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Abstract

We propose the Blockloading algorithm for the clustering of large and complex
graphs with tens of thousands of vertices according to a Stochastic Block Model
(SBM). Blockloading is based on generalized Variational Bayesian EM (VBEM)
schemes and works for weighted and unweighted graphs. Existing Variational
(Bayesian) EM methods have to consider each possible number of clusters sepa-
rately to determine the optimal number of clusters and are prone to converge to
local optima making multiple restarts necessary. These factors impose a severe
restriction on the size and complexity of graphs these methods can handle. In con-
trast, the Blockloading algorithm restricts restarts to subnetworks in a way that
provides error correction of an existing cluster assignment. The number of clusters
need not be specified in advance because Blockloading will return it as a result.
We show that Blockloading outperforms all other variational methods regarding
reliability of the results and computational efficiency.

Keywords: Clustering, Variational Bayes EM, Model Selection, Stochastic Block
Model, Networks, unsupervised classification
MSC: Primary 62H30; Secondary 62H12

1 Introduction
The estimation of a Stochastic Block Model (SBM) [1, 2] for a given graph has be-
come an established tool for model based clustering. The SBM is applied in different
scientific areas like the Social Sciences or Biology. Often, only the graph of a network
is given without further information. Estimation of the SBM consists of assigning the
vertices of the graph to clusters and inferring the probabilities for the existence of an
edge dependent of the cluster membership of the vertices. The results of the SBM can
be easily interpreted and link prediction of edges follows easily.
In the last years, Variational methods like the Variational Expectation Maximization
∗corresponding author
†Email: willenbo@mi.fu-berlin.de
‡Email: schuette@zib.de
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(VEM) [3], [4] or Variational Bayesian Expectation Maximization (VBEM) algorithm
[5], [6] were introduced for inferring the hidden cluster assignment of the vertices and
to estimate the model parameters of the SBM for large graphs.
All these variational methods have in common, that they depend on starting values, i.e.,
their performance depends on the choice of the initial cluster partition matrix QQQ. For
finding the optimal number of clusters K∗ using a variational method, the respective
algorithm is initialized for different numbers of clusters K and initial cluster partition
matrices QQQ. For all K under consideration a variational bound, called Free Energy F
of the SBM [7, 5] is calculated. Then the result with the optimal Free Energy and its
corresponding cluster partition matrix QQQ∗ and number of clusters K∗ is chosen. In this
algorithmic set-up, most of the computational time is used solely for determining the
optimal number of clusters and only a fraction of the time is invested into calculat-
ing the optimal partition matrix QQQ∗. Depending on the starting values, which are at
least to a certain degree chosen randomly, this approach often only converges to a lo-
cal optimum making multiple restarts for each number of clusters necessary [5, 6]. In
particular, there is no algorithmic procedure for utilizing the information contained in
already calculated partition matrices. These drawbacks limit the complexity and size
of graphs variational methods can handle with meaningful results.
We propose the Blockloading algorithm for overcoming these problems and thus al-
lowing application to graphs too large and complex for the existing VBEM algorithms.
Blockloading is based on the VBEM set-up but starts from an initial cluster partition
matrix QQQ with all vertices of the network in just one large cluster. Then Blockloading
iteratively optimizes the VBEM functional while expanding the number of clusters un-
til no further optimization is possible. This expansion is achieved by dividing one of
the clusters of the respective current partition matrix, QQQ, into two new clusters so that
an initial guess of start values is needed only for the partition submatrices regarding
the vertices in the respective cluster. This allows for a more careful choice of the start
values. We will propose several algorithms for finding those start values and checking
whether splitting an existing cluster really is the optimal choice in the framework of
Blockloading. The general strategy is to reuse previously calculated results as starting
values, because the Blockloading algorithm optimizes the vertices belonging to one
active cluster with the other vertices and clusters kept fixed.
This article is organized in the following way:
In Section 2, we will review the Stochastic Block Model for unweighted and weighted
graphs. Next, in Section 3, we discuss the Variational Bayesian Estimation of Poisson
and Bernoulli-based SBMs for a given network, and we repeat the main steps of the
VBEM algorithm. In Section 4 we present the exact Integrated Complete Likelihood
criterion (ICLex) for comparing two SBM models for a given network for the Poisson
SBM. Then, in Section 5, we propose the Blockloading algorithm and describe its dif-
ferent steps. This is complemented by Section 6, where several algorithms for finding
the start values for the Blockloading algorithm are discussed. Finally, in Section 7, we
demonstrate the performance of Blockloading in application to some test networks, in-
cluding networks generated from an SBM where the model parameters and the cluster
partition of vertices is known explicitly, but also an Earthquake Network [8] where the
ground truth is not available. In all experiments made, Blockloading outperformed all
other variational algorithms.
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2 Stochastic Block Model
A graph G = (V,E) consists of a set V of N vertices or vertices and a set of (directed)
edges E connecting the vertices. The edges connecting the vertices are given by an
adjacency matrix AAA. If there is an edge from vertex i to vertex j it is Ai j = 1. If there
is no edge from vertex i to vertex j, it is Ai j = 0. In the case of weighted graphs it
holds Ai j = wi j, wi j ∈ (0,1,2, . . .), if there is an edge from i to j. In this paper we well
consider directed graphs unless otherwise stated.
The following Stochastic Block Model (SBM) was introduced in [1] as an algorithm for
generating graphs. We assume that AAA was generated by the SBM. The SBM assigns the
vertices V of the graph depending on their connection probability patterns to clusters.
The SBM consists of K clusters. To each vertex i, the SBM assigns a unique cluster
membership. A vertex belongs to cluster k with probability δk with ∑K

k=1 δk = 1. The
cluster membership is given by the random variable ZZZi ∈ R1×K , with Zik = 1 if i is an
element of cluster k and Zik = 0 otherwise. ZZZ is the N ×K cluster indicator matrix
with matrix rows ZZZi for i ∈ {1, . . . ,N}. An edge exists within each cluster k with the
probability θkk and between cluster k and l with the probability θkl . So, the SBM is
generated in the following way [5]:
(i) Roll a k – sided dice with p(i ∈ k|Zik = 1) = δk for side k for each vertex i, to
determine the unique cluster membership of the vertex.
(iia) Flip a coin for each pair of vertices. With probability θkl = p(Ai j |ZikZ jl = 1) there
is an edge from vertex i to j with i ∈ k and j ∈ l and with probability 1−θkl there is no
edge.
Therefore we can sum up the joint probability by:

p(AAA,ZZZ|δδδ ,θθθ ,K) = p(AAA|ZZZ,θθθ ,K) p(ZZZ|δδδ ,K)

=
N

∏
i6= j

K

∏
k,l

(
θ Ai j

kl (1−θkl)
(1−Ai j)

)ZikZ jl N

∏
i=1

K

∏
k=1

δ Zik
k . (1)

The results of the clustering are easily interpretable. The prediction of new edges
with this model follows naturally from the estimated parameters. Variants of the SBM
for directed and weighted graphs exists [4]. For example it is possible to replace the
Bernoulli distribution in (1) with a Poisson distribution [4]:

f (Ai j;λkl) =
λ Ai j

kl
Ai j!

exp(−λkl) . (2)

Then we can replace (iia) with:
(iib) Draw a realization from f (·;λkl) for the edge Ai j from vertex i to vertex j, with
i ∈ k and j ∈ l. Then, the joint probability for directed graphs is:

p(AAA,ZZZ|δδδ ,λλλ ,K) =
N

∏
i 6= j

K

∏
k,l

f (Ai j;λkl)
ZikZ jl

N

∏
i=1

K

∏
k=1

δ Zik
k . (3)

Using the Poisson distribution also works for unweigthed graphs. In the following, we
call this SBM the Poisson SBM contrary to the Bernoulli SBM of [1].

