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Abstract—We currently explore the Big Data analytics capa-
bilities of the Cray XC architectures to harness the computing
power for increasingly common programming paradigms for
handling large volumes of data. These include MapReduce and,
more recently, in-memory data processing approaches such as
Apache Spark and Apache Flink. We use our Cray XC Test
and Development System (TDS) with 16 diskless compute nodes
and eight DataWarp nodes. We use Hadoop, Spark and Flink
implementations of selected benchmarks from the Intel HiBench
micro benchmark suite and others to find suitable runtime
configurations of these frameworks for the TDS hardware.
Motivated by preliminary results in throughput per node in
the popular Hadoop TeraSort benchmark we conduct a detailed
scaling study and investigate resource utilization. Furthermore
seek to evaluate scenarios where using DataWarp nodes might
be advantageous to using Lustre as file system backends.

Index Terms—DataWarp; big data; cluster compatibility mode

I. INTRODUCTION

Big data analytics span a wide range of applications, from
relational queries over machine learning to real-time stream
processing. The introduction of the MapReduce [1] cluster
programming paradigm in 2008 allowed such applications
to be developed easily and deployed in a scalable and ro-
bust manner on commodity hardware clusters. Since then
the amount of data to be processed has reached petabyte
scales and the variety of applications does not only just
include industrial problems, like recommendation engines or
real-time bidding, but also scientific ones, such as image
analysis and graph processing. As the scientific community
has drawn heavily on high performance computing in the
past, there is a deep understanding of creating very specific
codes tailored to the underlying high performance computing
hardware, which differs considerably from commodity cluster
setups. HPC nodes are usually diskless and connected using
high speed interconnects which allow remote direct memory
access, whereas cluster nodes are equipped with a local disk
and communicate over Ethernet using the TCP/IP stack and
are usually programmed using higher level languages and
frameworks.

In this paper we seek to explore the big data analytics capa-
bilities of our Cray XC Test and Development System (TDS),
comprised of 16 diskless compute nodes. Selected big data
benchmarks are used to evaluate DataWarp as storage backend
when processing large amounts of data during analytics tasks
and to identify possible bottlenecks, both in the hardware and
software setup. We contrast the results with Lustre as storage

backend.
We will start by presenting the hardware and software

setup we used to run the benchmarks. The following section
describes the benchmarks in greater detail. In section IV we
present the benchmark results along with a specification of
configuration parameters, and provide an explanation as to
why the TDS’ performance is as observed with a special
focus on the influence of the inclusion of DataWarp nodes. We
conclude with a summary of our observations and comment
on the suitability of the TDS as a big data analytics platform.

II. HARDWARE AND SOFTWARE SETUP

All results presented have been generated on the XC Series
Test and Development System (TDS) at ZIB which is a
single cabinet system comprised of 16 compute nodes and
eight DataWarp I/O nodes. The compute nodes are equipped
with one Intel ten-core IvyBridge Xeon E5-2670v2 processor
clocked at 2.5 GHz and 32 GiB of memory.To run Hadoop,
Spark and Flink on the TDS, we made use of the Cluster
Compatibility Mode (CCM).

We used eight DataWarp nodes over Aries, configured
statically as scratch file system. Each DataWarp node contains
two 1.6 TiB SanDisk Fusion SX300 SSDs, integrated into
the XC Series using PCIe 3.0 to connect to the Cray Aries
network, providing 3 GiB/s bandwidth per node. The compute
nodes each have access to two Lustre file systems: one with
2.3 PiB capacity on 80 OSTs and a second with 1.4 PiB on
48 OSTs, delivering more than 30 GiB/s and 20 GiB/s I/O
bandwidth, respectively.

The TDS was running Cray Linux Environment (CLE)
version 5.2.UP04 with support for Cray DataWarp Phase 1.
With that, a DataWarp Service (DWS) can be configured to
allow dynamically allocating DataWarp capacity striped over
all available DataWarp nodes to batch jobs on request (in
contrast to Phase 0 where the SSD space of each DataWarp
node could only be individually and statically mounted on
compute nodes).

For the benchmarks a persistent DataWarp instance was
created and configured as scratch space in striped access
mode. The instance was activated as static single mount point
on all compute nodes. Using this configuration writes are
automatically striped over all DataWarp nodes in chunks of
8 MiB. The Lustre file system has been used with default
values, which means files are not striped over multiple OSTs.



The Cray DataWarp Service uses the Cray Data Virtualiza-
tion Service (DVS) to make the SSD space of the DataWarp
nodes accessible on each compute node. DVS is a network
service that transparently projects the file systems on the
DataWarp service nodes to each compute node. Thus, the re-
mote file system appears local to the compute nodes [2]. DVS
is lightweight and scales up to tens of thousands of clients
accessing the file system. The DVS provides statistics of file
system accesses on each compute node (/proc/fs/dvs)
as well as inter process communication statistics between the
nodes which we will use to analyze how Hadoop, Spark and
Flink access the file system underneath. For Lustre we use the
/proc/fs/lustre entries to obtain similar insight. A more
detailed discussion of the DataWarp installation at ZIB and
results of synthetic I/O and application benchmarks with Cray
DataWarp Phase 0 (so-called static DataWarp) was described
in [3].

Since all frameworks used require a Java Virtual Machine
(JVM) to be present and SSH for deploying services, we
use the Cluster Compatibility Mode (CCM) 2.2.1 by Cray.
We run all benchmarks on multiple data processing engines:
Hadoop 2.7.1 [4], Spark 1.6.0 [5] and Flink 0.10.2 [6]. The
benchmarks presented are executed using the Intel HiBench
microbenchmark suite 5.01, with small adaptations to support
newer framework version which we have contributed back to
the project [7], along with some adaptations to be run on
the TDS [8]. Because the HiBench suite does not include
comparable Spark and Flink implementations for TeraSort,
we have used a different implementation that uses the same
partitioning as the Hadoop implementation from HiBench [9].

We now briefly introduce the main paradigms and frame-
works used throughout this paper and the benchmarks.

