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A robust minimax Semidefinite Programming
formulation for optimal design of experiments

for model parametrization

Belmiro P.M. Duarte∗†, Guillaume Sagnol‡ and Nuno M.C. Oliveira†

Abstract

Model-based optimal design of experiments (M-bODE) is a crucial step
in model parametrization since it encloses a framework that maximizes the
amount of information extracted from a battery of lab experiments. We
address the design of M-bODE for dynamic models considering a con-
tinuous representation of the design. We use Semidefinite Programming
(SDP) to derive robust minmax formulations for nonlinear models, and ex-
tend the formulations to other criteria. The approaches are demonstrated
for a CSTR where a two-step reaction occurs.

Keywords Optimal design of experiments, Semidefinite Programming, Ro-
bust minmax designs

1 Introduction
M-bODE is a classic problem with substantial interest nowadays, particularly
in pharmacokinetics, pharmacodynamics, drugs trials design, and on general
model parametrization, a challenge shared by various disciplines such as Chem.
Eng. (Goos and Jones, 2011). Kiefer (1959) proposed to relax the original com-
binatorial experiment design problem to obtain a tractable convex optimization
representation. This alternative is designated as the approximate optimal design
problem, and consists in determining a probability measure over the design space
(rather than the exact number of trials for each point of the design space). Many
authors have proposed algorithms to compute optimal designs in a systematic
way, starting with the exchange-based method of Wynn (1972) for local designs
(see also Chaloner and Larntz (1989) for Bayesian optimal designs). Within the
same framework Duarte and Wong (2014a) proposed a systematic algorithm
for finding minmax optimal designs employing a reformulation to convert the
original problem into a semi-infinite program. The criterion to maximize is
a concave operator of the Fisher Information Matrix (FIM), which in turn is
linear with respect to the design measure. Convex analysis can thus be used
to establish the optimality conditions of a design, also known as equivalence
theorems, see Pukelsheim (1993). This theoretical framework enabled to derive
∗IPC; ISEC, DEQB; Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal.
†CIEPQPF, Dep. of Chemical Engineering; University of Coimbra; Coimbra, Portugal.
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convex programming formulations for the M-bODE problem, although the re-
gressor domain needs to be discretized (see Atkinson et al. (2007, Chap. 12)
for discretized designs). Exploiting this route, among others Vandenberghe and
Boyd (1999) proposed SDP formulations for D−, A−, and E−optimal designs
for linear models, Sagnol (2011) derived Second Order Conic Programming for-
mulations, and recently Duarte and Wong (2014b) extended the SDP formu-
lations to nonlinear models employing the Bayesian paradigm. Here we derive
SDP formulations for robust minmax optimal designs for nonlinear models in
the spirit of Wong (1992) employing discretization techniques to convert the
original semi-infinite program into a convex optimization problem.

2 Mathematical formulation

2.1 Preliminaries
We consider dynamic models represented by Differential-Algebraic Equations of
the following form, the regressor being t ∈ T ≡ [0, tmax]

dx
dt

= f(x,θ), x(0) = x0 (1a)

y = g(x), (1b)where f and g are continuously differentiable functions, the process states
are x(t) ∈ X ⊂ Rm, measurements at time t are y(t) ∈ Y ⊂ Rn, and θ ∈ Θ ⊂ Rp

is an unknown parameter. The domain Θ is a cartesian box ×p
j=1[θLO

j , θUP
j ]. For

the sake of simplicity we consider n = 1, so measurements are scalar, but it is
straightforward to extend our approach to larger values of n. The goal of the
M-bODE problem is to find a design –i.e., a selection of measurements– that
enables to estimate θ with the best possible accuracy.

The time domain is discretized into s points, denoted by T = {t1, . . . , ts},
and [s] = {1, · · · , s}. A design ξ with support points in T can be represented

using the notation ξ =

(
t1 · · · ts
w1 · · · ws

)
, where w ∈ [0, 1]s is a vector of weights

satisfying
∑s
i=1 wi = 1, and wi represents the fraction of the total number of

measurements N to perform at time ti. The quantity Nwi should be constrained
to take integer values for all i, but this constraint is dropped for approximate
designs, and in practical applications of M-bODE we may require to round the
optimal approximate design. The set of all design measures supported by T is
denoted by Ξ.