3 Variational Bayesian Expectation Maximization
The Variational Bayesian Expectation Maximization algorithm (VBEM) is an impor-
tant part of the Blockloading algorithm presented in Section 5. In Section 2, we re-
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viewed how to generate a graph with the Bernoulli– or Poisson SBM. Now, we want
to cluster a given graph according to the SBM. So, we have to solve the inverse prob-
lem of fitting the SBM to a given graph. The VBEM algorithm is used to calculate
the unknown optimal number of clusters K, the parameters and the hidden cluster as-
signments of the vertices of the SBM. For the Bernoulli SBM outlined in Section 2,
the VBEM algorithm for solving the SBM was presented in [6]. In the following, we
present a VBEM algorithm for the Poisson SBM of Section 2. A Variational EM algo-
rithm for the Poisson SBM was presented in [4].
The VBEM Algorithm is applied with a user specified number of clusters K. The input
is the adjacency matrix AAA. For convenience we write the parameters of the Bernoulli
SBM as ϑϑϑ = (θθθ ,δδδ ) and likewise for the Poisson SBM ϑϑϑ = (λλλ ,δδδ ).
For each vertex i, we want to calculate the latent cluster membership (latent variables)
of the vertex, ZZZi and the model parameters ϑϑϑ .
The optimal (true) number of clusters K∗ is unknown. We can assume that p(K)
is a uniform distribution [5]. Thus, we can optimize p(AAA|K) instead of p(K|AAA) ∝
p(AAA|K)p(K) [5]. A variational lower bound of − ln p(AAA|K), also called Free Energy F
[5, 7], is obtained by using Jensen’s inequality.
Variational distributions q(ZZZ,ϑϑϑ) over the parameters ϑϑϑ and the latent variables ZZZ are
introduced. For obtaining a tractable algorithm, the mean field assumption q(ϑϑϑ ,ZZZ) =
q(ϑϑϑ)q(ZZZ) = q(θθθ)q(δδδ )∏N

i=1 q(ZZZi) ([5, 6]) is assumed. This yields:

− ln p(AAA|K) = − ln∑
Z

∫
p(AAA,ZZZ|θθθ ,δδδ )p(θθθ)p(δδδ )dϑϑϑ (4)

= − ln∑
Z

∫ p(AAA,ZZZ|ϑϑϑ)p(ϑϑϑ)

q(ZZZ)q(ϑϑϑ)
q(ZZZ)q(ϑϑϑ)dϑϑϑ (5)

≤ −∑
Z

∫
ln
(

p(AAA,ZZZ|ϑϑϑ)p(ϑϑϑ)

q(ZZZ,ϑϑϑ)

)
q(ZZZ,ϑϑϑ)dϑϑϑ (6)

≡ F [q(ZZZ,ϑϑϑ)] . (7)

We omitted K for better readability.
For the distribution p(θθθ) a Beta prior distribution Beta(α0

kl ,β
0
kl) is specified, and for

the distribution p(δδδ ) a Dirichlet prior distribution Dir(δδδ ;δδδ 0). It was shown in [6], that
q(ZZZi) = M (ZZZi;1,QQQi = {Qi1, . . . ,QiK}), where M is the Multinomial distribution, is
the optimal approximation of q(Zi) for vertex i. The probability, that vertex i belongs
to cluster k is given by Qik. It was also shown, that q(θkl) has the functional form of a
Beta distribution Beta(αkl ,βkl) and q(δδδ ) the functional form of a Dirichlet distribution
Dir(δδδ ;δδδ 0) [6]. We show in Proposition 3 in Appendix B.1 that the distributions q(λkl)
have the functional form of a Gamma distribution Gamma(λkl ;αkl ,βkl).
To initialize the VBEM algorithm, we need start values for the latent variables Qik,
i ∈ {1, . . . ,N}, k ∈ {1, . . . ,K}. The values Qik are entries of the N×K start partition
matrix QQQ(start).
The VBEM algorithm, introduced in [3] and [6] for the SBM in Section 2, consists
now of the two following steps: In the Maximization Step (M-Step), the Free Energy
F is optimized with respect to the distributions of the parameters q(ϑϑϑ), with the latent
variables of the cluster memberships q(ZZZ) held fixed:

{q(t+1)(ϑϑϑ)}= arg min
{q(ϑϑϑ)}

F [q(t)(ZZZ),q(t)(ϑϑϑ)]. (8)
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In the Expectation Step (E-step), F is optimized with respect to the latent variables
q(Z), with the distributions of the model parameters q(ϑϑϑ) held fixed:

{q(t+1)(ZZZ)}= arg min
{q(ZZZ)}

F [q(t)(ZZZ),q(t+1)(ϑϑϑ)]. (9)

The update equations for the Bernoulli SBM are discussed in Appendix A and the up-
date equations of the Poisson SBM in Appendix B.1.
We calculate F [q(t+1)(ZZZ),q(t+1)(ϑϑϑ)] dependent on the latent cluster assignments q(t+1)(ZZZ)
and model parameters q(t+1)(ϑϑϑ) which were returned by the M–and E–Step. The
VBEM algorithm has converged, if

F [q(t)(ZZZ),q(t)(ϑϑϑ)]−F [q(t+1)(ZZZ),q(t+1)(ϑϑϑ)] < T (10)

holds, where T is a threshold. Let QQQ∗ be the cluster partition matrix and ϑϑϑ ∗ the model
parameters which were returned after convergence of the VBEM algorithm. Then, the
value F [QQQ∗,ϑϑϑ ∗]≡ ILvb[QQQ∗,ϑϑϑ ∗] serves as a model selection criterion. This is the Inte-
grated Likelihood Variational Bayes (ILvb) criterion introduced by [6] for the Bernoulli
SBM. The ILvb for the Poisson SBM is

F [QQQ,ααα,βββ ,δδδ ] =
K

∑
k,l

ln


 β αkl

kl Γ(α0
kl)

β 0α0
kl

kl Γ(αkl)


+

N

∑
i=1

K

∑
k=1

Qik lnQik

+ ln

(
Γ
(
∑K

x=1 δx
)

∏K
x=1 Γ(δ 0

x )

Γ
(
∑K

x=1 δ 0
x
)

∏K
x=1 Γ(δx)

)
. (11)

It is proofed in Proposition 5. The ILvb allows us to compare different results of the
VBEM algorithm. The lowest value of the ILvb corresponds to the optimal cluster
assignment of the vertices of all calculations. The ILvb criterion of the Bernoulli SBM
is repeated in Appendix A and the ILvb of the Poisson SBM Proposition 5.
To find the optimal number of clusters K∗, VBEM is initialized for different numbers of
clusters K and different start partition matrices QQQ(start). The optimal number of clusters
is chosen as the calculation with the minimal value of the ILvb [6] (see also [5] for a
closely related algorithm).

4 Exact Integrated Classification Likelihood Criterion

The algorithms for the initialization of the start partition matrix QQQ(start) we will propose
in Section 6 assign each vertex to exactly one cluster (hard clustering) contrary to the
fuzzy clustering of the vertices by the VBEM algorithm in Section 3. We could also use
the ILvb criterion for a hard clustering of the vertices. In this case, the entropy term,
∑N

i=1 ∑K
x=1 Qix lnQix, of eqn. (11) would be zero. The ILvb with the entropy term equal

to zero is similar to the exact Integrated Classification Likelihood Criterion (ICLex),
which was introduced in [9]. The derivation of the ICLex differs from the derivation of
the ILvb. This can be seen when we proof the ICLex for the Poisson SBM in Appendix
C or in [9] for the Bernoulli SBM. The ILvb criterion depends on the variational bound
of the negative log likelihood, − ln p(A|K). So, the ILvb criterion is based on an
approximation. Contrary, the ICLex is no approximation of the variational bound, but
an analytical model selection criterion for the SBM [9]. It takes the cluster indicator
matrix ZZZ and the number of clusters K as the input. We present the ICLex in Proposition
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1. We show in Proposition 4 how the model parameters ϑϑϑ for a given cluster indicator
matrix ZZZ are calculated for the Poisson SBM.

Proposition 1. Let the cluster indicator matrix ZZZ, the number of clusters K and the
adjacency matrix A be given. Then the ICLex of the Poisson Stochastic Block Model of
eqn. 3 is

ICLex[ZZZ,K] =
K

∑
k,l

ln


 β αkl

kl Γ(α0
kl)

β 0α0
kl

kl Γ(αkl)

1

(Ai j!)
∑N

i 6= j ZikZ jl




+ ln

(
Γ
(
∑K

k=1 δk
)

∏K
k=1 Γ(δ 0

k )

Γ
(
∑K

k=1 δ 0
k

)
∏K

k=1 Γ(δk)

)
(12)

where Γ(·) is the Gamma function. The parameters αkl ,βkl and δk for all k, l = 1, . . . ,K
are calculated according to Proposition 3 given in Appendix B.1.

Every time we will use the ILvb criterion in Section 5 one can use the ICLex to
compare hard clustered vertex partitions. This come at an increased computational
cost. Another algorithm for finding the optimum of the ICLex for a given graph is the
greedyICL algorithm proposed in [9]. It uses greedy heuristics introduced in [10] and
[11], [9].

5 Blockloading Algorithm
Next, we propose the Blockloading algorithm, which is a cluster bisection algorithm.
We start the optimization with all vertices of the graph in one cluster and calculate the
Free Energy F (ILvb). This cluster is divided into two clusters in search for a lower
Free Energy F . We continue to alternately divide and optimize chosen clusters by
using a variant of the VBEM algorithm. This variant for the optimization of the vertices
belonging to one cluster is called the BlockVB algorithm. The BlockVB algorithm for
the Bernoulli SBM is given in appendix A and for the Poisson SBM in appendix B.1.