1) MapReduce: MapReduce is a programming paradigm
where computational problems are stated as a series of map
and reduce steps. The mapper consumes arbitrary input and
outputs key-value pairs. The values are grouped by key, and
the reducer fetches and processes values of the same key2, and
outputs another value computed from the range of input values.
Since this approach is inherently parallel, MapReduce can be
scaled out easily to clusters consisting of thousands of nodes.
The step where data is transferred from mapper to reducer is
called shuffle and traditionally involves all mappers persisting
their key-value pairs to disk, and the reducer fetching the
appropriate data over the network. This allows for great
robustness as map and reduce tasks can simply be restarted
on failure. The downside is a large amount of I/O. The shuffle
is part of the reduce, the time period where map tasks are
active is called the map phase, and the time period where
reduce tasks are active is called the reduce phase. Note that
while logically separate, these phases can greatly overlap in
practice.

The simplest MapReduce example is the one of counting

1which in turn internally uses Hive 1.2.1, Kafka 0.8.1, Mahout 0.11.1 and
Zookeeper 3.3.6

2or multiple keys, in which case the data is sorted on these keys before
reducing

words: map every word from a text to a pair (word/1), use
the word as a key during reduction, which sums up all the
1s per word and outputs the final number of occurrences for
each word. More complex programs can be specified as a
series of map-reduce steps. Apache Hadoop is a popular open-
source implementation of MapReduce and is widely used in
the industry.

2) YARN: All frameworks support execution on the re-
source management and job scheduling framework YARN
(part of Apache Hadoop), which is what we have used in
all our benchmark runs as well. YARN consists of the Re-
sourceManager which governs all resources available in the
cluster (mainly number of CPU cores and main memory). A
NodeManager is run once per node in the cluster and runs
and monitors containers (dedicated spaces specified by number
of CPU cores and main memory). The ResourceManager
negotiates resources with the applications and then deploys
tasks in containers on the NodeManagers (e.g. a map or reduce
task with certain memory and CPU requirements). We dedicate
one node in our setup to be the ResourceManager taking care
of task placement on the remaining worker nodes and overall
resource management and utilization. On each worker node (of
which we use up to 14 of our 16-node TDS), a NodeManager
is started, managing memory and cores to allocate for tasks
to be executed on it.

We allow YARN to allocate up to 70% of a node’s physical
memory (22.4 GiB) and up to a total of all (ten) cores per
worker node for tasks to be executed on each worker. In
Hadoop MapReduce jobs, each map task is granted up to 3
GiB and each reduce task is granted up to 4 GiB of memory
per node, allowing for a sufficient degree of parallelism
through concurrently running tasks per worker node (we have
specified a default map and reduce parallelism of 4 times the
number of worker nodes). If memory limits are reached, the
tasks spill to disk, which we have redirected either to the
DataWarp nodes or the Lustre file system.

3) HDFS: The Hadoop Distributed File System (HDFS)
is also part of Apache Hadoop, and manages data in a
distributed, non-POSIX fashion (e.g. not supporting concurrent
writes, supporting appending). Data is split into large blocks
(typically between 64 MiB and 1 GiB in size) and distributed
over all DataNodes in the cluster. A NameNode manages
file system metadata and keeps track of where individual
blocks are stored. This is to allow data-local computation,
where a task is placed on the node that hosts the task’s
input data, which greatly reduces network traffic in the cluster.
Data is persisted into the underlying file system on each
node and read/written upon request. We use HDFS for all
our experiments, co-locating the HDFS NameNode with the
YARN ResourceManager and the HDFS DataNodes with the
YARN NodeManagers, resulting in an equal number of worker
nodes, DataNodes and NodeManagers in the cluster. We use
a HDFS block size of 256 MiB for all setups, meaning files
written to HDFS are split into chunks of 256 MiB and striped
over a corresponding number of DataNodes. We have disabled
file replication for all our benchmarks, i.e. each file stored



in HDFS has a replication factor of one. We run all our
experiments once with DataWarp as HDFS’ underlying file
system, and once with the Lustre file system.

4) Spark and Flink: Apache Spark and Apache Flink have
been conceived as extensions to the MapReduce paradigm,
with the main advancements being reducing I/O by processing
as much data as possible in memory, a wider array of pro-
gramming primitives, and the ability to consume and produce
streaming data. Programs for these data processing engines
are specified as Directed Acyclic Graphs (DAGs) that specify a
data flow from source(s) to sink(s) as a chain of transformation
operators, such as map, filter or join.

The basic data abstraction in Spark (Flink) is the Resilient
Distributed DataSet RDD (DataSet), which is basically a
collection of objects distributed over many hosts.

Spark (Flink) starts an Executor (TaskManager) on each
worker node, with a certain number of cores (slots) each that
will do the actual processing. Operators in the DAG are placed
on worker nodes with a certain degree of parallelism (usually
the number of input splits that need to be processed, i.e. the
number of blocks stored in HDFS that represent the input
data). Since the location of the blocks is known via HDFS,
the operators can be placed on the nodes hosting the actual
data. Furthermore, operators can be fused where possible to
reduce network traffic (e.g. a map and a filter operation usually
only operate on local data and hence can be merged into one
operation instead of splitting it over nodes). This way, the
logical DAG is mapped to the physical cluster and data flows
along it during program execution. We configured the number
of Executors (TaskManagers) to be equal to the number of
worker nodes, with each Executor (TaskManager) controlling
four cores (slots) and a total of 20 GiB of memory. The
Executors (TaskManagers) are co-located with the NameNodes
and DataNodes to allow tasks placed on them to process local
data.

Spark and Flink allocate a large portion of main memory
where data is processed and kept, thus eliminating the need for
disk I/O during the shuffle phase. Fault tolerance is achieved
by the concept of lineage, where an RDD (DataSet) can
be recomputed by following the chain of transformations
backwards. Richer primitives speed up computation as the
program does not need to be broken down into small map and
reduce steps. If tasks require more memory than is available
(e.g. because of a very expensive user defined function (UDF)
in a map task), then graceful spilling to disk happens. We
redirect this spillage to DataWarp and Lustre as well.

