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1 Introduction

Planning access networks is a complex process that involves strategic business decisions,
technical considerations, and more. Mathematical models usually focus only on parts of
the planning process, as it is virtually impossible to integrate all choices into a unified
model; see [5] for more details and literature. In this report, we discuss the k-Architecture
Connected Facility Location Problem [7, 8], which involves the strategic decisions of
which customers to provide with which technology (or architecture), as well as which
routes and locations to use for setting up new hardware in the deployment area. For
technologies, the choice is usually between (new) fiber connections, (existing) copper
lines and possibly wireless links, but other classifications – such as different quality-of-
service levels for copper connections – are also conceivable. Apart from the distinction
between these technologies, no technical details, such as capacities of devices, cable sizes,
etc., are considered.
Access network planning problems are naturally multiobjective problems. Apart from
minimizing the cost of the network, an operator would also strive to provide connections
to as many (potential) customers as possible to maximize their revenue. Hence it makes
sense to treat the planning problem as a 3-objective optimization problem, where the
total cost is minimized and, at the same time, the total coverage within the deployment
area as well as the coverage with the “preferred” technology (which would, in a realistic
setting, most probably be fiber connections) are maximized. This means that for solving
such problems, 3-objective optimization algorithms have to be employed. In Section 3,
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we present two such algorithms, which both share some similarities with known methods,
see [2, 3], and [6]. Concluding, we report on some results of computations using small
test instances.

Terminology and Notation. Throughout the paper, the architectures are simply num-
bered 1, . . . , k and architecture 1 is considered to be the “preferred” technology.
For terminology in multiobjective optimization in general, we refer to the literature, for
instance, Ehrgott’s book [4]. In addition we make use of the following two pieces of
notation (mainly in R3 instead of Rn, though):

• For two points x, y P Rn, where x “ px1, . . . , xnq and y “ py1, . . . , ynq,

x ď y :ðñ xi ď yi @i “ 1, . . . , n.

• With rx, ys (x and y as above) we denote the set

rx, ys :“ rx1, y1s ˆ ¨ ¨ ¨ ˆ rxn, yns,

the (n-dimensional) box between x and y; note that rx, ys “ H if x ę y.

2 3-objective k-ArchConFL

In the following, we present a 3-objective binary integer program (IP) that models the
access network planning problem with k architectures. The model aims to

(i) minimize the total setup cost of the network,

(ii) maximize the demand that is satisfied by connection with the preferable architec-
ture,

(iii) maximize the demand satisfied in total (by any architecture).

The model allows for a relatively straightforward way to compute the ideal and nadir
point, at least in the practically relevant cases. This strategy as well as some general
observations are described in subsequent sections.

2.1 Input data

Notation of parameters for an instance to the 3-objective k-ArchConFL problem follows
the description in [7]. An instance consists of an undirected core graph representing the
possible routes and installation points of fiber connections and directed assignment arcs
representing possible connections of customers to facilities; see Figure 1(a). Each edge
in the undirected core graph is replaced by a forward and a backward arc, so that, in
essence, we have a directed graph G “ pV,Aq where the node set is the disjoint union
V “ QY C Y F Y S of
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(a) Exemplary Instance: Two poten-
tial COs (red) and five customers
(yellow) that can be connected to one
of four facilities (blue), two for each of
the two architectures (diamond and
rectangle shaped, respectively)

(b) Exemplary Solution: Two cus-
tomers are connected using architec-
ture 1, forcing one facility to be opened,
and three customers connected with ar-
chitecture 2, also using one facility; one
CO is opened and a facility for architec-
ture 1 is used as a Steiner node

Figure 1: Exemplary instance and solution to the 3-objective k-ArchConFL problem
(k “ 2)

(i) potential central offices (COs) Q with opening costs cq ě 0, @q P Q,

(ii) customer nodes C with demands dc P N, @c P C,

(iii) potential facility locations F “
Ťk
i“1 F

i with opening costs cli ě 0, @i P F l, l “
1, . . . , k, and

(iv) potential Steiner nodes S.

Potential facilities in F l represent locations where equipment can be installed to connect
customers using architecture l; note that F i and F j need not be disjoint for i ‰ j. The
arc set A consists of

(i) the core arcs Ac “ tpi, jq P A | i, j R Cu, with trenching costs ca ě 0, @a P Ac, and

(ii) assignment arcs Al “ tpi, jq P A | i P F l, j P Cu, for each architecture l “ 1, . . . , k,
with costs clij ě 0 for connecting customer j to facility i using architecture l.