Initialization of Blockloading We calculate the Free Energy F for K = 1 clusters,
i.e. all vertices are assigned to the same cluster. We use equations (28), (29), (30)
together with eqn. (33) for the calculation of F of the Bernoulli SBM and Propositions
3, 4 and 5 for the Poisson SBM. The start partition matrix QQQ(start) is an N× 1–matrix
with all entries equal to one. The result, the Free Energy F for K = 1, is stored as the
reference F(re f ).
Now, we check if a lower (better) Free Energy F than F(re f ) can be obtained for a
partition matrix with K = 2 clusters. A N×2–partition matrix QQQ(start) is initialized for
the VBEM algorithm of Section 3. There are several algorithms for initializing QQQ(start).
We explain these algorithms in Section 6. All these algorithms assign each vertices to
exactly one cluster (hard clustering).
VBEM is run for K = 2 clusters and QQQ(start) as input. The results are the partition ma-
trix QQQ(trial) and the Free Energy F(trial).
If F(trial) < F(re f ) holds, QQQ(trial) is stored as the new reference partition matrix QQQ(re f ).
Similarly, F(re f ) is overwritten by F(trial) and the number of clusters is set to K(re f ) = 2.
The model parameters calculated using Propositions 3 and 4 are stored in ϑϑϑ re f .
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After the Initialization Step, we check if there is a lower F for a partition of K = 3
clusters. We try to optimize and expand the existing reference partition QQQ(re f ) by di-
viding one of the existing clusters. There are several strategies to choosing a cluster
we want to divide as explained in The Active Cluster below. To divide or optimize
the assignment of the vertices in the active cluster, we need start values for the cluster
assignment of the vertices. During tests we found that the quality of the results of the
optimization of the active cluster depends strongly on the start values and that it is eas-
ier to find a (near) optimal partition of the vertices for a low number of clusters, K, like
K = 2 than for a high number of clusters for example K = 20. We explain this finding
with the help of the Largest Gap (LG) algorithm [12], which is presented in Section
6.2. A consequence of the derivation of the LG algorithm is, that for different cluster
connection probabilities θkl , there are clusters which are easier to identify than other
clusters. With the Optimal Gaps (OG) algorithm we will present in Section 6.2, these
clusters are separated from the other clusters for a low number of clusters, starting with
K = 2 clusters. Even for large and complex graphs, we are able to find near optimal
start values for the vertex assignment for K = 2 clusters. This feature of the Block-
loading algorithm also separates densely connected vertices from vertices which have
comparatively few and irregular connections to other vertices. The choice of the active
cluster allows us to proceed by optimizing the more densely connected parts of the
network first. During tests we found that this optimization plan of the clusters yields a
dramatic increase of the quality of the results especially for real world networks with
highly varying connection profiles of the vertices. So, Blockloading allows the exclu-
sion of vertices with sparse and irregular connections from the optimization process.
We use the results of the clustering for K = 2 clusters as start values for the following
refinement and subdivision of the vertex assignment.
We sum up the main steps of the Blockloading algorithm:

Input: Adjacency matrix AAA.
Result: Cluster partition matrix QQQ(re f ), number of clusters Kre f and parameters ϑre f .

(i) Blockloading Initialization

Main Loop:

(ii) Refinement Step

(iii) Expansion Step

(iv) Check for Convergence of all clusters

The Active Cluster We choose one of the existing clusters of QQQ(re f ) to split. We call
this cluster the active cluster.
We choose the cluster with the highest number of vertices as the active cluster. The
number of vertices in one cluster, nk, are calculated according to:

nk =
K

∑
k=1

Q(re f )
ik . (13)

The active cluster a is therefore a = max
k=1,...,K

nk. In the following Refinement and Ex-

pansion Step it will become clear, that this choice minimizes the computational burden
because we need fewer updates of the clusters before convergence is reached. For some
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graphs with a high variance of vertex degrees, this choice is not optimal. This will be
explained and alternatives will be introduced in Section 6.
The Main Loop of Blockloading begins with the Refinement Step of the active cluster
a.

Hard Clustering As explained in Section 3, the partition matrix Q(re f ) returns a
probability for the cluster assignment of each vertex (fuzzy clustering). In the following
paragraphs we introduce the concept of cluster dependent optimization of the existing
partition matrix. To be able to optimize the vertices in one cluster, we first have to
determine which vertices belong to which of the clusters. We transform the vertices i
in cluster a of QQQ(re f ) into a hard clustering by transforming each matrix row
Qi = (Q(re f )

i1 , . . . ,Q(re f )
iK ) ∀i ∈ a according to

Q(hard)
i j =





1, if Qi j = max
j∈{1,...,K}

Qi j

0, else
. (14)

Now, we know which vertex i belongs to the active cluster.

Refinement Step We determine the active cluster a and the set of indices I of all
vertices with i ∈ a (see eqn. 14). According to an algorithm of Section 6, we calculate
cluster assignments for all vertices in I to the existing cluster of QQQ(re f ). All other ver-
tices in QQQ(re f ) are kept fixed. This yields the start partition matrix QQQ(start).
We run the BlockVB algorithm of Appendix A or B.1 with the matrix QQQ(start), number
of clusters Kre f and set of indices I. BlockVB is a variant of VBEM, which calculates
only the cluster assignment for vertices i ∈ I with the cluster assignment of all vertices
i /∈ I held fixed.
BlockVB returns the fuzzy cluster assignment stored in the matrix QQQ(trial), the Free
Energy F(trial) and the parameters ϑ (trial). If F trial < Fre f holds, the output QQQ(trial),
F(trial), and ϑ (trial) of the BlockVB algorithm is stored as the new reference.
The change in the cluster assignment of vertices i ∈ I can affect the cluster assignment
of the vertices i /∈ I too, (see [3] for an example). Therefore, all clusters have to be
updated until convergence is reached. Consequently we reset the number of converged
clusters to zero.
If F(trial) ≥ F(re f ) we keep the old reference values. We proceed to the Expansion Step.

One can also skip the Refinement Step for a considerable additional gain in compu-
tation speed. This comes at the cost of increased variance of the quality of the results
for complicated networks.
The Refinement Step is an error correction feature of the Blockloading algorithm
which is already used during the calculation process. When some algorithms for choos-
ing the start partition matrix are used, the Refinement Step can also be skipped (see
Section 6).

Expansion Step If there was a change of the Free Energy F(re f ) in the Refinement
Step, we determine the active cluster a and the set I. We try to find an F lower than the
existing F(re f ), by finding a cluster assignment of all vertices i ∈ a to two new clusters.
The reference matrix QQQ(re f ) is duplicated and renamed as QQQ(start). An additional matrix
column of zeros is added to the matrix QQQ(start) making it an N×K(re f )+1–matrix. We

8



apply one of the start value algorithms from Section 6 to the set of vertices I, to divide
it into two clusters k(I)1 and k(I)2 . The vertices i ∈ k(I)1 are kept in a. The vertices i ∈ k(I)2

are set to zero. Then, all matrix entries QQQ(start)
iK(re f )+1

with i ∈ k(I)2 are set to one.

BlockVB is run with partition matrix QQQ(start) and K(re f )+ 1 as input. As explained in
the Refinement Step, we get the output of QQQ(trial), ϑ (trial) and F(trial) from BlockVB. If
F(trial) < F(re f ) holds, the reference values F(re f ), QQQ(re f ) and ϑϑϑ (re f ) are updated. Like
in the Refinement Step, the vector of converged clusters is emptied because the update
of the reference values can affect the convergence of the other clusters, too.
Otherwise, we store the active cluster a as converged.

Convergence Convergence is reached, if the optimization of all clusters in the Re-
finement Step and Expansion Step has converged. The Expansion or Refinement Step
did not yield a lower (better) Free Energy F . The number of converged clusters is equal
to K(re f ).

The Blockloading algorithm may also be used to calculate a partition with no more
than a predetermined number of clusters by skipping the Expansion step every time the
desired number of clusters is reached.
Using the Expansion Step cluster by cluster of Blockloading, the occurrence of empty
columns in the matrix QQQ(re f ) is minimized. This saves computational time which would
be otherwise wasted for non optimal columns. Blockloading allows the restart with a
given partition matrix QQQ for further improvement. We remark that the greedyICL algo-
rithm of [9] may be used instead of the BlockVB algorithm.

6 Start Value Considerations
The VBEM Algorithm converges to a local optimum [6]. Thus, the choice of the start
partition matrix QQQ(start) affects the outcome of the VBEM algorithm. It takes more
iterations of VBEM to converge for a start partition matrix which assigns most of the
vertices in a nonoptimal cluster. We also noted during computational tests, that a start
partition matrix which assigns a lot of vertices to an non optimal cluster also yields
an F which is far away from a (global) optimum. For the Blockloading Algorithm, we
need start values for the Expansion and Refinement Step. Except for the first Expansion
Step after the Initialization Step, we only need start values for subsets of the vertices
for the Blockloading algorithm.