Notable differences between Spark and Flink are the support
for iterations and true stream processing in Flink, whereas
Spark emulates stream processing by windowing streams into
micro-batches of configurable size.

5) Kafka: Apache Kafka is a persistent distributed commit
log that can be used for messaging in a publish-subscribe
fashion. Arbitrary messages can be published by producers
under a certain topic, Kafka then persists them and allows
consumers to subscribe to topics and process the data. Fault-
tolerance for consumers is built-in through roll-back, and

parallelism is achieved by splitting a topic into a number
of partitions which can be consumed concurrently by many
clients. In our setup we use Kafka in the streaming benchmark,
where we feed data into Kafka from multiple producers,
and let Spark and Flink consume the data in a streaming
manner. We place Kafka on a dedicated set of four nodes, each
operating with eight network threads. The persistent directories
are placed on Lustre, as unfortunately DataWarp does not
support read/write memory mapped files, which Kafka relies
upon.3

6) Remark: All of the above frameworks benefit from
one or more fast local disks to read data from and write
data to, a large amount of main memory for reducing the
need for disk I/O, many cores for concurrent processing and
a network for fast TCP/IP, as this is the main method of
communication between the distributed components. Our TDS
differs significantly from these requirements, providing only
remote storage, a moderate amount of main memory and CPU
cores, as well as a highspeed Aries interconnect which cannot
be harnessed by these frameworks without modifications. In
the following we seek to explore the capabilities of our TDS
for typical Big Data Analytics tasks.

III. BENCHMARKS

In order to evaluate the TDS’ performance we have used
three different benchmarks with different characteristics: Tera-
Sort, Streaming and SQL. All benchmarks are executed using
a fixed problem size and a varying number of compute nodes
(three, seven, eleven and 15) to examine strong scaling, with
either Lustre or DataWarp as storage backends. For each
number of compute nodes we dedicate one to host various
managing processes, such as the YARN ResourceManager and
the HDFS NameNode, leaving two, six, 10 and 14 worker
nodes for actual computation.

We will briefly present the benchmarks in the following
sections. For TeraSort we have additionally added a weak
scaling setup for Hadoop where the amount of work per node
is kept constant as we increased the number of nodes. Because
of the versatility and general applicability of the TeraSort
benchmark, we focus primarily on this benchmark to analyze
various performance observations, and only include a subset
of information for the other two benchmarks.

A. TeraSort

The TeraSort benchmark is a popular benchmark for data
processing engines and has been used widely on a variety of
setups to assess a cluster’s performance. The initial implemen-
tation is from Hadoop [10] and consists of sorting 1 TiB of
data distributed over as many nodes as there are in the cluster.
The data is organized in rows of 100 bytes each, with the first
ten bytes being the key to sort on and the remaining 90 bytes
forming the values that will be sorted.

The benchmark stresses HDFS, as both the input to be
read and the output to be written amount to 1 TiB of data

3We received mmap: Function not implemented. when using
PROT_READ|PROT_WRITE with mmap instead of just PROT_READ.



and additionally, for Hadoop, all data is directly written to
and read from the underlying file system during the shuffle
phase. Because a global ordering on the keys needs to be
achieved, the network is stressed as well as all data needs to be
shuffled to their corresponding correct output locations. Each
reducer’s CPU and memory is stressed during the local sorting
of keys. Because of its versatility, this benchmark is useful for
assessing how well the MapReduce framework is configured
in terms of overall task parallelism and memory per task, and
we used the configuration values determined with TeraSort for
the subsequent benchmarks as well.

In order to reach the goal of sorting 1 TiB of data, we
have generated 11 billion rows, of which each of the worker
nodes received an equal share. The data is generated during
the TeraGen step, which we have not analyzed in detail as it
is constant for each benchmark execution.

First during the sort, each map task tokenizes the input
records into the ten-byte-key and the 90-byte-value. Next,
a custom partitioner assigns a partition number to each key
produced by the map task to determine the shuffling, with
as many partitions as there are reduce tasks in the job. This
is done by sampling 100,000 keys and sorting them into a
Trie structure to determine the key range for each reducer,
such that for each reducer r and key k the following holds:
samples[r− 1] <= k < samples[r]. By looking up each key
from the input data in the trie, the partition number for this
key can be determined and thus assigned to a specific reducer.
This guarantees that each reducer receives a distinct key range
and, after merge-sorting the key-value pairs locally, a global
sorting is achieved.

For benchmarking Hadoop we have used the implemen-
tation shipped with the HiBench suite. For Spark and Flink
we have used a different implementation that uses the same
partitioner as the Hadoop implementation for comparative rea-
sons [9], because the Spark HiBench TeraSort implementation
generated heavily skewed partitions.

B. Streaming

The streaming benchmark of the HiBench suite starts by
generating a large number of d-dimensional double-precision
floating-point vectors, around the centers of a fixed number of
clusters. These are persisted into HDFS, where they are read
from afterwards and published to Kafka, using four concurrent
producing threads. For this benchmark we use the Flink and
Spark frameworks only, as Hadoop does not support streaming
data4. The frameworks subscribe to the Kafka topic the vectors
are published under and aggregate statistics (min, max, sum
and count) on one of the d dimensions.

This benchmark assesses the network stack in terms of
throughput and latency for small messages of about 80 bytes
and the frameworks’ abilities to keep up with the incoming
data as they are aggregating statistics, with the added con-

4Hadoop Streaming might suggest this feature, however it only means
that standard UNIX streams are used to communicate with arbitrary map-
per/reducer commands.

straint of maintaining them globally and not just locally for
each worker.

We will use varying setups that trade off minimizing latency,
where each record is published to Kafka individually and
processed immediately by the frameworks (Flink supports per-
record processing; in Spark this needs to be approximated by
using a very small microbatch size, as Spark is an inherently
batch-oriented framework), and maximizing throughput where
records are processed in large windows by the frameworks.

C. SQL

The SQL benchmark included in the HiBench suite is
based on a 2009 SIGMOD paper [11] and is comprised
of multiple queries that operate on large data resembling
HTML documents and web server log files. We have picked a
join/aggregation query that outputs users in order of descend-
ing total ad revenue they have generated during all their page
visits within a specific time period, transforming an input data
set of 878 GiB to an output data set of 3.5 GiB.