We set D :“
ř

jPC dj to be the total demand of all customers. We also extend the graph
G with an artificial root node r R V , connected via artificial arcs Ar “ tpr, qq | q P Qu
to all central offices, and for each artificial arc pr, qq, q P Q, we set their cost crq :“ cq.
For abbreviation we use Arc :“ Ar Y Ac.
Figure 1 shows a small illustrating example of an instance and a feasible solution.

2.2 Model

The following 3-objective binary IP in minimization form is basically the model from
[7] for k (instead of only 2) architectures, where customer coverage is taken care of by
suitable objectives (instead of given coverage rates).
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min z1 :“ D ´
ÿ

jPC

djz
1
j

zk :“ D ´
k

ÿ

l“1

ÿ

jPC

djz
l
j

z0 :“
ÿ

pi,jqPArc

cijxij `
k

ÿ

l“1

ÿ

pi,jqPAl

clijx
l
ij `

k
ÿ

l“1

ÿ

iPF l

cliy
l
i

s.t.
k

ÿ

l“1

zlj ď 1 @j P C (1)

ÿ

iPF l
j

xlij “ zlj @j P C, l “ 1, . . . , k (2)

xlij ď yli @j P C, i P F l
j , l “ 1, . . . , k (3)

xpδ´pW qq ě yli @W Ď V zC, i P F l
XW, l “ 1, . . . , k (4)

xa, y
l
i, z

l
j P t0, 1u @a P Ac, i P F

l, j P C, l “ 1, . . . , k (5)

xlij P t0, 1u @i P F l
j , j P C, l “ 1, . . . , k (6)

(1) – (6) describe a Connected Facility Location model (see [7, Sec. 2] for more details)
with some additional bookkeeping of the type of architecture used to connect the cus-
tomers. This information is exploited in the first two objectives: z1 is the total demand
not covered by architecture 1, and zk the total demand not covered by any architecture
at all. Minimizing z1 and zk is obviosuly equivalent to

max
ÿ

jPC

djz
1
j and max

k
ÿ

l“1

ÿ

jPC

djz
l
j,

respectively; hence these objectives drive solutions to connect many customers in general,
and many with the best technology 1 in particular. The third objective z0 represents
the total cost of a solution, which should be minimized.

2.3 Computation of ideal and nadir point

For each feasible solution to the 3-objective k-ArchConFL problem, we obviously have
z0 ě 0, due to non-negativity of cost coefficients, and 0 ď zk ď z1 ď D. Hence all
nondominated points are located within the area given by

tpz1, zk, z0q | pz1, zkq P Z, z0 ě 0u “ Z ˆ R`

in the objective space, where Z “ convtp0, 0q, pD, 0q, pD,Dqu (see Figure 2). This implies
the obvious bound p0, 0, 0q for the ideal point, as well as a bound pD,D, c̃q for the nadir
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p0, 0, c˚q

pD,D, 0q

I

N

Z

z1

zk

z0

D

D

Figure 2: Ideal and nadir point in the case that every customer can be reached by ar-
chitecture 1

point from any upper bound c̃ on the cost of a feasible solution, such as the trivial upper
bound obtained by taking the sum of all involved cost values.
The exact ideal and nadir point, I and N , respectively, are – under mild assumptions
– relatively easy to obtain. We assume that all costs for assignment arcs are strictly
positive. Then pD,D, 0q is a non-dominated point: It is the objective vector of the
0-solution, which is feasible for (1) – (6); furthermore, there is no other feasible solution
with cost 0 that has z1 ă D or zk ă D, since as soon as customers are connected, an
assignment arc with non-zero cost value has to be opened.

Ubiquity of architecture 1. If every customer is reachable via assignment arcs of
architecture 1 then there is a solution with z1 “ zk “ 0. Let c˚ be the optimal cost of
all such solutions, which can be obtained by solving the single-objective IP

min z0

z1j “ 1 @j P C

(1) – (6)

Then, obviously, p0, 0, c˚q is a non-dominated point. Hence (cf. Figure 2)

I “ p0, 0, 0q , N “ pD,D, c˚q.

