.t. Ñ ∈ Ĩ .

(ii). Let N∗ be any solution of (2), and let ξ ∗ ∈ ΞA
C,b satisfy AN∗AT �M(ξ ∗).

By Lemma 2.1 we have C (A)⊆C (M(ξ ∗)) and N∗� (AT M−(ξ ∗)A)−1 =NA(ξ
∗).

Since NA(ξ
∗) satisfies the constraints in (2) (cf. Section 3.14 in [8]), and since Φ is

Loewner isotonic, we conclude that Φ(NA(ξ
∗))≤Φ(N∗)≤Φ(NA(ξ

∗)).

By Theorem 2.3, computing DA-optimal approximate (C,b)-designs can be
cast as a problem of max-det programming, see [13]. A similar result appeared
in [5, Section V.E] (with a different max-det formulation), for the case of a Bayesian
framework with a prior density β ∼ N (0,Σ). Max-det programs can be auto-
matically reformulated as semidefinite programs (SDPs) by user-friendly inter-
faces such as PICOS [10]. SDPs is a class of optimization problems that are
efficiently solvable by algorithms implemented in freely available software, for
instance CVXOPT [12].

It is also worth mentioning that in the proof of Theorem 2.3 we did not use
specific properties of D-optimality, except for the fact that Φ is a strictly Loewner
isotonic information function vanishing on singular information matrices. Hence,
we can use Theorem 2.3 also with many other criteria.

3 DA-optimal designs for estimating a set of con-
trasts of treatment effects under the presence of
a time trend
Suppose that we intend to perform n trials in a time sequence. For each trial t ∈
{1, . . . ,n} we select a treatment u(t) ∈ {1, . . . ,v}, v ≥ 2, with its effect τu(t) ∈ R.
In addition to the treatment effects, the mean value of the response may depend on
a nuisance time trend, which can be approximated by a polynomial of degree d.
Hence, a natural model for the responses is

Yt = τu(t)+θ1 p0(t)+ · · ·+θd+1 pd(t)+ εt ; t = 1, . . . ,n, (3)

where θ1, . . . ,θd+1 are the parameters of the trend, p0, . . . , pd are polynomials
of degrees 0, . . . ,d, and ε1, . . . ,εn are i.i.d. errors with zero mean and variance
σ2 ∈ (0,∞). In this model, we have X = {1, . . . ,v} × {1, . . . ,n} and f(u, t) =
(eT

u ,pT (t))T , where eu ∈Rv is the standard u-th unit vector and p(t)= (p0(t), . . . , pd(t))T .
The vector of model parameters is β = (τ1, . . . ,τv,θ1, . . . ,θd+1)

T , but we suppose

4



that only s = v− 1 contrasts τ2− τ1, . . . ,τv− τ1 are of interest. Hence, we will
focus on AT β , where AT = (−1s,Is,0s×(d+1)), s = v−1.

The moment matrix of any design ξ can be expressed in the form

M(ξ ) =

(
M11(ξ ) M12(ξ )
MT

12(ξ ) M22(ξ )

)
,

where M11(ξ ) is diagonal with ∑t ξ (1, t), . . . ,∑t ξ (v, t) on the diagonal, M12(ξ ) =
(∑t ξ (1, t)p(t), . . . ,∑t ξ (v, t)p(t))T and M22(ξ ) = ∑t (∑u ξ (u, t))p(t)pT (t). If ξ

is exact, then the diagonal elements of the matrix M11(ξ ) can be interpreted as
replication numbers of individual treatments.

A usual assumption of an experiment modelled by (3) is that exactly one treat-
ment is assigned to each time, therefore any permissible design ξ must satisfy

v

∑
u=1

ξ (u, t) = 1; t = 1, . . . ,n. (4)

If ξ satisfies (4), then M22(ξ ) does not depend on ξ . Moreover, it is simple
to show that NA(ξ ) does not depend on the choice of p0, . . . , pd (provided that pi
has degree i), but a suitable choice of the polynomials can lead to simpler compu-
tations. We used discrete orthogonal polynomials which makes M22(ξ ) diagonal.