This benchmark stresses the same features as the TeraSort
benchmark, except the large amount of input data to be
processed is more complex which means that a series of map
and reduce phases needs to be executed (instead of just one for
TeraSort), hence involving more load especially in the shuffle
and reduce steps where joining and sorting are performed.
As the output data is small compared to the input data set,
the frameworks’ abilities to push down operations in order to
reduce network traffic early in the job is tested as well.

The relevant parts of the data for this query are:

• a table Ranking with a mapping from url:String
to rank:Integer, and

• a table UserVisit with a mapping from
ip:String to url:String, date:Date and
revenue:Double.

The query first finds the average page rank of all pages visited
within a specific period of time and total revenue generated for
each user by calculating avg(rank) and sum(revenue)
for each user’s ip accordingly. This includes a join on url
and a filter on date. Second, the query sorts the result in
descending order on sum(revenue) per user to output the
ip, sum(revenue) and avg(rank) for users ranked by
the total revenue they generated within that period of time.

IV. RESULTS

Because the benchmarks themselves took a great effort to
configure and in some cases a long time to execute, the results
presented depict the best run out of several we have conducted.
The numbers presented are mostly taken from the performance
counters of the corresponding execution engines, with Hadoop
providing the most diverse set of statistics (we have added
more custom file system counters), Spark providing access to
these only via the Web UI, and Flink being the least verbose of
all systems (we have added automatic dumping of job statistics
after each run).
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Fig. 1. Hadoop MapReduce TeraSort of 1 TiB on DataWarp

Before each run, we set up everything from scratch, format-
ting all data in HDFS and the NameNode, and generate the
input data anew and copy it to the appropriate input locations.

In the following analysis we will use the throughput for
comparing results. We define throughput as the result set size
divided the time it took to generate that result set. This is
synonymous with the cluster throughput, and to obtain the
per-node throughput we divide the cluster throughput by the
number of worker nodes participating in the benchmark.

A. TeraSort: General observations

We have conducted the TeraSort benchmark for sorting 1
TiB of data on two, six, ten and 14 worker nodes with an addi-
tional node hosting the ResourceManager and the NameNode.
Each of these setups was run once using the DataWarp service
as storage backend for HDFS, and once using the Lustre file
system. For each of these setups we have chosen Hadoop
MapReduce, Spark and Flink as execution engines to compare
performance of these different common analytics frameworks.
The Hadoop, Spark and Flink implementations are comparable
as they use the same partitioner determining the assignment
from map output to reduce input.

For the Hadoop configurations we have included one plot
per benchmark run, one depicting the execution times of
different phases of the benchmark (Figures 1 and 2). Weak
scaling using Hadoop on DataWarp is shown in Figure 3.
For the Spark and Flink configurations we present one plot
each, showing the execution times of different stages of the
job (Figures 4 through 7). A detailed discussion of file system
performance is presented in Section IV-B.

Because the underlying HDFS was configured to use blocks
of 256 MiB, and one map task in the TeraSort benchmark
works on one block of input data, the total number of map
tasks in the Hadoop jobs was approximately constant over all
benchmark runs, i.e. 1 TiB of input data divided by 256 MiB
of work per map task equals 4096 map tasks to be executed
in theory. In practice we have observed a total of 4200 map
tasks executed, which can be explained by slightly imperfect
balancing during the generation of the TeraSort data during
the TeraGen step. For the reduce phase we have empirically
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Fig. 2. Hadoop MapReduce TeraSort of 1 TiB on Lustre

determined a parallelism of 60 per worker node to work well,
which means for two worker nodes, there are 120 reduce tasks,
for six worker nodes there are 360 reduce tasks and so forth.5

We observe sublinear scaling when using both DataWarp
and Lustre as file system backend with respect to the overall
execution time TeraSort Wall Time, which includes the Total
Map Wall Time and the Total Reduce Wall Time. From these
three metrics we can see that the map and reduces phases have
a large overlap.

With a growing number of worker nodes, almost linear
scaling is observed as well when just examining the wall time
spent on the map tasks, which indicates an appropriate degree
of parallelism for the map phase of the benchmark. The overall
work performed during the map phase remains constant, as
shown by the constant cumulative amount of CPU time spent
on all map tasks.

However, the amount of time spent during the reduce phase
does not scale linearly6, even when cleaned from bad reduce
tasks. The reduce phase consists of the actual reducing and the
shuffle phase, which is responsible for assigning each mapped
key-value-pair from the map phase to the correct reducer.
This involves an all-to-all communication step, which, as more
and more workers are added, severely dominates the reduce
phase: The Total Shuffle CPU Time is part of the Total Reduce
CPU Time in Figures 1 and 2, hence the shrinking difference
between the two is the actual reducing.

Another observation that draws immediate attention is the
fact that the execution times of the benchmarks vary by up to
a factor of two between using DataWarp and Lustre as storage
backends, resulting in total cluster throughputs from 64 MiB/s
to 352 MiB/s for Hadoop on DataWarp, and 88 MiB/s to 690
MiB/s on Lustre. The per-node throughputs follow a more
interesting pattern: on DataWarp it is highest (34 MiB/s) when
using 6 worker nodes, and decreases down to 25 MiB/s with
different numbers of worker nodes. On Lustre the per-node
throughput is highest with 14 worker nodes (50 MiB/s) and at

5We will comment on the implications this has for spilling and briefly
mention an alternative below.

6which includes the time taken by failed and restarted tasks, of which there
are approximately 1%
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Fig. 3. Hadoop MapReduce TeraSort of 1/14 TiB per Worker on DataWarp

a constant 44 MiB/s with all other configurations. Furthermore
we observe an increasing speedup of Hadoop on Lustre over
Hadoop on DataWarp of 1.3 for two nodes to 2.0 for 14 nodes.
We will discuss this difference later on in more detail when
correlating performance with file system metrics.