General ubiquity. The above argument can easily be generalized to the case where
every customer can be reached by at least some architecture, which does not necessarily
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pd˚1 , 0, c
˚q

pD,D, 0q

I

N

pd̂1, 0, ĉq

z1

zk

z0

D

D

Figure 3: General case – every customer can be reached by some architecture

have to be architecture 1. Let d˚1 :“ D ´
ř

jPC1

dj with

C1 :“ tj P C | j can be reached by architecture 1u

and c˚ the optimal value of the following single-objective IP:

min z0

z1j “ 1 @j P C1

k
ÿ

l“1

zlj “ 1 @j P C

(2) – (6)

Then pd˚1 , 0, c
˚q is a non-dominated point and there is no feasible solution with z1 ă d˚1

(see Figure 3). Hence
I “ pd˚1 , 0, 0q , N “ pD,D, c˚q.

Another non-dominated point pd̂1, 0, ĉq can be computed relatively easy by forcing equal-
ity in (1), as above, and then sequentially solving the single-objective problems min z0
(giving ĉ) and min z1 with added constraint z0 ď ĉ.

Unreachable customers. If general ubiquity does not hold, then there are customers
that cannot be connected at all. Without loss of generality, these customers can be
removed in a preprocessing step. Hence we can always assume general ubiquity at the
least.
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Zero assignment cost values. If our initial assumption – all assignment costs are
strictly positive – does not hold, there are assignment arcs with cost 0 and the point
pD,D, 0q is no longer nondominated in general. In fact, the z1- and zk-coordinates of
the nadir point might be determined by two different nondominated points with z0 “ 0;
small examples for this case can easily be constructed. Nevertheless, pD,D, c˚q is still
an upper bound for the nadir point.

3 3-objective solution algorithms

We now describe two algorithms to solve the 3-objective k-ArchConFL problem. Both
methods do not explicitly make use of the problem structure, hence they are applicable
to any problem that can be formulated using a 3-objective IP model satisfying certain
basic properties. Accordingly, we state the algorithms in a general way, without referring
to 3-objective k-ArchConFL. As such, the three objectives are denoted in this section
as f1, f2, and f3, which, for the 3-objective k-ArchConFL, correspond to z1, zk, and z0,
respectively, as used in Section 2. Similarly, we frequently use x to denote points (and
their components) in the 3-dimensional objective space, which is not to confuse with the
xa and xlij variables in Section 2.

3.1 General remarks

In the following, we make a few basic assumptions:

• The IP considered is assumed to have only integer coefficients, which allows for
a less complicated description of the algorithms. This can, for rational IPs, in
general be enforced by multiplying the coefficients with a suitable integer value,
but might lead to numerical problems which we ignore here, however.

• We assume that there is a subroutine available to compute the ideal and nadir
point. Both methods still work if only lower and upper bounds, respectively, can
be computed beforehand. For the 3-objective k-ArchConFL problem, ideal and
nadir point can be obtained easily, as seen in Section 2.3.

• We further assume there is a solver available which can be used as a black box to
solve occurring 3-objective sub-IPs. More precisely, the algorithms make frequent
use of the two subroutines

lexminsolvep›q for a given IP ›, which solves three consecutive single-objective
IPs, first › minimizing f3 to obtain a bound x3, then › with added con-
straint f3 ď x3 minimizing f1 to obtain a bound x1, and finally › with added
constraints f3 ď x3, f1 ď x1 minimizing f2 to obtain a nondominated point
px1, x2, x3q;

weightedsumsolvep›q for a given IP ›, which solves the single-objective IP ›

minimizing a weighted sum w1f1 ` w2f2 ` w3f3 with w1, w2, w3 ě 0; the
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weights are not given explicitly, since the methods work correctly with every
possible such choice.

The performance of the algorithms depends not only on the performance of the used IP
solver, but also on the actual implementation of subroutines such as pop or list insertion,
the precise weights used in weightedsumsolve, and the meaning and computability of
“best” in Algorithms 2 and 5.