For any system of v− 1 independent contrasts of treatments, the DA-optimal
designs are the same; the system τ2− τ1, . . . ,τv− τ1 is chosen only for technical
convenience. Also, note that for ξ1,ξ2 ∈ ΞE we have Φ(NA(ξ1)) = Φ(NA(ξ2))
if the designs differ only in the labelling of treatments or if ξ1 is only the time-
reversed version of ξ2. Hence, we can call such designs isomorphic.

The study of “trend-resistant” or “systematic” designs dates back to Cox ([4]),
who studied sequences involving two or three treatments under the presence of
quadratic and cubic time trends. The extensive combinatorial theoretical results
that followed are usually restricted to the so-called trend-free orthogonal designs,
with a focus on selecting a suitable permutation of treatments, or combinations
of factor levels, see, e.g., [9] for a survey. In [1] the authors propose a more
universal approach based on optimality criteria. Compared to the combinatorial
design results, the optimal design approach covers many more practical situations,
e.g., it can be applied if the orthogonality is not attainable, the time points are not
evenly spaced, or the time trend is non-polynomial.

In contrast to [1], we will use a BNB algorithm. This algorithm always results
in a catalogue of perfectly DA-optimal exact designs, although the time require-
ments are higher compared to the heuristic used in [1], especially for large n.

3.1 The BNB algorithm.
Let a1, . . . ,an ∈ {0,1, . . . ,v}. We define the template [a1, . . . ,an] to be the set {ξ ∈
ΞA : Eq. (4) holds and (at 6= 0⇒ ξ (at , t) = 1) for all t}. In particular, [0, . . . ,0]
corresponds to the set of all approximate designs satisfying (4). We call a template
[a1, . . . ,an] exact if at > 0 for all t, and composite if at = 0 for some t. Note that
exact templates are singletons, whose only element is the design using treatments
a1, . . . ,an for the times 1, . . . ,n. Clearly, for any selection a1, . . . ,an ∈ {0,1, . . . ,v}
the template [a1, . . . ,an] is equal to ΞA

C,b for some C and b. Thus, the DA-optimal
approximate design on any template can be computed using Theorem 2.3.
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By a complete enumeration tree we will call any directed v-ary tree, with ver-
tices corresponding to templates, satisfying: 1) The root template is [0, . . . ,0];
2) Any non-terminal template [a1, . . . ,an] is composite, and its v child nodes are
[a1, . . . ,at∗−1,u,at∗+1, . . . ,an], u = 1, . . . ,v, where t∗ is selected such that at∗ = 0.
Therefore, the set of all permissible exact designs of a parent template is a disjunc-
tive union of the sets of all permissible exact designs of its child templates; 3) The
vn terminal templates are the exact templates [a1, . . . ,an], a1, . . . ,an ∈ {1, . . . ,v}.

Suppose that we have constructed a sub-tree of a complete enumeration tree.
Let Ξ correspond to a terminal template of the sub-tree. If the DA-optimal value
of Ξ is smaller than the value of the DA-optimality criterion of the best available
exact design then Ξ does not contain any DA-optimal exact design. Hence, we can
“prune” the branch of the tree, i.e., skip constructing the descendants of Ξ. This
idea allows us to circumvent the construction of most of the complete enumeration
tree, yet the terminal exact nodes of the final tree contain all DA-optimal exact
designs.

To fully specify the BNB method, we need to define the branching rule, that is,
how to select the next composite template to be “refined” by constructing its child
nodes, and which child nodes should be created. At each step, we choose the com-
posite template Ξ∗ = [a∗1, . . . ,a

∗
n] with the highest DA-optimal value. Then we form

its v child templates [a∗1, . . . ,a
∗
t∗−1,u,a

∗
t∗+1, . . . ,a

∗
n], u = 1, . . . ,v, such that t∗ is se-

lected to maximize the entropy of the distribution given by the pmf ξ ∗(·, t), where
ξ ∗ is an optimal approximate design on Ξ∗. The rationale behind this selection is
that if the marginal design ξ ∗(·, t∗) has a high “uncertainty”, fixing the treatments
for the time t∗ often makes the DA-optimal values of the child templates smaller
than the threshold given by the DA-optimal value of the best available exact design.