6.1 Ascending Hierarchical Clustering
To select a start partition matrix, an Ascending Hierarchical Clustering Algorithm
(AHC) was proposed in the literature (see e.g. [13], [3], [6], [9]).We review the AHC
Algorithm explained in the technical documentation of the mixer package [13]. We
will explain how to use the AHC Algorithm for our Blockloading algorithm.
For the AHC we need definitions for the distance between vertices and clusters. The
distance between two vertices i and j of a directed graph is defined as:

d(i, j) =
N

∑
k=1

(Aik−A jk)
2 +(Aki−Ak j)

2 = ‖Ai−A j‖2. (15)
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The distance between two clusters is calculated with the help of the barycenters [13].
The barycenters of cluster q for rows and columns, (g+q ,g

−
q ) , with nq being the number

of vertices in cluster q are:

g+qi =
∑k∈q Aik

nq
, (16)

g−qi =
∑k∈q Aki

nq
, (17)

for all vertices i∈ {1, . . . ,N}. The distance between two clusters is defined as the Ward
distance between the barycenters:

∆(q, l) =
nqnl

nq +nl

(
‖g+q −g+l ‖2 +‖g−q −g−l ‖2) . (18)

Now, we can recall the AHC of [13] with some minor changes:
(i) Initialization: Calculate ∆ the distance between the clusters (eqn. (18)). In the first
iteration, vertices are considered as clusters, and the distance d(·, ·) is used instead.
(ii) Merging Step: Merge two clusters if their distance ∆ is the smallest. If two dis-
tances are equal, clusters to merge are randomly chosen. The label of the new cluster
is the smallest of the two previous labels.
(iii) Calculate the distance between groups.
(iv) Iterate (i),(ii) and (iii) until the desired number of clusters, K, is reached.

The AHC algorithm is slow, except for small graphs. It was proposed in [13] to limit
the AHC to a subgraph G(sub) with n0 < N vertices of the original graph. After con-
vergence of the AHC for the n0 vertices, the other vertices i /∈ G(sub) are placed in the
clusters with the nearest barycenters.
Another strategy proposed in [13] is to run the k-means algorithm for a user specified
number Nmax of regularly ordered centers. The centers are Nmax vertices of the graph.
Then k-means is run until no change of centers occurs. The resulting clusters are used
as input for the AHC algorithm.
Now we will explain how we use the AHC for Blockloading. We want to find the start
partition matrix in the Expansion Step in Section 5. We run the AHC for all vertices in
the active cluster, until we reach K = 2 clusters. After the first iterations of Blockload-
ing, the number of vertices in the active cluster is small enough for some of the clusters,
so that we can run the AHC without the preparation through the k-means algorithm.
We choose the start partition matrix in the Refinement Step in Section 5 in the follow-
ing way:
(i) Calculate the barycenters (eqn. (16) and (17)) of the existing clusters including the
active cluster.
(ii) Find the shortest distance d(·, ·) for each vertex in the active cluster to one of the
barycenters. Place the vertex in these clusters of the start partition matrix QQQ(start) of the
Refinement Step.
We also used a second way to initialize the start partition martix QQQ(start) for the Refine-
ment Step with random entries:
(i) Find all vertices i in the active cluster a.
(ii) Set all entries of the matrix rows Q(re f )

i ∈ R1×K ∀i ∈ a to zero.
(iii) For each matrix row i ∈ a, draw a randomly initialized vector Q(random)

i with

∑K
k=1 Q(random)

ik = 1 and Q(random)
ik ∈ (0,1) ∀k = 1, . . . ,K.
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(iv) Set Q(re f )
i = Q(random)

i ∀i ∈ a.
The AHC Algorithm provides no procedure for choosing the centers of the k-means
preparation. We will address this issue in the next Sections We will propose ways to
find the centers (seeds) of k-means based on the properties of the SBM and Blockload-
ing.

6.2 Largest Gap Algorithms
We need a computationally viable algorithm to choose the centers of the k-means al-
gorithm for large graphs with many clusters. This algorithm should provide a fast
approximation of the clusters of the SBM. If we choose the centers for k–means or the
subnetwork of the AHC randomly, we might end up with many (or in extreme cases
all) centers coming from one cluster. The result is a suboptimal initialization of the
start value partition matrix. In the following we will show how to lower the probability
of such a scenario.
For the case of the undirected Bernoulli SBM with K = 2 clusters, an algorithm was
introduced in [1] which can find the latent cluster assignments of the vertices of the
SBM for graphs of N = 30 vertices or more. This algorithm uses the summed degrees
of all vertices of the graph. The algorithm was expanded in [12] to the case of more
than two clusters and provided an asymptotic criterion for model selection. They called
this algorithm the Largest Gaps algorithm (LG algorithm).
We expand the LG algorithm to the directed Bernoulli SBM and the directed Poisson
SBM. We calculate the degree D(dir)

i of vertex i for directed graphs as the arithmetic
mean of the in–degree D(in)

i and the out–degree D(out)
i :

D(in)
i =

N

∑
j=1

Ai j; D(out)
i =

N

∑
j=1

Ai j; D(dir)
i =

1
2
(
D(out)

i +D(in)
i

)
. (19)

Now, we define the probability θ (dir)
k = 1

2

(
∑K

l=1 δl(θkl +θlk)
)

for all clusters k∈{1, . . . ,K}.
Then the degree D(dir)

i is a binomial distributed random variable conditionally on Zik =

1 with parameters (N−1,θ (dir)
k ). It is θ (dir)

k ∈ [0,1].
Equivalently, we define for the Poisson SBM
λ k = 1

2

(
∑K

l=1 δl (λkl +λlk)
)

for all clusters k ∈ {1, . . . ,K}. Then, the degree D(dir)
i

is a Poisson distributed random variable, conditionally on Zik = 1 with parameter
λ k. It is assumed, that for all clusters k, l ∈ {1, . . . ,K}, the separation assumption
k 6= l → θ k 6= θ l holds [12]. We propose a similar assumption for the Poisson SBM:
k 6= l→ λ k 6= λ l for all k, l ∈ {1, . . . ,K}.
The smallest gap between the θ k (λ k) is defined as [12]: δ = min

q6=r
|θ q− θ r|. It was

shown in [12] that a larger gap is to be expected between vertices of different clusters
for the Bernoulli SBM. This leads to the LG algorithm. Now we repeat the LG algo-
rithm [12]:

(i) Calculate the vertex degrees (Di)i=1,...,N . Norm the degrees to Ti =
Di

N−1 .
(ii) Sort the Ti, i = {1, . . . ,N} in ascending order:

Ti ≤ ·· · ≤ TN . (20)

(iii) Calculate the N−1 gaps, Gi = Ti+1−Ti∀i ∈ {1, . . . ,N−1}.
(iv) Find the indices of the K− 1 largest gaps Gi j : i1 < · · · < iK−1, such that for all
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k ∈ {1, . . . ,K−1} and for all i ∈V\{i1, . . . , iK−1}

Tik+1 −Tik ≥ Ti+1−Ti. (21)

(iv) Setting i0 = 0 and iK = N, each index i is assigned to a cluster: i → k with
ik−1 < i≤ ik.
We use the vector (D(dir)

i )i=1,...,N as the input for the directed Bernoulli SBM. The con-
sistency of the LG algorithm was proved for the undirected Bernoulli SBM in [12].
With similar arguments the consistency of the LG algorithm for the directed Bernoulli
SBM holds. The prove of the consistency is based on Hoeffding’s inequality which
only holds for bounded random variables. So, we cannot prove the consistency of the
LG algorithm in the case of the Poisson SBM.
The vector of ordered degrees d = (Di)i=1,...,N is called the ordering vector in [1].
The ordered vertex numbers are stored in the vector s.
We found that the gaps provide a grid for choosing the Nmax seeds of the AHC algo-
rithm of Section 6.1. Alternatively, we portioned the vector s into k equally spaced
intervals and choose a center randomly from each interval. We use the LG algorithm
to find the start partition matrix in the Expansion Step of Section 5.
Of course, the LG algorithm can be limited to the vertices in the active cluster.
We want to use the LG algorithm for large graphs, in the first few iterations of Block-
loading without the AHC algorithm to save computational time. Therefore we could
simply choose the largest gap max

i=1,...,N−1
Gi, and divide the vertices accordingly. Often,

the active cluster is divided into two new clusters several times, before an optimum
of ICLex is reached. Choosing the largest gap will not necessarily yield the highest
decrease of the ICLex criterion. Moreover, it was pointed out in [12] that the LG algo-
rithm is suspect to outliers for smaller networks or real world networks. We propose
a new algorithm for finding the optimal division of the active cluster in the Expansion
step.
We present the Optimal Gap algorithm (OG algorithm).