3.2 Epsilon-constraint method

The first algorithm is a variant of the well-known epsilon-constraint method [1]. There
exist a number of adaptations of the biobjective epsilon-constraint method for multiob-
jective problems; see, for instance, [6], where a multi-dimensional grid structure is used
to keep track of those regions of the objective space already ruled out, as well as [3] for
more references. In our variant, we generalize the sequential 2-objective approach to
3 objectives (which can straightforwardly be generalized to any number of objectives),
thereby making use of further parameters, which we call validity ranges, to speed up the
process.
In the following we explain how the algorithm proceeds, see Algorithm 1. After initializa-
tion of the ideal and nadir point, I and N , (alternatively, appropriate bounds for I and
N), two initially empty sets are introduced: the nondominated set S, which is the final
result and returned at the end, as well as a list C of candidate points that are computed
during the algorithm and may be reused to avoid finding the same nondominated point
multiple times. In the main part, a bound ε1 (initialized with the first coordinate value
of N) is iteratively decreased in an outer loop (lines 6–31). In every iteration, a second
bound ε2 (initialized with the second coordinate value of N) is decreased in the same
manner (lines 8–29). Both of these bounds are used in every iteration of the inner loop
to obtain a nondominated point x˚ by either solving the given IP using the lexminsolve
subroutine (line 11 or 16) or finding a “best” solution out of the already computed ones
that is feasible to the current ε bounds (line 9, see below). If no nondominated point was
found (lines 18–19), the method terminates by setting both bounds below their abort
value. Otherwise the maintained sets are updated if applicable (lines 21–26) and the
inner ε bound is decreased according to the second objective value of the found solution
(line 27).
For finding and handling a solution in a given iteration, there are two possibilities: either
solving an IP augmented with epsilon-constraints or using a nondominated point from
a solution obtained earlier. Let x˚ be a nondominated point that was found by the
subroutine

lexminsolvep›, f1 ď α1, f2 ď α2q,

i. e., by solving the IP obtained by augmenting › with the constraints fi ď αi, i “ 1, 2
for some bounds α1 and α2. Then we call pα1, α2q the validity range of x˚. Then a
validity range of pα1, α2q of some candidate point x̄ implies that any subsequent call to
lexminsolvep›, f1 ď ε1, f2 ď ε2q, where α1 ě ε1 and α2 ě ε2 (i. e., the validity range
of x̄ exceeds the current ε bounds), but at the same time x̄1 ď ε1 and x̄2 ď ε2 holds
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Algorithm 1 Epsilon-constraint method for 3 objectives

Input: IP model (IP) with 3 objectives f1, f2, f3
Output: nondominated set S Ă Z3

1: I “ pxI1, x
I
2, x

I
3q Ð compute ideal point

2: N “ pxN1 , x
N
2 , x

N
3 q Ð compute nadir point

3: S ÐH // nondominated set
4: C ÐH // list of candidate points with validity ranges
5: ε1 Ð xN1
6: while ε1 ě xI1 do
7: ε2 Ð xN2
8: while ε2 ě xI2 do
9: px̄, α1, α2q Ð bestcandidatepC, ε1, ε2q

10: if x̄ “ null then
11: x˚ Ð lexminsolvep(IP), f1 ď ε1, f2 ď ε2q
12: else if α1 ě ε1 and α2 ě ε2 then
13: x˚ Ð x̄
14: else
15: set x̄ as start solution
16: x˚ Ð lexminsolvep(IP), f1 ď ε1, f2 ď ε2q
17: end if
18: if x˚ “ null then
19: ε1 Ð xI1 ´ 1, ε2 Ð xI2 ´ 1 // terminate: no solution left
20: else
21: if x˚ “ x̄ then // same point with better (or same) validity range
22: C Ð Cztpx̄, α1, α2qu Y tpx

˚, ε1, ε2qu
23: else
24: S Ð S Y tx˚u // new solution
25: C Ð C Y tpx˚, ε1, ε2qu
26: end if
27: ε2 Ð x˚2 ´ 1
28: end if
29: end while
30: ε1 Ð max tx1 | px1, x2, x3q P S, x1 ă ε1u ´ 1
31: end while
32: return S
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(i. e., x̄ is feasible for the IP treated in the call), will only yield x̄ as a nondominated
point again. In other words, under these circumstances, a new call to lexminsolve, and
therefore solving the IP again, can be avoided and the candidate point x̄ itself be taken
(line 13). If no candidate with a sufficiently big validity range can be found, then a
feasible candidate can at least be used to set a start solution for solving the IP (line 15).
The selection of the candidate is described in Algorithm 2, where the meaning of “best”
is not explicitly defined – various strategies are conceivable.