In the actual implementation of our algorithm, all templates are stored in one
of the lists closed, open, and exact (that is, the BNB tree itself is constructed
only implicitly). The list closed is continually updated to include the templates
that cannot contain any DA-optimal exact design, since their DA-optimal values
are smaller than the DA-optimal value Φ∗max of the best available exact design.
The list open comprises the composite templates that still can contain an optimal
exact design. Finally, the list exact contains the exact templates with the criterial
value exactly Φ∗max. The algorithm terminates once the list open is empty, which
corresponds to the moment when the list exact contains all DA-optimal designs.

4 Example
In this section, we will show the results of the BNB algorithm when applied to
the problem of computing DA-optimal exact designs from Section 3 for v = 3
treatments, the cubic (d = 3) time trend, and n = 6, . . . ,24 trials.

For some n, there may exist DA-optimal exact designs that differ with respect
to a secondary criterion. From the set of all DA-optimal exact designs computed
by the BNB algorithm, we generated the complete list of all DA-optimal exact
designs, and from each class Ξ∗ of mutually isomorphic DA-optimal exact designs
we selected:

1. A design ξ A that is A-optimal in Ξ∗ (see [2, Section 10.1]).

2. A design ξ † that is symmetric in the sense Var(β̂c2(ξ
†)) = Var(β̂c3(ξ

†)),
provided that Ξ∗ contains a design with this property. For j ∈ {2,3}, the
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symbol β̂c j (ξ
†) denotes the BLUE of τ j− τ1 under the design ξ †.

3. A design ξ↔ that is symmetric with respect to the reversal of time, i.e.,
satisfying ξ↔(u, t) = ξ↔(u,n+1− t) for all u∈ {1,2,3} and t ∈ {1, . . . ,n},
provided that Ξ∗ contains a design with this property.

The selected DA-optimal exact designs ξ A, ξ †, ξ↔ are not necessarily distinct.
The results are summarized in the following list.

(6) 212313A,†; (7) 1231231A,†; (8) 12311231A,†; (9) 123121321A,↔; (10) 123211
3231A,†; (11) 23113221312A; (12) 312213312213A,↔; (13) 1233211123321A,↔;
(14) 31212331312213A; (15) 123322111332231A,†; (16) 1233212113132231A,†;
(17a) 31221133233112213A,↔; (17b) 12332121312123321A,↔; (18a) 1322321311
31232231A,↔; (18b) 231131232232131132†,↔; (18c) 231132132231231132A,↔;
(18d) 123321321123123321†,↔; (19a) 3121223131313221213A,↔; (19b) 1233211
321231123321A,↔; (20) 12323132112213132321A; (21a) 1232331121321223313
12A; (21b) 231311223213233112123†; (22) 1233122311231123312231A,†; (23a)
12331222311311322213321A,↔; (23b) 23112333122122133321132†,↔; (23c) 3122
1313231213231312213A,↔; (23d) 23113232123132123231132†,↔; (24a) 23113213
2321123231231132A,↔; (24b) 123321321213312123123321†,↔; (24c) 1233213211
23321123123321A,↔; (24d) 312213213312213312312213†,↔.

Note that the DA-optimal designs for the model with the cubic time trend are
model-robust in the sense that they are either perfectly optimal, or very efficient
for the models with polynomial trends of degrees 0 (i.e., if there is no trend), 1 as
well as 2. For n≥ 7 (n≥ 13, n≥ 17), these efficiencies are higher than 0.9 (0.99,
0.999).

5 Conclusions
We described a mathematical programming characterisation of DA-optimal ap-
proximate designs under linear constraints and a BNB method for computing DA-
optimal exact designs for estimating a set of treatment contrasts in the presence of
a nuisance trend. In the illustrative example the nuisance parameters specify an
unknown cubic time trend, but the algorithm can be analogously used for a large
variety of other models, where the nuisance parameters represent any time trend,
any spatial trend or the effects of blocks.

The main advantage of the BNB algorithm, compared to heuristic local-search
methods is that it provides a complete list of perfectly optimal exact designs. The
list can be used to select the best design according to a secondary criterion. More-
over, the list can motivate (or disprove) theoretical conjectures, or support the in-
tuition about the desirable properties of designs. Note also that the mathematical
programming approach permits adding linear constraints on the design that can
represent, for example, constraints on the total cost of the experiment.
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