The FIM of a single “observational unit” ti at θ = θ0 isM(ti,θ0) = η(ti,θ0)η(ti,θ0)T ,
where η(ti,θ0) = ∂g(x(ti,θ))

∂θ

∣∣∣
θ=θ0

is the sensitivity of the measurement at ti with

respect to θ. The FIM of an approximate design ξ is obtained by summing the
FIM over the individual design points

M(ξ,θ0) =

∫
T

M(ti,θ0) d(ξ) =
∑
i∈[s]

wiM(ti,θ0) � 0, (2)

where A � 0 means that A belongs to the space of symmetric positive semidef-
inite matrices Sp

+. Note that for θ0 ∈ Θ,M(ξ,θ0) depends only on the weights
wi of the design, and so we also denote it byM(w,θ0). The quality of a design
is measured by a criterion Φ, such as the criterion of D−optimality, ΦD(M) =
(det M)1/p, A−optimality, ΦA(M) = (trace M−1)−1, or E−optimality, ΦE(M) =
λmin(M). We refer to Pukelsheim (1993) for more details on optimality criteria.
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The representation ofM(ξ,θ) for nonlinear models depends on the unknown
parameters that we wish to estimate, which is a challenging cyclic problem. In
practice there are three approaches to handle it: (i) sequential designs which
rely on a sequence of local designs, computed at the current best estimate θ̂ of
θ; (ii) Bayesian designs which are derived to optimize the expectation over Θ
of an optimality criterion assuming that a prior distribution for parameters is
available; (iii) minmax designs which are derived so that we maximize the design
efficiency for the worst combination of parameters in Θ. Such a framework is
used in this paper, that is, we want to find a design ξ solving the following
saddle point optimization problem:

max
ξ∈Ξ

min
θ∈Θ

Φ(M(ξ,θ)). (3)

2.2 Construction of the FIM
The sensitivity of the measurements with respect to θ at θ0 is determined by
solving the sensitivity equations (4) simultaneously with Model (1) employing a
DAE solver. The sensitivity of state xi with respect to parameter θj is denoted
by σi,j , yielding:

dσi,j
dt

=

m∑
k=1

∂fi(x,θ0)

∂xk
σk,j +

∂fi(x,θ0)

∂θj
, i ∈ [m], j ∈ [p], (4a)

η(ti,θ0) =

m∑
k=1

∂g(x)

∂xk
σk,j(t,θ0), j ∈ [p]. (4b)

2.3 Robust minmax SDP formulation
We recall that a concave function f : Rn1 → R is called semidefinite repre-
sentable (SDr) if and only if inequalities of the form u ≤ f(x) are equivalent to
a linear matrix inequality (LMI). More precisely, f is SDr if and only if there
exists some symmetric matrices M0, . . . ,Mn1+n2

such that

u ≤ f(x)⇐⇒ ∃y ∈ Rn2 : uM0 +

n1∑
i=1

xiMi +

n2∑
j=1

yjMn1+j � 0.

The criterions of A−, E−, and D−optimality are known to be SDr (Ben-Tal
and Nemirovskĭı, 2001, Chap. 2-3), which gave rise to SDP formulations for
the computation of local optimal designs (Boyd and Vandenberghe, 2004, Sec.
7.3). We also point out that Kiefer’s Φp−criterion is SDr for all rational values
of p ∈ (−∞, 1] (Sagnol, 2013). Due to space limitations, we give a semidefinite
representation for the D−criterion only. The inequality τ ≤ (det[M(ξ,θ)])

1/p

holds if and only if there exists a p× p−lower triangular matrix C such that

[
M(ξ, θ) CT
C Diag(C)

]
� 0 and τ ≤

 p∏
j=1

Cj,j

1/p

,

where Diag(C) is the diagonal matrix with same diagonal entries as those of
C. The inequality involving the geometric mean of the Cj,j can, in turn, be
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expressed by a series of 2 × 2 LMIs, see Ben-Tal and Nemirovskĭı (2001). It is
also straightforward to show that when the concave functions f1, . . . , fq are SDr,
then their pointwise minimum f : x 7→ min(f1(x), . . . , fq(x)) is also concave and
SDr. There exists user-friendly interfaces, such as cvx (Grant et al., 2012) or
Picos (Sagnol, 2012), which automatically transforms constraints of the form
τ ≤ Φ[M(ξ,θ)] as a series of LMIs, and pass them to SDP solvers such as
SeDuMi (Sturm, 1999) or Mosek (Andersen et al., 2009).