(i) Specify a number of gaps ng� na. Find the ng largest gaps Gi1 , . . . ,Ging .
(ii) For Gi j divide the vertices according to (iv) of the LG algorithm in two clusters.
(iii) Form a start partition matrix QQQstart

i j
where the active cluster is divided according to

Gi j .
(iv) Calculate ICLexi j for QQQstart

i j
.

(v) Find min
j

ICLexi j .

We choose the start partition matrix QQQ(start)
i j

corresponding to min
j

ICLexi j . Thus, we

have a provably good approximation of the partition matrix near the optimum, with our
start value partition matrix QQQ(start)

iopt
for K = 2 clusters. We avoid outliers by calculating

the decrease of the ICLex for several gaps ng and not just the largest gap. We remark,
that if we apply the OG algorithm repeatedly until no further decrease of the ICLex is
reached, this constitutes a clustering algorithm of its own.
The value of the gaps δqr = |θ q−θ r|, ∀q 6= r varies in most networks. When we run
Blockloading (or VBEM in general) for low number of clusters K, we observed that
the clusters with the highest δqr are found first. These results also tend to be more
consistent.
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6.3 Start Values and the Active Cluster
The output of the LG algorithm is dependent on θ k (or λ k). When we build the start
partition matrix of the Expansion Step with the LG algorithm, we divide the active
cluster in two new clusters k1 and k2. If not all connection probabilities θkl are equal,
we have that (without restriction of generality)

θ̂k1 ≡
K

∑
l=1

θk1l +
K

∑
l=1

l 6=k1

θlk1 >
K

∑
l=1

θk2l +
K

∑
l=1

l 6=k2

θlk2 ≡ θ̂k2 (22)

holds for the summed connection probabilities. Especially for graphs with vectors
of summed degrees (Di)i=1,...,N which have a heavy tail distribution (e.g. a Power
Law), the difference between θ̂k1 and θ̂k2 will be significant. Vertices which have a
low summed degree will only have a few, irregular entries. These vertices are hard to
assign to a cluster. We will show how to cluster them as outliers.
If we choose the cluster with the highest θ̂a as the active cluster a (see also Section
5), the vertices with low degrees will stay in one cluster for the first iterations of the
Blockloading algorithm. This strategy of choosing the active cluster also allows us to
impose a threshold T for the cluster connection probabilities. If θal < T and θla < T for
all l ∈ {1, . . . ,K}, we can skip the Expansion and Refinement Step for the cluster ka.
Then, after the convergence of all other clusters k 6= ka, we can try to split the cluster in
a separate Expansion Step. This allows us to check if any of the two new clusters k(1)a ,
k(2)a has connection probabilities higher than the threshold T . Otherwise, this cluster
can be left out of the Refinement and Expansion Step. We will compare the different
algorithms for finding the start partition matrix in Section 7.

7 Numerical Experiments
For a better comparison of the values of the Free Energy F in the following tests, we
take the best of all values of the Free Energy F , Fre f , and calculate the difference
∆Fre f = F−Fre f ≥ 0.
To compare different cluster partitions QQQ and QQQ0 we use the Normalize Mutual Infor-
mation (NMI) ([14]). A NMI(QQQ0,QQQ) of 1 means that both partitions QQQ and QQQ0 are
identical. The NMI is zero when no information about QQQ0 can be inferred from QQQ.

7.1 Synthetic Networks
7.1.1 Comparison with existing methods

We compare our Blockloading algorithm with existing methods. We reproduced a test
performed in [9] for large graphs with a complex structure. The greedyICL algorithm
presented in [9], the colsbm algorithm of [15], the vbmod algorithm of [5] and the
spectral clustering version of [16] were tested in [9].
The graph is constructed with the Bernoulli SBM of Section 2. There are N = 10000
vertices, K = 50 clusters. The probabilities for the cluster assignments are given by the
vector δδδ = (1/50, . . . ,1/50) ∈ R1×50. The probabilities for the existence of an edge
are generated according to

θkl =

{
ZU +(1−Z)ε, if k 6= l
U, if k = l

(23)
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with Z ∼ Bernoulli(0,1), the uniform distribution U ∼U (0.45) and ε = 0.01.
[9] applied their greedyICL algorithm to 20 simulated graphs. They found that their
greedyICL algorithm outperformed the other algorithms with an average NMI of 0.88
between the real cluster partition and the calculated one. The greedyICL returned
K = 80 clusters most of the time [9].
We applied our Blockloading algorithm for the Bernoulli SBM to 20 simulated graphs.
We used the AHC algorithm of Section 6.1 with a subnetwork for the Expansion Step
and and a random sub matrix for the Refinement Step. The active cluster was chosen
as the cluster with the most vertices (see Section 5).
We found that our Blockloading algorithm identified the correct number of clusters,
K = 50 and the correct partition with a NMI of 1.0 (each vertex was placed in the cor-
rect cluster) for each of the 20 runs.
We conclude that our Blockloading algorithm outperforms the other algorithms men-
tioned above in this test. The Blockloading algorithm is the only algorithm of the
mentioned algorithms in this Section, which is able to identify the correct number of
clusters.

7.1.2 Large and complex Poisson SBM

To test the Blockloading algorithm for the Poisson SBM we constructed the following
example graph which was generated as explained in Section 2. Each generated graph
has N = 10000 vertices and K = 50 clusters. The vector of the Multinomial distribution
is given by δδδ = (1/50, . . . ,1/50) ∈ R1×50. We draw Z ∼ Bernoulli(0.2) and set ε = 1.
The rates of the edge weights λkk within the clusters are set in ascending order to
(0.1, 0.2, . . . , 1, 1.5, 2, . . . , 21) ∈ R1×50. We set the parameters λk· according to

λkl =

{
Zλkk +(1−Z)ε, if k 6= l
λkk, if k = l

. (24)

The generated graph has an asymmetric structure and varying edge weights.
Again, we used the AHC algorithm for the Expansion step and the random initializa-
tion for the Refinement Step.
We generated 20 realisations of the graph and ran the Blockloading algorithm for the
Poisson SBM. We found that Blockloading returned the correct number of clusters for
each test. We calculated a NMI of 1.0 for each comparison between the calculated
partition matrix QQQ and the true partition matrix QQQtrue.
This example shows, that our Blockloading algorithm is able to reliably calculate cor-
rect results for large weighted graphs with complex structure.

7.2 Southern California Earthquake Network
The Earthquake Network (EN) was introduced in [8]. It was shown in ([8, 17, 18]) that
important statistical properties of earthquake activity are inherited by the EN.
The EN is constructed for a chosen geographical area and time span. A square grid is
put on the area of interest [19]. The EN unfolds in the following way:
(i) Place a vertex in the first square where seismic activity occurs at the start of the
observation interval.
(ii) Place a second vertex where the next time seismic activity occurs and place a (di-
rected) edge between the last two vertices of seismic activity pointing to the latest
vertex of activity.
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(iii) Continue until the end of observation.