Algorithm 2 bestcandidate

Input: set C containing objective points with validity ranges, bounds ε1, ε2
Output: objective point with validity range (possibly null)

1: if C “ H or Epx, α1, α2q P C : x1 ď ε1, x2 ď ε2 then
2: return null

3: else if Dpx, α1, α2q P C : x1 ď ε1, x2 ď ε2, α1 ě ε1, α2 ě ε2 then
4: return px, α1, α2q

5: else
6: return any px, α1, α2q P C with x1 ď ε1, x2 ď ε2 // preferably the “best” such

point
7: end if

Any found solution yields a nondominated point, hence new points are always added to
the nondominated set and the candidate list (lines 24 and 25). If a point has the same
objective values as the retrieved candidate, it does not have to be added to S again,
but can replace the old candidate point and its (possibly worse) validity range in the
candidate list C (line 22).

Remarks. The lexminsolve subroutine can be replaced by weightedsumsolve without
compromising the correctness of the algorithm. Our computational experience with the
3-objective k-ArchConFL suggests that this has no clear impact on the performance
of the algorithm. This might, however, be due to the special structure of the problem
(values of the f3/cost objective are larger than of the other objectives by orders of
magnitude) and may be different for other types of IPs.
For the 3-objective k-ArchConFL model, the ε2 bound can be initialized in each inner
loop with the value ε1, due to the fact that all feasible solutions satisfy f2 ď f1, or, in
the notation of Section 2, zk ď z1.

3.3 Box-splitting algorithm

The second algorithm, which we present in this section, works by subsequently sub-
dividing the objective space into smaller boxes that might contain still undiscovered
nondominated points. In essence, it computes the points in a similar fashion as the
Full m-split algorithm of Dächert & Klamroth, see [2, 3], but without making use of
the neighor relation exhibited there. Instead, possibly redundant parts of the search re-
gion are skipped by postponing the solution of the associated boxes and reducing them
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by slicing or removing them altogether, before they are eventually examined (by being
upgraded to high priority).
The main procedure is given in Algorithm 3. It maintains two lists of boxes that describe

Algorithm 3 Box-splitting algorithm for 3 objectives

Input: IP model (IP) with 3 objectives f1, f2, f3
Output: non-dominated frontier S Ă Z3

1: I “ pxI1, x
I
2, x

I
3q Ð compute ideal point

2: N “ pxN1 , x
N
2 , x

N
3 q Ð compute nadir point

3: S ÐH // non-dominated frontier
4: H Ð trI,N su // list of high-priority boxes
5: LÐH // list of low-priority boxes
6: while H Y L ‰ H do
7: if H ‰ H then
8: B “ ra, bs Ð poppHq
9: x˚ Ð weightedsumsolvep(IP), ai ď fi ď bi, i “ 1, . . . , 3q

10: if x˚ ‰ null then
11: S Ð S Y tx˚u
12: splitboxpB, x˚, H, Lq // adds new boxes to H and L
13: end if
14: else // no high-priority box left
15: B “ ra, bs Ð poppLq
16: x̄Ð bestdominatingpB, Sq
17: if x̄ “ null then // no part of B is dominated
18: H Ð H Y tBu
19: else if x̄i ď ai @i “ 1, . . . , 3 then
20: do nothing // B is completely dominated by x̄
21: else
22: sliceboxpB, x̄, Lq
23: end if
24: end if
25: end while
26: return S

a partition of the part of the objective space, in which new nondominated points might
still be found. The first list, H, contains the high-priority boxes, whereas the second, L,
contains the low-priority boxes. After initialization, H contains the complete box given
by the ideal and nadir point (line 4), whereas L is empty (line 5). In the following main
loop, the high-priority boxes are examined (lines 7–13), where new boxes are created,
of high as well as low priority, until there are no more of them available; only then the
low-priority boxes are treated (lines 14–23).
For each high-priority box B, retrieved from the list in line 8, the given IP is solved
within B using the weightedsumsolve subroutine (line 9). If this yields a nondominated
point, it is added to the nondominated set (line 11) and subsequently the box is splitted
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Figure 4: High-priority boxes (green) and low-priority boxes (dashed) determined by a
nondominated point x (3d picture)

into smaller boxes. This is done by Algorithm 4. The point found, denoted by x in

Algorithm 4 splitbox

Input: box B “ ra, bs, point x P B, lists H (high-priority boxes) and L (low-priority
boxes)