The observed per-node throughputs are moderate, in partic-
ular when comparing to TeraSort records recently set by the
industry. In 2014, MapR achieved around 19 MiB/s per node
in a cluster of 1003 virtual nodes, and 101 MiB/s per node
in a cluster of 21 nodes using a tuned version of Hadoop that
incorporates many natively implemented improvements [12].
Cisco reports a per-node throughput of 220 MiB/s in a cluster
of 16 nodes in 2013 [13]. It is important to note that both
companies used clusters with an aggregate memory multiple
times the size of the input data (2 TiB and 4 TiB), many cores
(2x16 per node) and local disks, whereas our TDS only has an
aggregate 512 GiB of memory7, ten cores per node and access
to remote DataWarp and remote Lustre file systems. The first
popular records were set by Yahoo! in 2007 and 2008 on a
cluster of 910 nodes with 8 cores, 8 GiB of memory and four
SATA disks per node, sorting 1 TiB of data in 297 and 209
seconds [14], yielding a per-node throughput of 3.9 and 5.5
MiB/s.

In Figure 3 we show the weak scaling properties of Hadoop
TeraSort on DataWarp where we have kept the amount of
data to be sorted at a constant 1/14th of 1 TiB per worker
node. We observe an increase in TeraSort Wall Time which
is entirely due to the corresponding increase in Total Reduce
Wall Time, which in turn is caused by the increased amount
of time spent during the shuffle phase. This can be seen when
looking at the corresponding Total CPU Times, where the
time spent on reducing increases over-proportionally due to
the corresponding increase in shuffle time.

We now turn our attention to the TeraSort benchmark runs
on Spark, where we present results in Figures 4 and 5 for con-
figurations similar to Hadoop. Spark job essentially consists of
three major steps: reading the input and partitioning according

7for 16 nodes, however we never use more than 14 workers, giving an
effective aggregate memory of 448 GiB
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Fig. 4. Spark TeraSort of 1 TiB on DataWarp
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Fig. 5. Spark TeraSort of 1 TiB on Lustre

to the keys, mapping the keys and values to a serializable
and thus transmittable data type, and sorting and writing the
output to HDFS. These steps are less separated from each
other compared to Hadoop, because Spark uses fusion of tasks
where possible. As the plots show, sorting and saving the
output are fused together, as they take up almost the entire
SparkTeraSort Wall Time, with the key mapping and partition-
ing running concurrently as well. Note that the Spark TeraSort
benchmark using two worker nodes on DataWarp consistently
failed with an InvalidStreamHeaderException in the
partitioning step which we were not able to mitigate, and hence
had to exclude results for this configuration.

We have included the Hadoop TeraSort Wall Time to ease
comparison between the two frameworks. While Spark scales
super-linearly both on DataWarp and Lustre, we observe that
Spark runs between a factor of 6.8 (six nodes) and 3.0 (14
nodes) longer on DataWarp, and between a factor of 14.6
(two nodes) and 1.0 (14 nodes) longer on Lustre than the
corresponding Hadoop configuration in our array of bench-
marks. Note that on DataWarp we do not have Spark results
for two worker nodes, but extrapolating the scaling behavior
and considering the results on Lustre, the slowdown would
likely have been between one and two orders of magnitude.
We furthermore observe sublinear scaling behavior of the key
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Fig. 7. Flink TeraSort of 1 TiB on Lustre

mapping phase on DataWarp, whereas this phase scales lin-
early on Lustre. Saving the output scales super-linearly on both
file systems. We will again keep this in mind when discussing
file system counters collected by DataWarp and Lustre, which
give an indication on why Spark’s I/O performance is so
unfortunate, especially with reads on DataWarp.

As a consequence of this, Spark’s per-node throughput for
the TeraSort benchmark is lower than Hadoop’s by the same
factors we observed when discussing execution time with 5
to 8 MiB/s on DataWarp, and 3 to 50 MiB/s on Lustre, with
only the 14-node configuration achieving similar performance.
Note that in contrast to Hadoop, the per-node throughput
increases with an increasing number of worker nodes under
Spark. This demonstrates the in-memory characteristics of
Spark, especially during the shuffle phase which is a lot less
expensive. It is unfortunate that we could not scale out further,
as Spark’s scaling behavior promises a better performance gain
than Hadoop’s scaling behavior.

Furthermore we observe that with an increasing number
of nodes, the speedup of Spark on Lustre over Spark on
DataWarp increases from 4.2 for six nodes to 6.0 for 14 nodes.

Finally, we ran the TeraSort configurations on Flink as well,
with results depicted in Figures 6 and 7. Similar to Spark,
Flink aims at processing as much data in memory as possible,
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with detailed counters on I/O not being available in the Flink
release we used for this performance comparison. We observe
that Flink’s execution times are almost always as good as or
better as the corresponding Hadoop runs with stronger scaling,
especially on Lustre. Consequently, Flink outperforms Spark
for every configuration of the TeraSort run we conducted,
by factor of 6.5 (six nodes) to 4 (14 nodes) on DataWarp
(where Spark results were available), and by a factor of 9.3
(two nodes) to 2.4 (14 nodes) on Lustre. Per-node throughputs
range accordingly from 28 to 33 MiB/s on DataWarp and from
28 to 119 MiB/s on Lustre, again with increasing per-node
throughput as the number of worker nodes increases.

Similar to Spark, reading and partitioning the keys are fused
together (the Partition Wall Time is part of the DataSource
Wall Time), and sorting and saving the output as well (the
DataSink Wall Time is part of the Sort Wall Time). The
DataSink Wall Time decreases faster than the Sort Wall Time,
indicating an increasing efficiency with more worker nodes, as
relatively less time is spent on writing the output, compared
to actually sorting it, as reflected by the increasing per-node
throughput.

We observe an increasing speedup of Flink on Lustre over
Flink on DataWarp from 1.0 for two nodes to 3.6 for 14 nodes.

B. TeraSort: File system observations

Following the observations from the previous section, we
will now look into the file system counters collected by DVS
and Lustre during the TeraSort benchmark on Hadoop, Spark
and Flink over two, six, ten and 14 worker nodes, shown
in Figures 8, 9 and 10. These counters, as opposed to the
counters that each framework provides, capture all output and
are therefore more reliable and complete. We aim to clarify
three issues which we have briefly touched upon above:

1) How much data is written to/read from the file system
exactly?

