
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

ALEXANDER TESCH

Exact Energetic Reasoning in
O(n2 log2 n)

ZIB Report 16-46 (September 2016)

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Exact Energetic Reasoning in O(n2 log2 n)

Alexander Tesch

Zuse Institute Berlin (ZIB)
Takustr. 7, 14195 Berlin, Germany

tesch@zib.de

Abstract. In this paper, we address the Energetic Reasoning propaga-
tion rule for the Cumulative Scheduling Problem (CuSP). An energetic
reasoning propagation algorithm is called exact, if it computes the max-
imum possible energetic reasoning propagation for all the jobs. The cur-
rently best known exact energetic reasoning algorithm has complexity
O(n3), see [1]. In this paper, we present a new exact energetic reasoning
propagation algorithm with improved complexity of O(n2 log2 n).

1 Introduction

We consider the Cumulative Scheduling Problem (CuSP), in which we are given
a set J of n jobs where each job j ∈ J has a processing time pj > 0 and a
resource demand dj > 0. Moreover, each job j ∈ J is given a scheduling interval
[ej , lj] ⊂ IR in which it has to be processed. For given resource capacity D, the
objective is to find feasible starting times sj ∈ [ej , lj − pj] such that at any time
point the total resource consumption does not exceed the total capacity. More
formally, the CuSP can be formulated as the feasibility problem

find s ∈ IRn (1)

such that
∑

sj≤t<sj+pj

dj ≤ D ∀t ∈ IR (2)

ej ≤ sj ≤ lj − pj ∀j ∈ J. (3)

Normally, the CuSP is used as subroutine in more complex scheduling al-
gorithms. In constraint programming, the CuSP is modeled as cumulative
constraint. Usually, the CuSP is solved by specific branching and propagation
methods. The most common propagations algorithms for the CuSP are Time-
Tabling [10], Edge-Finding [7, 14], Extended Edge-Finding [8, 9], Time-Table
Edge-Finding [12, 15], Energetic Reasoning [1, 2, 6] and Not First-/Not Last [11].

In this paper, we focus on energetic reasoning which, in general, constitutes
a very strong propagation rule for the CuSP. Except for Not First-/Not Last, all
stated propagation algorithms are relaxations of energetic reasoning. Due to the
high running time of O(n3) energetic reasoning is avoided in practice, since faster
but weaker propagation algorithms generate better results [12, 15]. However,
since its first practical examination in Baptiste et al. [1], it remained open if

there is a faster implementation of energetic reasoning than the straightforward
O(n3) algorithm.

Many approaches have been made to improve the practical complexity of en-
ergetic reasoning. In Berthold et al. [2], they introduce an approximation scheme
in order to detect time intervals which do not contribute to any propagation of
energetic reasoning. Such intervals can be eliminated in the search. Similarly,
Derrien et al. [5] strengthen the original characterization of relevant time inter-
vals of Baptiste et al. [1] which shows a decent practical impact. However, the
general complexity still remains at O(n3).

Recently, Bonifas [3] introduced an algorithm that computes energetic rea-
soning propagations for at least one job in O(n2 log n). His idea is based on a
new geometric interpretation of energetic reasoning. In order to compute propa-
gations for all jobs, his algorithm can be extended to an O(n3 log n) algorithm.

More recently, the algorithm was improved in Tesch [13] where an O(n2 log n)
algorithm is proposed to compute energetic reasoning propagations for all jobs.
The idea is similar to Bonifas’ algorithm, but a more comprehensive subproblem
is studied. From this context, a specific sweep line algorithm is developed which
solves the subproblem efficiently. It is also shown that the algorithm computes
exact propagations on the majority of relevant intervals.

In general, however, no algorithm for energetic reasoning was known that
computes exact propagations for all jobs in time less than O(n3).

Contribution. In this article, we proceed from a related geometric and algorith-
mic concept as in [13]. The main difference is the identification of a key property
in the problem that can be handled well algorithmically by using a slightly ex-
tended data structure. This leads to an exact energetic reasoning algorithm with
improved running time of O(n2 log2 n).