For the Southern California area (32s,37n; 122w, 114w) we constructed the Earthquake
Network for the time interval from January 1, 1984 to December 31, 2013. We chose
a square length of 10km for the grid. This results in 4256 squares. We used the earth-
quake catalogue data from the Southern California Earthquake Data center (SCDEC)
[20].
Earthquake catalogues have a minimum magnitude of completeness (see e.g. [21]).
The earthquake catalogue is expected to list every earthquake with magnitude equal
or higher than the magnitude of completeness. It was shown in [21] that the SCDEC
catalogue is complete for a magnitude of M ≥ 1.8 on the Richter Scale from January 1,
1984 onwards. We used only earthquakes with magnitude M ≥ 1.8 for the construction
of the EN.
We set the entries on the diagonal of the adjacency matrix of the EN to zero. These
entries represent aftershocks in the EN. The resulting adjacency matrix of the graph of
the EN has N = 2324 vertices and 58718 edges.
We found that the directness of the Earthquake Network, which results from the con-
struction as explained above, is an important feature of earthquake networks. To mea-
sure the importance of the directedness of the network we used the degree of asymme-
try (DOA) [22]. It allows to quantify the directedness of a network. A DOA of 0 means
no directedness whereas 1 stands for a perfectly directed network. We found that the
DOA of the ENSC introduced above, was 0.86.
We ran our Blockloading algorithm with the Bernoulli SBM and the Poisson SBM for
ten times for the EN. To test the Bernoulli SBM, we set each edge weight bigger than
zero of the adjacency matrix to one. We also tested the VBEM–ILvb [6] algorithm of
the Bernoulli SBM mentioned in Section 3. We initialized the VBEM–ILvb algorithm
for 1 to 15 clusters and took the best result measured by the lowest Free Energy.
We implemented all algorithms and used the AHC algorithm of Section 6.1 with a sub-
network for the Expansion Step and and a random sub matrix for the Refinement Step.
We used the strategy outlined in Section 6.3 and chose the cluster with the highest θ̂k
(or λ̂k for the Poisson SBM). We also tried choosing the cluster with the highest vertex
count as the active cluster. This produced clearly inferior results (not shown here) due
to sparsity of the network and the heavy tail distribution of the vertex degrees.
We ran VBEM–ILvb, initialized for 1 to 15 clusters, and Blockloading for 10 times.
The best result measured by the lowest Free Energy was obtained by Blockloading
with F = 185812, (∆Fre f = 0) and K∗ = 12 clusters. This result is shown in Fig. 1.
The clustering result in Fig. 1 shows, that the areas in the same cluster are spread over
the area and are not necessarily geographically adjacent because they depend on edge
connection profiles.
The worst result of Blockloading was ∆Fre f = 5 and K = 12. The comparison of the
partition matrices of the best result and the worst result yields a NMI of 0.96. We also
ran Blockloading 10 times without the Refinement Step. The results varied between
∆Fre f = 109, with a NMI of 0.77, K = 16 clusters and ∆Fre f = 248, with a NMI of 0.77
and also K = 16 clusters.
The best result of VBEM–ILvb was, measured by the difference to the reference Free
Energy, ∆Fre f = 350 with K = 11 clusters, and the worst result was ∆Fre f = 1323 with
K = 9. We compared all partition matrices in terms of NMI with the best partition in
Table 1 and displayed the calculated number of clusters. We conclude that Blockload-
ing has substantially higher consistency of the results. The computational speed of the
best result of Blockloading was 10 times faster ( 52 times faster without the Refinement
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Figure 1: The best result of the Blockloading algorithm for the Bernoulli SBM for the
Southern California Earthquake Network is shown. All areas in the same cluster are
colored in the same color. Areas with no seismic activity in the observation time are in
white. The coastoutline was plotted with [23].

Table 1: Results of the Blockloading algorithm for the Bernoulli SBM of the Earth-
quake Network. Normalized Mutual Information (NMI) calculated in comparison with
the best result of all tests. Results were ordered according to quality of NMI. Number
of clusters K. Difference to reference Free Energy ∆Fre f .

NMI 1 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96
K 12 12 12 12 12 12 12 12 12 12
∆Fre f 0 0.8 0.1 1.1 2 0.1 0.8 2.1 5.2 4.2
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Table 2: VBEM–ILvb results for the Earthquake Network. Normalized Mutual Infor-
mation (NMI) calculated in comparison to the best result of all tests. Results were
ordered according to quality of NMI. Number of clusters K. Difference to reference
Free Energy ∆Fre f .

NMI 0.79 0.77 0.77 0.77 0.76 0.76 0.76 0.76 0.75 0.75
K 14 10 10 10 14 8 11 15 10 9
∆Fre f 705 365 365 362 374 715 350 693 1337 1323

Table 3: Results of the Blockloading algorithm for the Poisson SBM for the weighted
Earthquake Network. Normalized Mutual Information (NMI) calculated in comparison
to the best result of all tests. Results were ordered according to quality of NMI. Number
of clusters K. Difference to reference Free Energy ∆Fre f .

NMI 1 0.92 0.89 0.87 0.88 0.90 0.91 0.75 0.91 0.91
K 46 46 46 48 48 48 48 45 44 46
∆Fre f 0 20 132 163 198 228 276 304 346 517

Step) than the best result of VBEM–ILvb on the same machine.
We tested the Blockloading algorithm for the Poisson SBM for the for the weighted
Earthquake Network. The highest edge weight was 240 and the lowest 1. We ran the
Blockloading algorithm for ten times. The best result measured by the Free Energy F
yielded K = 45 clusters and the worst result K = 46 clusters with ∆Fre f = 517. The
results are shown in table 3.
We note that the edge weights provide a lot of additional information. In the best clus-
tering result, 9 for 45 clusters are clusters with only one vertex. These nine vertices are
hubs which are strongly linked to all clusters in the network. Hubs play an important
role in Earthquake Networks [8]. We found during testing, that these hubs can only
reliably identified with our Blockloading algorithm. The weighted graph is also harder
to cluster, because the results vary more than for the unweighted graph.

8 Conclusion
We developed a new algorithm for applying Variational Bayesian (VB) methods to
large and complex graphs. The task of finding the optimal number of clusters was
combined with the calculation of the cluster partition matrix, showing that both tasks
are essentially linked for VB methods. The consistency of the results was substantially
improved without the need for an initial guess of the numbers of clusters. Our method
was tested on a synthetic network drawn from an SBM and an Earthquake Network.
In those tests, every run of our algorithm performed substantially better than the best
result of the comparable algorithms for solving the SBM in terms of computational
speed and quality of the results.
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A Bernoulli BlockVB Algorithm

Input: partition matrix Q(start), active Cluster c and adjacency matrix A.
Initialization: Find indices I of vertices in the active cluster, i ∈ c.
Initialize parameters α0

kl = 1/2, β 0
kl = 1/2 ∀k, l ∈ {1, . . . ,K} for the Beta prior distri-

butions and δ 0
k = 1∀k ∈ {1, . . . ,K} for the Dirichlet prior distribution with non infor-

mative priors [24, 6].
To save computational time in the M–Step, we prepare the update formulas for the
Maximization Step dependent on the vertices in i ∈ I: Sαxy = ∑N

i6= j QixQ jyAi j, Sβxy =

∑N
i 6= j QixQ jy(1−Ai j), Sδk

= ∑N
i=1 Qik. Calculate

SI
αxy = ∑

i, j∈I
i 6= j

QixQ jyAi j +∑
i∈I
i6= j

N

∑
j/∈I
j=1

QikQ jlAi j +∑
j∈I
i 6= j

N

∑
i/∈I
i=1

QikQ jlAi j, (25)

SI
βxy

= ∑
i, j∈I
i 6= j

QixQ jy(1−Ai j)+∑
i∈I
i 6= j

N

∑
j/∈I
j=1

QikQ jl(1−Ai j)+∑
j∈I
i6= j

N

∑
i/∈I
i=1

QikQ jl(1−Ai j), (26)

SI
δk
= ∑

i∈I
Qik. (27)

Calculate the update of the parameters:

αxy = Sαxy +α0
xy, (28)

βxy = Sβxy +β 0
xy, (29)

δx =
N

∑
i=1

Qix +δ 0
x . (30)

(31)

Main Loop: Until convergence of the Free Energy F [q(·)]:
Expectation Step: Until convergence of the matrix entries Qik, ∀i ∈ I, k = {1, . . . ,K}.
Update of the matrix entries Qlv for all l ∈ I and for all v ∈ {1, . . . ,K}:

Qlv ∝ exp


−

K

∑
y=1

∑
j∈I
j 6=l

Al jQvyCvy−
K

∑
y=1

∑
j∈I
j 6=l

A jlQ jyCyv +Dvy ∑
j∈I
j 6=l

Q jy


 , (32)

where Cvy = ψ(βvy)−ψ(αvy) and Dvy = ψ(βvy)−ψ(βyv)−ψ(αvy +βvy)−ψ(αyv +
βyv). Calculate the norm Q?

ik = Qik/
(
∑K

k=1 Qik
)

of the updates Qik.
Check for convergence of the matrix entries Qik, ∀i ∈ I, k = 1, . . . ,K.
Maximization Step (M–Step):
Update the parameters of variational distributions. The parameters ααα and βββ of the Beta
distributions and the parameters δδδ of the Dirichlet distribution: SIold

αxy = SI
αxy , SIold

βxy
= SI

βxy
,

SIold
δk

= SI
δk

. Calculate SI
αxy , SI

βxy
and SI

δk
. Do the updates αxy = Sαxy −SIold

αxy +SI
αxy +α0

xy,

βxy = Sβxy −SIold
βxy

+SI
βxy

+β 0
xy and δk = Sδk

−SIold
δk

+SI
δk
+δ 0

k .
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Calculate the Free Energy F :

F [QQQ,ααα,βββ ,δδδ ] = ln

(
Γ
(
∑K

x=1 δx
)

∏K
x=1 Γ(δ 0

x )

Γ
(
∑K

x=1 δ 0
x
)

∏K
x=1 Γ(δx)

)

+
K

∑
x,y

ln

(
B(αxy,βxy)

B(α0
xy,β 0

xy)

)
+

N

∑
i=1

K

∑
x=1

Qix lnQix. (33)

Check for convergence of F .