2) How does read I/O on DataWarp differ from Lustre
under Spark?

3) How does I/O differ with varying number of nodes as we
observe an increasing speedup of Lustre over DataWarp?
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The plots depict the total number of read and write operations
on DataWarp and Lustre, and the total number of bytes written
to/read from Lustre, as we were unable to determine the
number of bytes written to/read from DataWarp from the
DVS counters. We will therefore assume similar values for
DataWarp, as the Hadoop file system counters indicate as well.
Keep in mind that for TeraSort on Spark and DataWarp with
two worker nodes, we have no results because of an exception
at runtime. Note that we have started all of the frameworks
used on Lustre, which is why the written data reported can
slightly exceed expectations because of logging activities of
these frameworks.

For Hadoop we observe total data read/written of around 3
TiB for two, six and ten worker nodes, as we have expected:
the entire data set is read once at the beginning, once during
shuffle, and once in total because of spillage. The same holds
true for the written data. On 14 nodes we observe I/O of only 2
TiB. This is because there are sufficiently many reducers such
that the amount of data to be sorted by each of them fits in
their memory, and therefore no spilling to disk is necessary. In
effect, 2 TiB is the lower boundary for disk I/O when sorting
1 TiB of data using Hadoop.

While it is not optimal to observe this large amount of
spilling to disk, we have to re-iterate that common Hadoop
deployments run on clusters with more nodes and more
memory than what we have at our disposal, and therefore these
observations should present an edge-case of Hadoop usage.
Seeing that our unaltered configuration is able to achieve zero-
spill execution when scaled to 14 nodes confirms this.8

The total number of read and write operations on DataWarp
and Lustre do not vary by much between the runs on two, six
and ten nodes, however on 14 nodes we see a drop of an order
of magnitude in reads from DataWarp. This is surprising, as we
have to expect that the amount of data processed only shrank
by 1/3, and the number of write operations on DataWarp and
read/write operations on Lustre have not decreased.

This is an issue we have to leave open for future inves-
tigation, especially since the resulting average read sizes on
DataWarp would range from 192 KiB to 2 MiB, while the
DVS counters reported maximum read and write sizes of only
64 KiB. The average read and write sizes on DataWarp range
from 39 to 47 KiB, and average read and write sizes on Lustre
range from 16 to 44 KiB, which is in line with the maximum
read size of 730 KiB reported by Lustre.

The observed increasing speedup of Lustre over DataWarp
does not show in the total number of read or write opera-
tions. When using DataWarp as file system backend for the
DataNodes, we placed them in the statically configured DVS
mount point that automatically distributes data over our eight
DataWarp nodes with two SSDs each. Client-side caching is
not supported on DataWarp yet and the layer is currently under
development, potentially speeding up I/O patterns as observed
in our benchmarks, mainly many small reads and writes [15].

We have examined the Hadoop framework’s file system
counters as well and recorded overall data read and written as
well as the corresponding times to do so, as the DVS counters
do not provide timings of read and write operations. From
these values we observe a read rate on DataWarp of about
240 MiB/s and a write reate of 155 MiB/s, independent of
the number of nodes participating in the benchmark. When
running an IOR on DataWarp with block sizes of 64 KiB to
simulate Hadoop’s I/O patterns, we observe read and write
rates of 40, 70, 140 and 270 MiB/s for 8, 16, 32 and 64
parallel threads. These results need to be reconciled with
the measurements from Hadoop, of which we have yet to
determine their accuracy. Unfortunately, these counters are not
available in Spark and Flink.

Spark shows different behavior than Hadoop: Overall a lot
less data is written to/read from disk which is due to the in-
memory characteristics of Spark. We observe an amount of
data read decreasing over the runs and approaching the amount
of data written, which is in the order of 1 TiB each, as is the
lower bound for sorting 1 TiB of data in general as the input
needs to be read once, and the output needs to be written once.

8We ran Hadoop TeraSort using ten nodes on DataWarp again with 1024
instead of 600 reducers, and while indeed the spill to disk reduced to zero,
the overall execution time increased by more than 10% with an otherwise
unaltered configuration.



Spark reports a shuffle size of 128 GiB per run, which needs
to be read and written as well, explaining the total amount of
data read and written above 1 TiB.

Spark issues two to three orders of magnitude more reads
to DataWarp and Lustre compared to Hadoop, which, in con-
junction with overall reduced amount of data read and written,
reduces the average read operation to at most 340 bytes,
severely limiting overall performance as discussed earlier. The
number of reads scales anti-proportionally with the number of
nodes, with a constant number of writes that is slightly smaller
compared to the number of writes Hadoop issues.

Flink virtually generates the same I/O for every configura-
tion we have used. While reading and writing almost twice
the amount of data from/to the file system than Spark, Flink
does so with two to three orders of magnitude less operations
for the read case, achieving read sizes similar to Hadoop for
Lustre.9 This very balanced I/O profile is likely due to Flink’s
rigorous memory management off the JVM heap and explicit
controlling of spill.

It is interesting to note that for all cases, the number of read
and write operations performed on Lustre is larger than the
number of read and write operations performed on DataWarp
for the corresponding configurations. This will be explored in
depth in future experiments we plan.

C. Streaming

We ran the streaming benchmark for collecting statistics on
100 million records of about 80 bytes each on two, six and
ten worker nodes using Spark and Flink, because Hadoop does
not support streaming applications. An additional four nodes
are dedicated for Kafka, each of which runs eight network
processing threads, which is why we cannot allocate 14 worker
nodes as in the previous benchmark, because our TDS is
comprised of 16 nodes in total. Four of the worker nodes run
an additional producer thread, which reads the vectors from
HDFS and publishes them to Kafka, achieving an aggregate
rate of about 200,000 records published to Kafka per second.
The topic the vectors are published under has 16 partitions to
allow for sufficient consumer parallelism.