Outline. Our paper is organized as follows. In Section 2, we introduce the basic
principles of energetic reasoning. In Section 3, we prepare the main concepts to
translate energetic reasoning into a geometric environment. Section 4, introduces
a sweep line algorithm and its related data structres that solves the associated
geometric problem. Finally, we conclude our results in Section 5.

2 Exact Energetic Reasoning

Given a job j ∈ J and a time interval [t1, t2] ⊂ IR define

µj(t1, t2) = min{pj , t2 − t1,max{0, ej + pj − t1},max{0, t2 − lj + pj}} (4)

as the minimum left-/right-shift duration which is the minimum duration that
job j is processed in the interval [t1, t2]. Furthermore, define the energy overload
in a time interval [t1, t2] ⊂ IR by

ω(t1, t2) =
∑
j∈J

dj · µj(t1, t2)−D · (t2 − t1) (5)

which is the slack between the consumed and the available energy in the interval
[t1, t2]. Apparently, if there is a time interval [t1, t2] ⊂ IR with ω(t1, t2) > 0 then
the CuSP is infeasible. This feasibility condition is known as overload checking
and can be tested in O(n2), see Baptiste et al. [1].

Energetic reasoning extends this rule by start- and end time propagations.
Given a job j ∈ J define the left- and right-shift duration in a time interval
[t1, t2] ⊂ IR by

µleft
j (t1, t2) = min{ej + pj , t2} −max{ej , t1} (6)

µright
j (t1, t2) = min{lj , t2} −max{lj − pj , t1} (7)

which is the duration of job j in the interval [t1, t2], if job j is started as early as
possible (left-shift) or as late as possible (right-shift). Then define the left- and
right-shift overload of a job j ∈ J in a time interval [t1, t2] ⊂ IR as

ωleft
j (t1, t2) = ω(t1, t2) + dj · (µleft

j (t1, t2)− µj(t1, t2)) (8)

ωright
j (t1, t2) = ω(t1, t2) + dj · (µright

j (t1, t2)− µj(t1, t2)) (9)

which is the energy overload in the interval [t1, t2], if job j is left- or right-shifted.

Theorem 1 (Baptiste et al. [1]). If there is a job j ∈ J and a time interval
[t1, t2] ⊂ IR such that ωleft

j (t1, t2) > 0 holds then the earliest start time ej of job
j can be updated by

ej = t2 − µj(t1, t2) +

⌈
ω(t1, t2)

dj

⌉
. (10)

Analogously, if ωright
j (t1, t2) > 0 holds then the latest completion time lj of job

j can be updated by

lj = t1 + µj(t1, t2)−
⌈
ω(t1, t2)

dj

⌉
. (11)

Note that the left- and right-shift case of energetic reasoning are equivalent
by symmetry at time t = 0. The idea of energetic reasoning works as follows.
Assume a job j ∈ J is left-shifted. If the additional amount of energy that is
caused by left-shifting job j exceeds the available energy in some time interval
[t1, t2] ⊂ IR then the earliest start time ej is invalid. Hence, the earliest start
time ej can be increased by an amount such that left-shifting job j causes no
overload anymore in the interval [t1, t2]. That is exactly expressed by the update
function (10). The right-shift case (11) works equally.

Moreover, there exists an explicit description for the set of relevant time
intervals T ⊂ IR2 for energetic reasoning, see for example Baptiste et al. [1],
Derrien et al. [5] and Tesch [13]. Notably, there are O(n2) many of such relevant
time intervals.

Definition 1. A propagation algorithm for energetic reasoning is called exact,
if it computes for all jobs j ∈ J both

max
(t1,t2)∈T : ωleft

j (t1,t2)>0
t2 − µj(t1, t2) +

⌈
ω(t1, t2)

dj

⌉
(12)

min
(t1,t2)∈T : ωright

j (t1,t2)>0
t1 + µj(t1, t2)−

⌈
ω(t1, t2)

dj

⌉
(13)

that is the maximum start- and end time propagations according to the energetic
reasoning rule.

Thus, we aim to construct an algorithm that solves the problems (12) and
(13) efficiently.