B Poisson Stochastic Block Model
Proposition 2. The optimal estimate of the expectation of the latent variable Zik,
E[zik] = Qik for all i ∈V,q = 1, . . . ,N, Q?

iv = arg min
Qiv

F(QQQ,ϑϑϑ), is given by:

Qiv ∝ exp
( N

∑
i=1
i 6= j

K

∑
k=1

AaiQikCvk +
N

∑
i=1
i 6= j

K

∑
k=1

AiaQikCvk (34)

−
N

∑
i=1
i 6= j

K

∑
k=1

QikDvk +Gv

)
, (35)

where Eλλλ [logλvk] = ψ(αvk)− log(βvk) = Cvk, Eλλλ [λvk] +Eλλλ [λkv] =
αvk
βvk

+ αkv
βkv

= Dvk,

Eδδδ [δδδ q] = ψ(δq)−ψ
(

∑
(
∑K

l=1 δl
))

= Gq and ψ(·) is the Digamma function.

Proof. The terms of the lower bound F dependent on QQQ are:

F [QQQ] =
K

∑
q,l

N

∑
i, j
i 6= j

(
−QiqQ jlAi j

(
ψ(αql)− ln(βql)

)
+QiqQ jl

(
αql

βql

))

−
N

∑
i=1

N

∑
q=1

Qiq

(
ψ(δq)−ψ

(
∑
(

K

∑
l=1

δl

)
)
)
+

N

∑
i=1

K

∑
k=1

Qik lnQik

+ const.. (36)

We take the derivative of F with respect to Qiv:

∂F [QQQ]

∂Qiv
=−

N

∑
i=1
i 6=a

K

∑
q=1

AaiQiqCvq +
N

∑
i=1
i 6=a

K

∑
q=1

QiqDvq

−Gv + lnQav. (37)

We set eqn. 37 to zero. This yields:

Qiv ∝ exp
( N

∑
i=1
i 6= j

K

∑
q=1

AaiQiqCvq +
N

∑
i=1
i 6= j

K

∑
q=1

AiaQiqCqv (38)

−
N

∑
i=1
i6= j

K

∑
q=1

QiqDvq +Gv

)
. (39)
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The parameters (ααα,βββ ,δδδ ) of the conjugate prior distributions are updated in the
Maximization Step (M-Step), according to:

Proposition 3. The optimization of the variational bound of eqn. 8 for q(λkl) for all
k, l = 1, . . . ,K shows, that q(λkl) has the functional form of a Γ(λkl ;αkl ,βkl) distribu-
tion. It has the same functional form as the prior distribution p(λ 0

kl) = Γ(λkl ;α0
kl ,β

0
kl).

The hyperparameters αkl and βkl for all k, l = 1, . . . ,K for the partition matrix QQQ are:

αkl =
N

∑
i6= j

QikQ jlAi j +α0
kl , (40)

βkl =
N

∑
i6= j

QikQ jl +β 0
kl . (41)

Proof. The terms of the lower bound F dependent on λλλ are:

F [q(λλλ )] =
K

∑
q,l

N

∑
i, j
i 6= j

(
−QiqQ jlAi jEλλλ

[
lnλql

]
+QiqQ jlEλλλ

[
λql
])

−Eλλλ [ln p(λλλ )]+Eλλλ [lnq(λλλ )]+ const. (42)

We take the variational derivative of F which yields:

δF [q(·)]
q(λql)

=
N

∑
i, j
i6= j

(
−QiqQ jlAi j lnλql +QiqQ jlλql

)
+ lnq(λql)

(
α0

ql ln(β 0
ql)− lnΓ(α0

ql)+(α0
ql−1) lnλql−β 0

qlλql
)
. (43)

It follows that

q(λql) ∝ exp
(( N

∑
i, j
i6= j

QiqQ jlAi j +α0
ql−1

)
lnλql−

( N

∑
i, j
i 6= j

QiqQ jl +β 0
ql
)
λql

)
. (44)

Equation 44 shows that q(λql) has the functional form of a
Γ(∑N

i6= j QikQ jlAi j +α0
kl ,∑

N
i6= j QikQ jl +β 0

kl) distribution.

Proposition 4 ([6]). The optimization of the Free Energy (eqn. 8) for q(δk) for all k =
1, . . . ,K, shows that q(δk) has the functional form of a Dirichlet Dir(δδδ ;δδδ ) distribution.
The hyper parameters δk for all k = 1, . . . ,K are

δk =
K

∑
i=1

Qik +δ 0
k , (45)

where QQQ is the partition matrix.

Proposition 5. The Free Energy after convergence (ILvb) for the Poisson Stochastic
Block Model for K cluster, partition matrix QQQ and parameters (ααα,βββ ,δδδ ) is given by:

F [QQQ,ααα,βββ ,δδδ ] =
K

∑
k,l

ln


 β αkl

kl Γ(α0
kl)

β 0α0
kl

kl Γ(αkl)


+

N

∑
i=1

K

∑
k=1

Qik lnQik

+ ln

(
Γ
(
∑K

x=1 δx
)

∏K
x=1 Γ(δ 0

x )

Γ
(
∑K

x=1 δ 0
x
)

∏K
x=1 Γ(δx)

)
. (46)
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Proof. The Free Energy (Variatioal Lower bound) in eqn. 6 is given by:

F [q(·)] =−∑
ZZZ

∫
ln
(

p(AAA,ZZZ|ϑϑϑ)p(ϑϑϑ)

q(ZZZ,ϑϑϑ)

)
q(ZZZ,ϑϑϑ)dϑϑϑ (47)

=−EZZZ,λλλ ,δδδ [ln p(AAA|ZZZ,ϑϑϑ)]−Eλλλ ,δδδ [ln p(ZZZ|δδδ )]−Eλλλ [ln p(λλλ )]

−Eδδδ [lnδδδ ]+
N

∑
i=1

EZi [lnq(Zi)]+Eδδδ [lnq(δδδ )]+Eλλλ [lnq(λλλ )] (48)

=
K

∑
q,l

N

∑
i, j
i 6= j

(
−QiqQ jlAi j

(
ψ(αql)− ln(βql)

)
+QiqQ jl

(
αql

βql

))

+
K

∑
q,l
−(α0

ql−1)(ψ(αql)− ln(βql))+ ln
(

Γ(α0
ql

)

+β 0
ql

(
αql

βql

)
−α0

ql ln(β 0
ql)+αql ln(βql)− ln

(
Γ(αql)

)

+(αql−1)
(
ψ(αql)− ln(βql)

)
−βql

(
αql

βql

)

−
K

∑
q=1

N

∑
i=1

Qiq
(
ψ(δq)−ψ

(
K

∑
l=1

δq

)
)
− ln

(
Γ

(
K

∑
l=1

δ 0
l

))

+
K

∑
q=1

ln
(
Γ(δ 0

q )
)
−

K

∑
q=1

(δ 0
q −1)

(
ψ(δq)−ψ

(
K

∑
l=1

δl

))

+ ln

(
Γ

(
K

∑
q=1

δq

))
−

K

∑
q=1

ln(Γ(δq))

+
K

∑
q=1

(δq−1)

(
ψ(δq)−ψ

(
K

∑
l=1

δl

))
+

N

∑
i=1

K

∑
k=1

Qik lnQik. (49)

We plug the Update Equations of Propositions 3 and 4 for αkl , βkl and δk∀k, l ∈
{1, . . . ,K} into eqn. 49. This yields eqn. 46.

B.1 Poisson Block VB algorithm
Input: partition matrix Q(start), active Cluster c and adjacency matrix A.
Initialization: Find indices I of vertices in the active cluster, i ∈ c.
Set non informative prior parameters for the Gamma prior distribution: α0

kl =
1
3 and

β 0
kl = 1/100 for all k, l [25], and for the Dirichlet distributions δ 0

k = 1∀k [6, 24].
Initialize update formulas for the M-Step:

Sαkl =
N

∑
i 6= j

QikQ jlAi j,

Sβkl
=

N

∑
i 6= j

QikQ jl ,

Sδk
=

N

∑
i=1

Qik

21



Prepare

SI
αkl

= ∑
i, j∈I
i 6= j

QikQ jlAi j +∑
i∈I
i 6= j

N

∑
j/∈I
j=1

QikQ jlAi j +∑
j∈I
i 6= j

N

∑
i/∈I
i=1

QikQ jlAi j, (50)

SI
βkl

= ∑
i, j∈I
i 6= j

QikQ jl +∑
i∈I
i 6= j

N

∑
j/∈I
j=1

QikQ jl +∑
j∈I
i 6= j

N

∑
i/∈I
i=1

QikQ jl , (51)

SI
δk
= ∑

i∈I
Qik. (52)

Calculate the parameters (ααα,βββ ,δδδ ) ∀k, l ∈ {1, . . . ,K} according to Proposition 3 and 4:
αkl = Sαkl +α0

kl , βkl = Sβkl
+β 0

kl , δkl = Sδk
+δ 0

k .
Main Loop: Until convergence of F .
Expectation Step: Until convergence of the matrix entries Qik, ∀i ∈ I, k = {1, . . . ,K}.
Calculate updates of all matrix entries Qik i ∈ I and k = 1, . . . ,K according to Proposi-
tion 2.
Calculate the norm Q?

ik = Qik/
(
∑K

k=1 Qik
)

of the updates Qik.
Check for convergence of the matrix entries Qik, ∀i ∈ I, k = 1, . . . ,K.
Maximization Step: Update the parameters ααα , βββ of the Gamma prior distributions and
the parameters δδδ of the Dirichlet prior distributions. Set Sold

αkl
= SI

αkl
, Sold

βkl
= SI

βkl
and

Sold
δk

= SI
δk

. Calculate SI
αkl

, SI
βkl

and SI
δk

. Calculate M–Step Updates: αkl = Sαkl −Sold
αkl

+

SI
αkl

+α0
kl , βkl = Sβkl

−Sold
βkl

+SI
βkl

+β 0
kl , δk = Sδk

−Sold
δk

+SI
δk
+δ 0

k .
Calculate F(QQQ,ϑϑϑ) according to Proposition 5. Check for convergence of F .