In this paper, we consider a sampling mechanism S(q) that extracts a finite
number q of values in Θ, denoted by θj ∈ Θ, j ∈ [q] := {1, . . . , q} and we
define P := {θ1, . . . ,θq}. Then, we replace minθ∈Θ Φ[M(ξ,θ)] by a minimum
of finitely many terms, minj∈[q] Φ[M(ξ,θj)]. As a result, we obtain a SDP
formulation that approximates the minmax optimal design problem (3):

max
ξ∈Ξ

min
θ∈P

Φ[M(ξ,θ)] = max
τ∈R,w∈Rs

τ (5a)

s.t. ∀j ∈ [q], τ ≤ Φ[M(w,θj)] (5b)
∀i ∈ [s], wi ≥ 0 (5c)
s∑
i=1

wi = 1, (5d)

where –as mentioned above– the constraints (5b) can be rewritten as LMIs if
Φ is SDr; however we used this compact formulation for the sake of generality,
and because constraints (5b) are accepted as is by high-level interfaces.

2.4 Algorithm
To prevent sub-optimal solutions for problem (3), which can be due to the insuf-
ficient variability of the sample of parameter combinations P, we use an iterative
procedure. Let τ∗,w∗ be a solution returned after solving Problem (5). Then,
it is clear that the design associated with the weights w∗ solves Problem (3) if
and only if τ∗ is equal to the optimal value of

min
θ∈Θ

Φ[M(w∗,θ)]. (6)

This justifies the following procedure: at each iteration, we seek a parame-
ter combination θ∗ that solves Problem (6). The procedure stops if τ∗ ≤
Φ[M(w∗,θ∗)] + εr, where εr is a small tolerance parameter. Otherwise, θ∗
is added in the sample P and we go to the next iteration. After the convergence
is achieved a pruning step deletes support points with wi < εp. This procedure
is summarized in Algorithm 1.

In practice, the nonlinear optimization problem (6) might be hard to solve.
However, since Θ is usually a cathesian box of relatively small dimension, the
optimum can be found by using local optimization procedures and multiple
restarts. Of course, it is also possible to add several local optima of (6) in the
sample P. However, note that (approximate-)optimality of a design can only be
assessed when the θ∗ used in the algorithm is a global optimum of (6), which
would theoretically require the use of a global NLP solver.

2.5 Extension to find the optimal support points over T

When the criterion Φ is differentiable, it is known that a design ξ is minmax
optimal if and only if there exists a probability measure γ supported by VΘ(ξ) :=
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Algorithm 1 Algorithm to find a robust minmax design with support on T
procedure FindDesign(T,Θ,S, q, εr, εp)

Discretize T . Find the grid T
Generate the initial sample P = S(q) . Sample Θ
`∗ ← −∞, τ∗ ← +∞
while τ∗ > `∗ + εr do

Compute η(ti, θj) and M(ti, θj) for all (i, j) ∈ [s]× [q] . Single point
FIMs

Get a solution (τ∗,w∗) of the SDP (5) . Get upper bound τ∗
Get a solution θ∗ of Problem (6), `∗ ← Φ[M(w∗,θ∗)] . Get lower

bound `∗
`∗ ← Φ[M(w∗,θ∗)], P← P ∪ {θ∗}, q ← q + 1 . Update the sample

end while
Prune ξ

end procedure

arg minθ∈Θ Φ[M(ξ,θ)] such that

∀t ∈ T, hγ(t) :=

∫
θ∈VΘ(ξ)

ψ(ξ,θ, t) γ(dθ) ≤ 0, (7)

with equality attained only at support points of ξ, where ψ(ξ,θ, t) denotes the
directional derivative of Φ at M(ξ,θ) in the direction of (M(t,θ) −M(ξ,θ)),
see e.g. Fedorov and Leonov (2013, Theorem 2.5). Let ξ be a solution of Prob-
lem (5) and assume without loss of generality that VP(ξ) = {θ1, . . . ,θk}. By
construction, ξ is minmax optimal over the discretized sets T and P, so there
must exist a discrete probability measure γ such that Equation (7) holds if we
replace T by T and Θ by P. This measure can be found easily by solving the
following linear program (LP):

min
γ∈Rk

+, U≥0
U s.t.

k∑
j=1

γj = 1, ∀i ∈ [s], hγ(ti) :=

k∑
j=1

γj ψ(ξ,θj , ti) ≤ U.

Then, natural candidate support points for the minmax optimal design arise
as local maxima of the function hγ(t) over T . More precisely, we propose to
change the stopping condition of the main loop as “while (τ∗ > `∗ + εr and
maxt∈T hγ(t) > εr) do”, and to add the following statements at the end of the
while loop in Algorithm 1:

Compute the dual weights γ ∈ Rk, T← T ∪ arg max
t∈T

hγ(t), s← card(T ).