3 Slack Polyhedra

In this section, we convert problems (12) and (13) to geometric problems in IR2.
First, we extract the slack functions from definitions (8) and (9) and define

gleftj (t1, t2) = dj · (µleft
j (t1, t2)− µj(t1, t2)) (14)

grightj (t1, t2) = dj · (µright
j (t1, t2)− µj(t1, t2)) (15)

for every job j ∈ J . In particular, it holds gleftj (t1, t2) ≥ 0 and grightj (t1, t2) ≥ 0
for all (t1, t2) ∈ IR2. Moreover, due to the update functions (10) and (11) define

f leftj (t1, t2) = dj · (t2 − µj(t1, t2)) (16)

frightj (t1, t2) = −dj · (t1 + µj(t1, t2)) (17)

for every job j ∈ J . The exactness conditions (12) and (13) can then be written
equivalently for all jobs j ∈ J as

max
(t1,t2)∈T :ω(t1,t2)+gleft

j (t1,t2)>0
ω(t1, t2) + f leftj (t1, t2) (18)

max
(t1,t2)∈T :ω(t1,t2)+gright

j (t1,t2)>0
ω(t1, t2) + frightj (t1, t2) (19)

because the time intervals where the maximum is attained in (12) and (13) are
the same. As shown in [13], the functions gleftj (t1, t2) and grightj (t1, t2) can be
intepreted as three-dimensional slack polyhedra. In the next step, we restrict
problems (18) and (19) to two dimensions.

3.1 Two Dimensions

Our main algorithm iterates over all relevant t1 values in an outer loop. In
the following we consider one fixed iteration with fixed value t1 ∈ IR. Then

problems (18) and (19) translate to

max
(t1,t2)∈T :ω(t1,t2)+gleft

j (t1,t2)>0
ω(t1, t2) + f leftj (t1, t2) (20)

max
(t1,t2)∈T :ω(t1,t2)+gright

j (t1,t2)>0
ω(t1, t2) + frightj (t1, t2) (21)

for all jobs j ∈ J which are two-dimensional problems in the (t2, ω)-plane. Note
that for fixed value t1 ∈ IR, the algorithm of Baptiste et al. [1] computes all
relevant values ω(t1, t2) with (t1, t2) ∈ T in O(n). Thus, in the following we
assume these values are given. The geometric version of problem (20) computes
the point (t2, ω(t1, t2)) ∈ IR2 with (t1, t2) ∈ T that lies above the function
−gleftj (t1, t2) and which has maximal distance to the function −f leftj (t1, t2).
The right-shift case (21) states equally.

The functions gleftj (t1, t2) and f leftj (t1, t2) are piecewise linear, respectively
grightj (t1, t2) and frightj (t1, t2). In the next section, we decompose them into pairs
of linear function segments over the same domain.

3.2 Decomposition into Line Segment Pairs

For any job j ∈ J and any value t1 ∈ IR define the parameters

θ1 = max{ej , t1}, θ2 = min{ej + pj , lj − pj},
θ3 = max{ej + pj , lj − pj}, θ4 = min{lj , ej + lj − t1},

θ5 = max{ej + lj − t1, lj , t1}.

We may assume that ω(t1, t2) ≤ 0 for all (t1, t2) ∈ T , otherwise the CuSP is
already infeasible. Therefore, the exactness conditions in (20) and (21) allow us
to restrict to interval regions where it holds gleftj (t1, t2) > 0 and grightj (t1, t2) > 0.
In this connection, define the interval regions

T left
j = {(t1, t2) ∈ IR2 | (t1, t2) ∈ (−∞, θ2]× [θ1, θ4]} (22)

T right
j = {(t1, t2) ∈ IR2 | (t1, t2) ∈ [ej , lj]× [θ5,∞)} (23)

which are mutually disjoint. That implies that a time interval [t1, t2] ⊂ IR is
either suited for a left-shift propagation, right-shift propagation or none of both.

Lemma 1. Given a job j ∈ J and an interval (t1, t2) ∈ IR2 then gleftj (t1, t2) > 0
implies (t1, t2) ∈ T left

j and grightj (t1, t2) > 0 implies (t1, t2) ∈ T right
j .