Output: — (adds up to 6 new boxes to the lists H, L)
1: B1 Ð rpa1, a2, x3 ` 1q, px1 ´ 1, x2 ´ 1, b3qs // might be empty
2: B2 Ð rpa1, x2 ` 1, a3q, px1 ´ 1, b2, x3 ´ 1qs // might be empty
3: B3 Ð rpx1 ` 1, a2, a3q, pb1, x2 ´ 1, x3 ´ 1qs // might be empty
4: H Ð H Y tBi | Bi ‰ H, i “ 1, 2, 3u
5: B4 Ð rpa1, x2, x3q, px1 ´ 1, b2, b3qs // might be empty
6: B5 Ð rpx1, x2, a3q, pb1, b2, x3 ´ 1qs // might be empty
7: B6 Ð rpx1, a2, a3q, pb1, x2 ´ 1, b3qs // might be empty
8: LÐ LY tBi | Bi ‰ H, i “ 4, 5, 6u

Algorithm 4 and in Figure 4, splits the box B “ ra, bs into eight disjoint regions. (Here
we make use of the integrality assumption – otherwise the regions would intersect in
their boundaries.) Since x is a nondominated point, two of these regions, the boxes
ra, xs and rx, bs, are not interesting any longer, since they cannot contain any more
nondominated points, cf. Figure 4. Of the other six, the three described in lines 1–
3 in Algorithm 4 might still contain nondominated points, and so they become new
high-priority boxes. The remaining three, those in lines 5–7 of Algorithm 4 might also
contain new nondominated points, but large parts of them may be dominated by points
in B1, B2 or B3; hence, to reduce the search space, their examination is postponed until
after the high-priority boxes have been completely processed, and so they become new
low-priority boxes. In total, this inserts up to 3 new high-priority boxes into H and up
to 3 new low-priority boxes into L; if the point x happens to lie on the boundary of B,
some of the newly created boxes may be empty. Note that the pop function returns and
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removes an element of the given list, so that the examined box is not in the list any
more after the iteration is finished.
When no high-priority boxes are left, a low-priority box B is considered (line 15). This
box might be partly or even completely dominated by a nondominated solution found
earlier in one of the high-priority boxes, which is determined by Algorithm 5. If no such

Algorithm 5 bestdominating

Input: box B “ ra, bs, set S of objective points
Output: objective point dominating (part of) B (possibly null)

1: if Ex P S : x ď b then
2: return null

3: else if Dx P S : x ď a then
4: return x
5: else
6: return any x P S with x ď b // preferably the “best” such point
7: end if

point can be found then B might still contain a nondominated point and consequently
is upgraded to high priority (line 18), to be examined in the next iteration. Otherwise
a point x̄ is returned by Algorithm 5, which either completely dominates B, so that B
can be skipped (line 20), or partly dominates B. In the last case, the part of B that
is dominated need not be considered further and can be sliced off, which is done by
Algorithm 6. This adds either 1 or 3 new low-priority boxes to the list L, depending on

Algorithm 6 slicebox

Input: box B “ ra, bs, point x ď b, list L of low-priority boxes
Output: — (adds up to 3 new boxes to the list L)

1: depending on the position of x relative to B, create new boxes B1, B2, B3

2: LÐ LY tBi | Bi ‰ H, i “ 1, 2, 3u

the position of x̄ relative to B, see Figure 5.

Remarks. As in Algorithm 1, weightedsumsolve and lexminsolve are exchangeable.
The lower bounds in the call to weightedsumsolve are in fact not necessary; it is easy to
see that, given any high-priority box B retrieved in line 8, there can be no nondominated
point in the region in front of B (in any coordinate direction). However, the lower bounds
of the boxes can result in lower bounds on the objective of the single-objective IP to
solve, and hence speed up the execution of weightedsumsolve.
As with the Epsilon-constraint method, various notions of “best” in Algorithm 5 might
make sense. Similarly, for the function poppXq, which returns (and removes) an element
of the list X, various strategies might be devised; it does not necessarily have to return
the first box in the list.
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Figure 5: Two possibilities to slice a low-priority box ra, bs yielding 3 or 1, respectively,
new low-priority boxes (dashed)