3 Application and results
To test the algorithm presented in Section 2 we use the example of Atkinson
et al. (2007, pag. 270), referring to the model for two consecutive reactions
A π1−→B π2−→C occurring in a constant volume CSTR, where the concentration CB
of product B is observed, cf. the model in Equations (8).
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Table 1: Robust minmax designs obtained for T = [0, 20], T = {0, 0.2, . . . , 20},
and Θ ≡ [0.5, 1.0]× [0.1, 0.5]× [1.0, 2.0]× [1.0, 2.0]. Designs are given using the
notation ξ =

(
t1 ··· ts
w1 ··· ws

)
.

support criterion Optimal design CPU (s) iterations

fixed
support
over T

ΦD
(

0.4 1.6 1.8 4.4 4.6 10.8 11
0.2493 0.1517 0.0994 0.1436 0.1057 0.0330 0.2158

)
11.0 1

ΦA
(

0.2 1.6 4.6 10.8 20
0.3881 0.2266 0.1595 0.1392 0.0862

)
7.94 1

ΦE
(

0.2 1.6 4.6 10.8 20
0.3889 0.2278 0.1565 0.1341 0.0917

)
11.93 1

optimal
support
over T

ΦD
(

0.44 1.66 1.7 4.0 4.49 10.77 10.8
0.2498 0.0846 0.1654 0.2448 0.0048 0.1151 0.1338

)
39.19 5

ΦA
(

0.27 1.61 4.61 4.63 10.50 19.0
0.3463 0.2527 0.0670 0.1061 0.1415 0.0851

)
27.46 6

dCA
dt

= −π1 C
λ1

A , CA(0) = 1.0 (8a)

dCB
dt

= π1 C
λ1

A − π2 C
λ2

B , CB(0) = 0.0 (8b)

dCC
dt

= π2 C
λ2

B , CC(0) = 0.0 (8c)

y(t) = CB(t) (8d)

The measurements must be selected so as to estimate the vector of parame-
ters θ = (π1, π2, λ1, λ2) for Θ ≡ [0.5, 1.0] × [0.1, 0.5] × [1.0, 2.0] × [1.0, 2.0]. We
considered T = [0, 20], discretized as T = {0, 0.2, 0.4, . . . , 20} (i.e., s = 101). The
sampling mechanism S selects the 24 = 16 corners of Θ, plus 34 vectors drawn
from a uniform distribution over Θ (i.e., q = 50). We used εp = εr = 10−3, and
solved the SDPs with Mosek interfaced by Picos (Grant et al., 2012; Sagnol,
2012).

Table 1 compares the optimal designs, obtained for D-, A- and E-criteria,
for both the case of fixed support points (Section 2.4) and optimal support
points over T (Section 2.5). We observe that the D-optimal design is in good
agreement with the local designs presented by Atkinson et al. (2007, pag. 270).
The local designs were determined for a singleton Θ employing an exchange
algorithm which does not require the discretization of the time domain, and
are consistently based on 4 support points. Our designs are based on 7, and
6 support points, respectively, which is consistent with the trend observed by
several authors, that minmax and Bayesian designs tend to have more support
points than local designs (Chaloner and Larntz, 1989). The increase of the
number of support points occurs to handle the larger uncertainty caused by
broadening the parameters domain. The sampling instants are similar for all
designs, and the D−optimality criterion produces a design without the point
t = tmax which has low weight for A− and E−optimal designs. For the case
of fixed support points, the optimal design was found after a single iteration
for all three criteria. The reason is that the function θ → Φ[M(w∗,θ)] seems
to exhibit a concave behaviour, so that its minima are at the corners of the
region Θ. For example, the answering set for minmax D−optimality over T is
VΘ(ξ∗) = {( 1

2 ,
1
10 , 2, 2), ( 1

2 ,
1
2 , 2, 1), ( 1

2 ,
1
2 , 2, 2)}.

Figure 1 displays the evolution of the function hγ(t) with the iterations of the
modified version of Algorithm 1. We see that as support points are added, the
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Figure 1: Evolution of hγ(t) for D−optimality.

upper bound of hγ is pushed toward 0. Our algorithm was also tested with the
logistic model — a nonlinear algebraic model commonly used for benchmark
testing — and the results were in agreement with those obtained with other
algorithms.

4 Conclusions
We propose a robust minmax SDP formulation for finding the optimal design
of experiments for dynamic models. Our approach relies on the discretization
of time domain, and subsequent construction of generalized FIM for a sample
of parameter combinations. The minmax optimal design problem is solved em-
ploying convex optimization techniques. To prevent suboptimal solutions due to
the small size of the sample, we iterate to add the worst parameter combinations
in the sample, until a convergence condition is satisfied. A small modification
of the algorithm allows one to identify the optimal support points of the min-
max design. The algorithm is tested for a dynamic model for two consecutive
reactions, and the results compare well with earlier references.
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