The HDFS setup is as previously described, with storage
directories placed on either DataWarp or Lustre. The Kafka
log directories where the actual data is stored are placed on
Lustre as well, as they are memory mapped files, which are
currently not supported for read/write access in DataWarp.

We use Spark and Flink for this benchmark with varying
sizes of processing windows in which the vectors are col-
lected and then processed as a batch, as well as one-record-
”windows” in Flink (which supports true stream processing).
Larger window sizes trade off latency for throughput, smaller
windows trade off throughput for latency.

We tried windows of 1 and 10 milliseconds in Spark, these
jobs however failed with prematurely aborting tasks due to
an InterruptedException, so we could not simulate

9As to why the amount of data read and written is always 2 TiB each we
can only speculate, as Flink does not provide such detailed statistics in the
release we have used.
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Fig. 11. Streaming on DataWarp with windows of 1000ms
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Fig. 12. Streaming on Lustre with windows of 1000ms

”true” stream processing in Spark. Using windows of 100
milliseconds, Spark finished successfully in only two cases
(with six nodes on DataWarp and ten nodes on Lustre), which
is why we present results only for 1000 millisecond windows
in Spark, as the results for 10,000 millisecond windows are
identical except for a ten-fold increase in average latency (as
is expected). Flink does not support windows smaller than 50
milliseconds, except true stream processing one record at a
time, which is why we present the stream processing results
and the 1000 millisecond window results. Flink managed to
run successfully with windows of 100 and 10,000 milliseconds
as well, but again the results are identical except an according
decrease/increase in average latency.

Execution time, average latency and throughput for Spark
using 1000 millisecond windows on DataWarp and Lustre are
presented in Figures 11 and 12 alongside the appropriate Flink
results, and Figures 13 and 14 show the Flink results for one-
record-at-a-time processing.

For Spark in the 1000 millisecond window we see total
execution times between 541 and 568 seconds and through-
puts between 176,000 and 185,000 records per second over
all configurations, both on DataWarp and on Lustre. These
values indicate no dependence on either the number of nodes
involved, nor the file system used underneath. However, ex-



amining the latencies, we observe higher variance, as they
range between 586 and 768 milliseconds on DataWarp, and
between 637 and 738 milliseconds on Lustre. Given that the
average latency within a 1000 millisecond window should be
500 milliseconds for steady ingestion rates, these latencies
indicate some processing delay per batch, which however can
be compensated before the next batch starts. The sizes of the
batches Spark processes range between 175,000 and 200,000
records, with an average of 192,000 records. That is, Spark
can ingest records almost as fast as they are produced.

In order to push latencies over 1000 milliseconds, we would
need to produce a lot more records concurrently, which our
TDS does not have the resources for. In fact, we ran the
streaming benchmark once with eight Kafka nodes and eight
concurrent producers emitting 400,000 records per second,
with just six worker nodes dedicated to running Spark on
DataWarp. Spark achieved 305,000 records per second of
throughput and an average latency of 670 milliseconds, which
is worse than the corresponding run using six worker nodes
on DataWarp and just four Kafka nodes and four concurrent
producers (see Figure 11), but still far from overloading the
framework.

For Flink in the 1000 millisecond window we see total
execution times between 588 and 724 seconds and through-
puts between 137,000 and 170,000 records per second over
all configurations, both on DataWarp and on Lustre. Both
metrics are worse than Spark’s results, as the minimum
execution time for Flink is higher than the maximum execution
time for Spark, and the maximum throughput for Flink is
lower than the minimum throughput for Spark. Furthermore
we observe decreasing throughput on Lustre and constantly
worse throughput on DataWarp, with the differences between
DataWarp and Lustre being higher and more erratic compared
to Spark. However, Flink achieves latencies between 498 and
793 milliseconds on DataWarp, and between 576 and 700
milliseconds on Lustre. With the exception of ten nodes on
DataWarp, Flink always has the lower latency compared to
Spark for the corresponding configuration. For Flink we do
not have metrics detailed enough to comment on the average
batch size. However, given the lower throughput, we assume
it to be less than what Spark can process.

Finally, we ran the Streaming benchmark on Flink using
true stream processing, resulting in sub-second latencies be-
tween 36 and 56 milliseconds as can be seen in Figures 13
and 14. The overall execution time matches the corresponding
times on DataWarp and Lustre with a window size of 1000
milliseconds. Again we observe only moderate throughput,
with DataWarp being the worse one, and with decreasing
throughput similar to the execution with a 1000 millisecond
window size on Lustre.

These results are not intuitive, as Flink’s architecture is
of inherent streaming nature, and thus we need to dedicate
separate studies to examining Flink’s configuration.
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Fig. 13. Streaming on DataWarp with true stream processing (only Flink data
available)
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Fig. 14. Streaming on Lustre with true stream processing (only Flink data
available)

D. SQL

We ran the SQL benchmark for ordering users by the total
ad revenue they generated during their page visits within a
specific time period on a data set comprised of 1.2 ∗ 108
rankings and 5 ∗ 109 user visits. The resulting set contains
1.2∗108 rows. This amounts to 878 GiB of input data and 3.5
GiB of output data. We used two, six, ten and 14 worker nodes,
with the HDFS setup as previously described and placed on
either DataWarp or Lustre. Cluster throughput is reported in
terms of output data. Hadoop and Spark both execute the same
Hive SQL file in which the query is specified; in Flink we
programmed the query using Flink’s Table API for SQL-like
queries. The results of all three engines match.

We report execution time and throughput for Hadoop, Spark
and Flink on DataWarp and Lustre in Figures 15 and 16.
Note that Spark failed to run successfully on two nodes
using DataWarp with an EOFException which we could
not rectify and hence had to exclude results for this run.

We observe linear scaling behavior with Spark, except for
14 nodes, sublinear scaling behavior for Flink and sublinear
scaling behavior for Hadoop except for 14 nodes. Hadoop’s
performance is the worst of the three engines across all runs,
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2 6 10 14
 0

 1

 2

 3

 4

 5

 6

Th
ro

ug
hp

ut
 (M

iB
/s

)

No. of Worker Nodes

Throughput (Hadoop)
Throughput (Spark)
Throughput (Flink)

Fig. 16. SQL on Lustre using Hadoop, Spark and Flink

approaching Flink’s performance with increasing number of
nodes. For six nodes on DataWarp and two nodes on Lustre,
Flink is the fastest execution engine for this benchmark, in all
other cases Spark’s performance is the best with an increasing
gap as per the observed scaling behaviors of all three engines.