Proof. If (t1, t2) /∈ T left
j holds, it follows µleft

j (t1, t2) = µj(t1, t2) which implies
gleftj (t1, t2) = 0. Similarly, if (t1, t2) /∈ T right

j holds, it follows µright
j (t1, t2) =

µj(t1, t2) which implies grightj (t1, t2) = 0. This means, if the functions gleftj (t1, t2)
and grightj (t1, t2) are positive then only in the interval regions T left

j and T right
j .
ut

By Lemma 1, we will restrict to the interval regions T left
j and T right

j .

Lemma 2 (Left-Shift Decomposition). For all jobs j ∈ J and any fixed
value t1 ≤ θ2 the piecewise linear functions gleftj (t1, t2) and f leftj (t1, t2) on the
interval [θ1, θ4] decompose into the linear function segments pairs:

(i) t2 ∈ [θ1, θ2]

gleftj,1 (t1, t2) = dj · (t2 − θ1)

f leftj,1 (t1, t2) = dj · t2
(24)

(ii) t2 ∈ [θ2, θ3]

gleftj,2 (t1, t2) = dj · (θ2 − θ1)

f leftj,2 (t1, t2) =

{
dj · t2 ej + pj ≤ lj − pj
dj · (lj − pj) ej + pj > lj − pj

(25)

(iii) t2 ∈ [θ3, θ4]

gleftj,3 (t1, t2) = dj · (t2 − θ4)

f leftj,3 (t1, t2) = dj · (lj − pj).
(26)

Lemma 3 (Right-Shift Decomposition). For all jobs j ∈ J and any fixed
value t1 ∈ [ej , lj] the piecewise linear functions grightj (t1, t2) and frightj (t1, t2) on
the interval [θ5,∞) decompose into the linear function segments pairs:

(i) t2 ∈ [θ : 5, lj]

grightj,1 (t1, t2) = dj · (t2 − θ5)

frightj,1 (t1, t2) = −dj · (t1 + max{0, ej + pj − t1})
(27)

(ii) t2 ∈ [lj ,∞)

grightj,2 (t1, t2) = dj · (lj − θ5)

frightj,2 (t1, t2) = −dj · (t1 + max{0, ej + pj − t1}).
(28)

The proofs of Lemmas 2 and 3 can be found in [13]. From Lemmas 2 and 3
we also derive that the linear function segments of gleftj (t1, t2), grightj (t1, t2),
f leftj (t1, t2) and frightj (t1, t2) have slopes in {−dj , 0, dj}.
Lemma 4. Let either gj = gleftj and fj = f leftj or gj = grightj and fj = frightj .
For all jobs j ∈ J and any fixed value t1 ∈ IR it holds one of the following

(i) gj(t1, t2) and fj(t1, t2) have the same slope
(ii) gj(t1, t2) or fj(t1, t2) has slope zero

for any value t2 ≥ t1.

Proof. By Lemmas 2 and 3, the functions gj(t1, t2) and fj(t1, t2) can be decom-
posed into pairs of linear function segments. Comparing their slopes with respect
to variable t2 yields the statement. ut

Lemma 4 is the key lemma of this paper, because the restrictions allow us to
perform the computations more efficiently.

3.3 Points and Line Segments

We encode a line segment l ⊂ IR2 in the plane by a 4-tuple (al, bl, xl, xl) ∈ IR4

such that l = {(x, y) ∈ IR2 | y = al · x + bl ∧ x ∈ [xl, xl]}. In this respect, we
write l ' (al, bl, xl, xl).

Consider a fixed value t1 ∈ IR and job j ∈ J . If it holds t1 ∈ (−∞, θ2] define

Lleft
j,1 = {(k, l) ⊂ IR2 × IR2 | k ' (dj ,−ej · pj , θ1, θ2) ∧ l ' (dj , 0, θ1, θ2)}
Lleft
j,3 = {(k, l) ⊂ IR2 × IR2 | k ' (−dj , θ3 · dj , θ3, θ4) ∧ l ' (0, 0, θ3, θ4)}

and, if ej + pj ≤ lj − pj holds, define

Lleft
j,2 = {(k, l) ⊂ IR2 × IR2 | k ' (0, pj · dj , θ2, θ3) ∧ l ' (dj , 0, θ2, θ3)}

and otherwise, if ej + pj > lj − pj holds, define

Lleft
j,2 = {(k, l) ⊂ IR2 × IR2 | k ' (0, dj · θ2, θ2, θ3) ∧ l ' (0, 0, θ2, θ3)}

as the line segment pairs of the left-shift decomposition.
Additionally, if it holds t1 ∈ [ej , lj], define