4 Exemplary computations

The two algorithms were tested on a set of 10 instances, one of them a realistic test
instance out of the set used in [7]. Table 1 shows the sizes of the instances and the re-
sulting solution as well as the time spent by the two algorithms to compute the complete
nondominated set. On the biggest instance, the Box-splitting method terminated for
unknown reasons, possibly due to memory shortage during one IP-solving run, after the
computation of 8261 out of 10463 nondominated solutions. In Figure 6, the solution time
of both algorithms is plotted against the size of the nondominated set. On the considered
instances, both algorithms perform similarly, with the Epsilon-constraint method tend-
ing to be faster on larger instances. Overall, the time seems to depend polynomially on
the number of nondominated solutions. (The rightmost top point for the Box-splitting

˚Approximate total time spent by the IP solver after finding 8261 nondominated solutions

|V | |A| |C| |F | nondom. solutions ε-constraint box-splitting

14 30 4 7 21 1.26 0.08
27 51 12 13 91 0.76 0.75
34 100 10 13 95 5.97 13.8
39 77 16 18 233 10.8 15.0
48 103 16 19 362 85.9 77.3
53 109 21 23 431 89.6 92.0
84 260 26 31 1564 12675 19899
96 295 31 37 2211 47003 73976

116 369 36 44 3285 323819 365682

424 1208 39 55 10463 1372050 ą1594899˚

Table 1: Sizes of instances, nondominated sets and runtimes of the two algorithms
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Figure 6: Time spent by the two methods depending on the size of the nondominated
set (double logarithmic scale)

method results from a somewhat crude estimation by linearly extrapolating the time
spent by the IP solver until the preliminary termination of the computation.)
Table 2 lists the runtimes of both methods for different choices of the solving subrou-
tine: lexminsolve, weightedsumsolve with unit weights p1, 1, 1q and with the weight

:8 solutions out of 3285 were failed to be identified, probably due to numerical inaccuracies of the IP
solver

;375373 seconds were spent on one single call to lexminsolve
§Out of memory

ε-constraint box-splitting
|V | unit weights lexmin unit weights diag weights lexmin

14 0.12 1.26 0.08 0.08 0.17
27 0.39 0.76 0.75 0.82 1.35
34 8.43 5.97 13.8 14.8 15.1
39 22.1 10.8 15.0 16.2 12.9
48 69.4 85.9 77.3 79.3 72.0
53 122.7 89.6 92.0 76.9 67.8
84 7414 12675 19899 17539 28681
96 30649 47003 73976 65694 425981;

116 165762: 323819 365682 308630 —§

Table 2: Runtimes of the two methods with weightedsumsolve (employing unit weights
p1, 1, 1q and the diagonal direction in the box, respectively) and lexminsolve
on the smaller instances
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Figure 7: Exemplary set of nondominated solutions

vector corresponding to the diagonal in the current box, respectively, for the Box-
splitting method. The weightedsumsolve variant apparently outperforms lexminsolve
with increasing instance size and diagonal weights seem to work slightly better for the
Box-splitting method. For one extremely long run of the Box-splitting method with
lexminsolve, the solution of a single IP took up 88 % of the total computing time.
Hence, the biggest weakness of both methods appears to be the dependence on single
IP-solving calls, which might take extremely long or consume huge amounts of memory
in singular cases. This is more likely to happen, the more nondominated points have to
be computed. A way to overcome this drawback would be to restrict resources for each
IP-solving subroutine and try to control the approximation error made that way.
Figure 7 illustrates the nondominated set of the largest instance.

5 Extension to multiobjective problem

The 3-objective k-ArchConFL model extends naturally to a multiobjective model by
taking the coverage with all considered architectures as objectives into account:

min zλ :“ D ´
λ

ÿ

l“1

ÿ

jPC

djz
l
j @λ “ 1, . . . , k

z0 :“
ÿ

pi,jqPArc

cijxij `
k

ÿ

l“1

ÿ

pi,jqPAl

clijx
l
ij `

k
ÿ

l“1

ÿ

iPF l

cliy
l
i

s.t. (1) – (6)
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For k architectures, this yields a pk ` 1q-objective binary IP model.
Similarly, the two given algorithms can be extended to solve such multiobjective prob-
lems. For the Epsilon-constraint method, this amounts to enclosing the main loop into
further outer loops corresponding to the extra objective dimensions – which can also
be done in a recursive fashion – and extending the validity range to a k-tuple. For the
Box-splitting method, the generalization is less straightforward; each pk`1q-dimensional
box is split into 2k`1 new boxes, of which 2 again can be skipped, k ` 1 become new
high-priority boxes, and the remaining boxes might be partly or fully dominated by
points in a high-priority box and hence are given low priority initially.
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