Given the fact that Hadoop and Spark execute the same Hive
queries it is worth emphasizing the differences in execution
time between these two engines, with Spark being between
1.3 and 2.7 times faster than Hadoop. This is likely due to the
reduced disk I/O during the shuffle phase, as we will explain
shortly. We also observe that the overall execution times are
lower, and the cluster throughputs therefore higher on Lustre
than on DataWarp for all frameworks and their corresponding
configurations. This hints at the fact that I/O is indeed one of
the limiting factors here for all execution engines.

Despite being an in-memory data processing engine as well,
Flink fails to keep up with Spark’s performance as the number
of worker nodes increases. This may be due that we had to
make use of Flink’s Table API, as Flink does not support
executing Hive queries in release 0.10.2, which is the release
we used. Furthermore, the API is still in beta and does not
support an orderBy statement, which is why we had to resort
to Flink’s traditional DataSet API to implement this function as
a sort on exactly one node, whereas Spark seems to be able to
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Fig. 17. Aggregated Lustre file system counters for Join on 14 nodes for
Hadoop, Spark and Flink

achieve local sorting of partitions and then merging them into
the final output, as the list of resulting files indicates. It is likely
that this sort with a parallelism of one, independent of number
of worker nodes, is the source of Flink’s performance.10

In an attempt to clarify the runtime differences between
the frameworks, we present file system counters for the SQL
benchmark run on 14 nodes using Lustre, as Lustre provides
all counters necessary. The results can be seen in Figure 17.
Even though we have observed Spark to issue many operations
to the file system, especially reads, we observe that Hadoop
issues an order of magnitude more reads and writes than Spark
in the SQL benchmark. This indicates many shuffle phases,
which however appear to filter data early on, as Hadoop reads
a total of 1025 GiB, just 146 GiB more than the input data set,
and Spark reads 60 GiB more than the input data set. Flink
reads just 36 GiB more.

Hadoop writes 70 GiB more than the output data set, Spark
writes 85 GiB more and Flink writes just 4 GiB more. For
Hadoop the overhead is explained by shuffle data, Spark
reports a total of 11 GiB of shuffle data, however produces not
just one result file, but one for each partition (56 in this case),
each locally sorted, which are then merged into the result file.
It is these partitions that make up the additional data. For
Flink, again, we cannot be sure when the additional data has
been read or written.

From these statistics it is clear why Hadoop performs worse
than Spark and Flink, however as to why Flink performs much
worse than Spark, we still cannot be certain, except that we
now know it is not additional I/O that slows Flink down. In
fact, seeing this little amount of data written indicates that
the result indeed is processed largely on one node, and Flinks
performance therefore is limited by the processing power of
that one node. We will investigate how Flink’s Table API has
evolved since the release we are using in future experiments.

10It is worth noting that an orderBy has been added to the Table API in
Flink 1.1.0: https://issues.apache.org/jira/browse/FLINK-2946. However, we
could not incorporate results from this API because of time limitations.



V. CONCLUSION & FUTURE WORK

The performance of the three data analytics frameworks
Hadoop, Spark and Flink was evaluated on a small Cray
TDS with DataWarp and Lustre as filesystem backends using
selected benchmarks with Big Data Analytics characteristics.

The configuration of the frameworks were not streamlined
for specific benchmarks, but instead we determined working
configuration parameters using the versatile TeraSort bench-
mark, and used these configurations for the other benchmarks
as well.

The overall performance experiences show that for our
small setup with at most 16 nodes, the DataWarp based file
system (Stage 1) is in no case beneficial for the selected
benchmarks TeraSort, Streaming, and an SQL benchmark
compared to Lustre as storage backend, and displays worse
scaling behavior. A recent study by D. Bard et al. [15] revealed
that reading and writing small files (or small I/O transfers)
to DataWarp is problematic in some cases and that generally
in many cases the DataWarp performance is worse than the
Lustre file system, the latter also being due to the client-side
caching in Lustre, which is not yet available in DataWarp.
Thus, this observation is in line with ours where a typical I/O
data block is at most 64 KiB small.

Spark and Flink can take advantage of larger memory
configurations per node. With our configuration of 32 GiB
per node we see our benchmark results as cases where the file
system backends are more stressed than would be necessary
for larger memory configurations, as the frameworks have to
spill to disk more often.

Profiling these data analytics workflows becomes challeng-
ing. The Hadoop framework provides a rich set of internal
counters, which however are not always exhaustive. Spark and
Flink provide fewer counters and metrics at the moment, most
of them being only accessible conveniently via a provided web
frontend. This is why we used counters provided by DVS and
Lustre to assess actual I/O performance. An important area
of future investigation is the reconciliation of read and write
rates observed in the frameworks with the ones from IOR for
similar I/O patterns. For profiling tasks using DVS, additional
counters providing the total number of bytes read and written
would be helpful. Support for read/write memory mapped files
would be beneficial for certain frameworks as well.

For application performance profiling, the Cray performance
analysis tools cannot be used out-of-the box due to the
missing Java support. Here, a Cray Java version might be
beneficial for the identification of bottlenecks and simplified
instrumentation.

For the interpretation of performance results, details of the
DVS software layer might better clarify the observations. For
example, the degree of parallelism in the I/O queue handled by
the DVS layer would be interesting in the context of scalability
tests.

This study has still a work-in-progress character due to the
late availability of the DataWarp software stack, and the still
evolving state of the frameworks used, especially Flink and,

to a certain extent, Spark as well. There are still some open
questions for which we seek solutions together with the Cray
experts within our joint project, including correctly collecting
and interpreting DVS statistics.

For future work, the impact of different stripe sizes other
than 8 MiB on the DataWarp might be reveal better settings
for the chosen analytics workloads.
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