C Exact Integrated Classification Likelihood Criterion
Proof of the ICLex for the Poisson SBM presented in Proposition 1:

Proof. We assumed factorized prior distributions
p(λλλ ) = ∏K

k,l Gamma(λkl ; α0
kl ,β

0
kl)

and p(δδδ ) = Dir(πππ;δδδ 0 = (δ 0
1 , . . . ,δ

0
k )). Thus, the integrated complete data log likeli-

hood can written in the following way [9]:

ln p(AAA,ZZZ|K) = ln
(∫

πππ,λλλ
p(AAA,ZZZ,πππ|K)dπππdλλλ

)
(53)

= ln
(∫

λλλ
p(AAA|ZZZ,λλλ ,K)p(λλλ |K)dλλλ

∫

πππ
p(ZZZ|πππ,K)p(πππ|K)dπππ

)
(54)

= ln p(AAA|ZZZ,K)+ ln p(ZZZ|K). (55)
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The term p(AAA|ZZZ,K) is together with eqn. (3):

p(AAA|ZZZ,K) =
∫

λλλ
p(AAA|ZZZ,λλλ ,K)p(λλλ |K)dλλλ (56)

=
∫

λλλ




K

∏
k,l

λ
∑N

i 6= j ZikZ jlAi j

kl

(Ai j!)
∑N

i6= j ZikZ jl
exp

(
−λkl

(
N

∑
i6= j

ZikZ jl

))


×
K

∏
k,l

β 0α0
kl

kl

Γ(α0
kl)

λ α0
kl−1

kl e−β 0
klλkl dλλλ (57)

=
∫

λλλ

K

∏
k,l

β 0α0
kl

kl

Γ(α0
kl)

λ
∑N

i6= j ZikZ jlAi j+α0
kl−1

kl
1

(Ai j!)
∑N

i 6= j ZikZ jl

exp

(
−
(

∑
i6= j

ZikZ jl +β 0
kl

)
λkl

)
dλλλ (58)

=
K

∏
k,l

Γ(αkl)

Γ(α0
kl)

β 0α0
kl

kl

β αkl
kl

1

(Ai j!)
∑N

i 6= j ZikZ jl
(59)

In [9] it was shown that the term p(ZZZ|K) is:

p(ZZZ|K) =
∫

πππ
p(ZZZ|πππ,K)p(πππ|K)dπππ (60)

=
∫

πππ

(
K

∏
k=1

π∑K
i=1 Zik

k

)
1

C(δδδ 0)

K

∏
k=1

πδ 0
k −1

k dπππ (61)

=
C(δδδ )
C(δδδ 0)

∫

πππ
Dir(πππ;δδδ )dδδδ (62)

=
C(δδδ )
C(δδδ 0)

, (63)

where we used the abbreviation C(δδδ ) = ∏K
k=1 Γ(δk)

Γ(∑K
l=1 δk)

for δδδ ∈ RK . We take the negative

logarithm of Eqn. (59) and eqn. (63) together with eqn. (55), this yields eqn. (12).

For reference, we repeat the ICLex for the Bernoulli SBM introduced in [9]:

ICLex[ZZZ,K] = ln

(
Γ
(
∑K

x=1 δx
)

∏K
x=1 Γ(δ 0

x )

Γ
(
∑K

x=1 δ 0
x
)

∏K
x=1 Γ(δx)

)
+

K

∑
x,y

ln

(
B(αxy,βxy)

B(α0
xy,β 0

xy)

)
, (64)

where ZZZ is the hard cluster partition matrix, K the number of clusters, α0
xy = 1/2,

β 0
xy = 1/2, δ 0

x = 1/2, αxy is calculated according to eqn. 28, βxy according to eqn. 29
and δx according to eqn. 30.

References
[1] T. A. Snijders and K. Nowicki. Estimation and prediction for stochastic block-

models for graphs with latent block structure. Journal of Classification, 14:75–
100, 1997.

23



[2] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5:109–137, 1983.

[3] J-J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Statist.
Comput., 18:173–183, 2008.

[4] M. Mariadassou, S. Robin, and C. Vacher. Uncovering latent structure in valued
graphs: A variational approach. Annals of Applied Statistics, 4:715–742, 2010.

[5] J. M. Hofman and C. H. Wiggins. Bayesian approach to network modularity.
Phys. Rev. Lett., 100(258701), 2008.
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[9] E. Côme and P. Latouche. Model selection and clustering in stochastic block mod-
els with the exact integrated complete data likelihood. arXiv:1303.2962, 2013.

[10] M.E.J. Newman. Fast algorithm for detecting community structure in networks.
Physical Review Letter E, 69, 2004.

[11] V.D. Blondel, J.-L. Lambiotte, and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment,
10:10008–10020, 2008.

[12] A. Channarond, J.J. Daudin, and S. Robin. Classification and estimation in
the stochastic block model based on the empirical degrees. arXiv:1110.6517v1
[math.ST], 2011.

[13] V. Miele et al. Technical documentation about estimation in the ermg model.
http://stat.genopole.cnrs.fr/logiciels/mixnet/mixnet, 2007.

[14] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Comparing community
structure identification. J. Stat. Mech., P09008, 2005.

[15] A. McDaid, T. Murphy, and F.N.N. Hurley. Improved bayesian inference for
the stochastic block model with application to large networks. Computational
Statistics and Data Analysis, 60:12–31, 2013.

[16] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on PAMI, 22:888–905, 8 2000.

[17] S. Abe and N. Suzuki. Complex-network description of seismicity. Nonlin. Pro-
cesses in Geophys., 13:145–150, 2006.

[18] S. Abe and N. Suzuki. Complex earthquake networks: Hierarchical organisation
and assortative mixing. Phys. Rev. E, 74(026113), 2006.

24



[19] S. Abe and N. Suzuki. Aftershocks in modern perspectives: Complex earth-
quake network, aging, and non-markovianity. arXiv:1202.4394v1 [physics.geo-
ph], 2012.

[20] SCDEC. Southern california earthquake center caltech dataset, 2013.
doi:10.7909/C3WD3xH1.

[21] K. Hutton, J. Woessner, and E. Handson. Earthquake monitoring in southern
california for seventy years. Bulletin of the Seismological Society of America,
100:423–446, 2010.

[22] Y. Li and Z.-L. Zhang. Digraph laplacian and the degree of asymmetry. Internet
Mathematics, 8(4):381–401, 2012.

[23] P. Wessel et al. GMT: The generic mapping tools, Version 4.
http://gmt.soest.hawaii.edu, 2003.

[24] H. Jeffreys. An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 186(1007):453–461, September 1946.

[25] J. Kerman. Neutral non informative and informative conjugate beta and gamma
prior distributions. Electronic Journal of Statistics, 5:1450–1470, 2011.

25



300 600 900 1200 1500 1800 2100

300

600

900

1200

1500

1800

2100

Figure 2: Dot–dot representation of the adjacency matrix of the Southern California
Earthquake Network. The adjacency matrix is ordered according to the number of
vertices per cluster. The clustering is the best result of the Blockloading algorithm for
the Poisson SBM. The first 10 of the 46 clusters are separated with black lines.
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Figure 3: Dot–dot representation of an excerpt without the biggest two clusters of
the adjacency matrix of the Southern California Earthquake Network. The adjacency
matrix is ordered according to the number of vertices in each cluster in descending
order. The first 35 clusters shown are separated with black lines. The smallest nine
clusters are not separated by a line because there is only one vertex in each cluster.
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