Lright
j,1 = {(k, l) ⊂ IR2 × IR2 | k ' (0, pj · dj , lj ,∞) ∧ l ' (0, 0, lj ,∞)}
Lright
j,2 = {(k, l) ⊂ IR2 × IR2 | k ' (dj ,−θ5 · dj , θ5, lj) ∧ l ' (0, 0, θ5, lj)}

as the line segment pairs of the right-shift decomposition.
In particular, the line segments Lleft

j,1 , Lleft
j,2 , Lleft

j,3 correspond to the decompo-
sitions (24)-(26) and the sets Lright

j,1 , Lright
j,2 correspond to the decompositions (27)

and (28). Finally, for fixed value t1 ∈ IR let

L =
⋃
j∈J

(
Lleft
j,1 ∪ L

left
j,2 ∪ L

left
j,3 ∪ L

right
j,1 ∪ Lright

j,2

)
(29)

be the set of all such decomposed line segment pairs. Note that for simplification
we have set bl = 0 for any line segment pair (k, l) ∈ L because the latter
geometric problem is invariant for any value of bl. Furthermore, define

P = {(t2, ω(t1, t2)) ∈ IR2 | (t1, t2) ∈ T } (30)

as the point set in the plane which consists of all relevant overload values. The
data sets P and L serve as input for the geometric problem of the next section.

4 Sweep Line Algorithm

In this section, we translate the subproblems (20) and (21) into a more general
geometric context.

There we are given a set points (xq, yq) ∈ P in the plane and a set of line
segment pairs (k, l) ∈ L. A line segment l ⊂ IR2 is represented by a 4-tuple

(al, bl, xl, xl) with slope al, intercept bl and a domain [xl, xl] ⊂ IR. The line seg-
ment contains all points (x, y) ∈ IR2 with x ∈ [xl, xl] which satisfy the equation
y = al · x + bl. For our problem, we assume that [xk, xk] = [xl, xl] holds for all
line segment pairs (k, l) ∈ L and xq 6= xq′ for all dual lines q, q′ ∈ P with q 6= q′.

The geometric problem is to compute for all line segment pairs (k, l) ∈ L

max
q∈P:xq∈[xk,xk]∧ak·xq+yq+bk>0

al · xq + yq + bl

what is invariant for bl, so we equivalently consider the problem

max
q∈P:xq∈[xk,xk]∧ak·xq+yq+bk>0

al · xq + yq. (31)

That means we compute for all line segment pairs (k, l) ∈ L the point q ∈ P that
lies above the mirrored line segment k such that the y-distance to the mirrored
line segment l is maximal. Let us consider the dual version of the problem.

Dualization. Instead of examining the problem in the (x, y)-plane we convert
the problem to the (a, y)-plane where the line segment slopes are continuous.
In this case, every point (xq, yq) ∈ P converts to a dual line with slope xq and
intercept yq which consists of all points (a, y) ∈ IR2 that satisfy the equation
y = xq · a+ yq. Moreover, every pair of line segments (k, l) ∈ L converts to two
points (ak, bk) ∈ IR2 and (al, 0) ∈ IR2 since bl = 0 holds in problem (31).

The dual problem is to find for every pair of dual points (k, l) ∈ L the dual
line q ∈ P with maximum y-distance to the dual point (al, 0) such the dual line
q lies above the dual point (ak, bk) and has a slope xq ∈ [xl, xl].

In the following we present an algorithm that solves the dual problem. It is
based on a sweep line algorithm [4] that sweeps over the dual points (ak, bk) and
(al, 0) with (k, l) ∈ L and efficiently retrieves the optimal dual line (xq, yq) ∈ P
that intersects with the current sweep line. For this, we construct a modified
version of a range tree [4] that efficiently performs queries of the form

max
q∈P:(xq,yq)∈[x,x]×[y,y]

a · xq + yq (32)

for some current sweep value a ∈ IR. Additionally, we use an event heap to
perform the sweeping and to update the domination order of the dual lines on
the current sweep line.

Exploiting the Problem Structure. In the following we show that our main
problem (31) can be solved by queries of the form (32). By Lemma 4, for any line
segment pair (k, l) ∈ L at least one of the two statements hold: (i) ã = ak = al,
(ii) ak = 0 or al = 0. This leaves three possible cases.

For case (i), problem (31) turns into

max
q∈P:xq∈[xk,xk]∧ã·xq+yq+bk>0

ã · xq + yq

which is equivalent to the problem

max
q∈P:xq∈[xk,xk]

ã · xq + yq (33)

since maximizing ã · xq + yq, in turn, maximizes ã · xq + yq + bk because bk is
constant. In the end, we only need to check if the condition ã · xq + yq + bk > 0
holds for the dual line q ∈ P where the maximum is attained. We can perform
this evaluation efficiently, since problem (33) is of the form (32).

For case (ii), problem (31) converts into one of the two problems:

max
q∈P:xq∈[xk,xk]∧yq>−bk

al · xq + yq (34)

max
q∈P:xq∈[xk,xk]∧ak·xq+yq>−bk

yq (35)

where problem (34) is of the form (32) and thus can be evaluated efficiently.
Conversely, problem (35) can be seen as the dual problem to (34). Instead of
maximizing the objective function under some constraint we enforce the con-
straint to have maximal value under the condition that the objective function
is bounded by some fixed value. In our range tree, such queries can also be per-
formed efficiently. There we search for the highest value yq ∈ [y, y] while at the
same time we require that the dual line q ∈ P with maximum value ak · xq + yq
satisfies ak · xq + yq > −bk. The evaluation algorithms are described in more
detail in Section 4.2.

4.1 Data Structures

In the following we explain the two data structures of our algorithm: a two-
dimensional range tree and an event heap.

Range Tree. We construct a two-dimensional range tree that stores all points
P such that we can efficiently find the point (xq, yq) ∈ P that lies in an arbitrary
rectangle [x, x] × [y, y] and maximizes the linear function a · xq + yq for some
current sweep value a ∈ IR. For an overview of range trees, see De Berg et al. [4].

The first level of the range tree consists of a binary tree B with node set
V (B) which is constructed bottom-up. Every node v ∈ V (B) stores a certain
interval [xv, xv] ⊂ IR. The leaf nodes of B, from left to right, correspond to all
points (xq, yq) ∈ P sorted by the xq coordinate in non-decreasing order. For the
leaf nodes v of B we initialize [xv, xv] = [xq, xq]. Every inner node v ∈ V (B)
stores the interval [xv.left, xv.right] ⊂ IR where v.left ∈ V (B) and v.right ∈ V (B)
are the left- and the right child node of node v respectively.

In the second level, every node v ∈ V (B) additionally stores a binary tree
Bv with node set V (Bv) which is constructed bottom-up. The leaves of Bv

correspond to the dual line set Pv = {q ∈ P | xq ∈ [xv, xv]} first sorted
by their yq coordinates in non-decreasing order and second by their xq coor-
dinates in non-decreasing order. Every inner node w ∈ V (Bv) stores the interval
[y

w.left
, yw.right] ⊂ IR and, additionally, a dominating dual line πw ∈ Pv, a

resolve value αw ∈ IR and a minimum resolve value βw ∈ IR. For every leaf
node w ∈ V (Bv) that corresponds to a dual line (xq, yq) ∈ Pv we initialize
πw = (xq, yq) and αw = βw = ∞. For every inner node w ∈ V (Bv) the values
are defined recursively as follows:

πw =

{
πw.left a · xq + yq ≥ a · xq′ + yq′

πw.right else
(36)

αw =
yq′ − yq
xq − xq′

(37)

βw = min{αw.left, αw.right, βw.left, βw.right} (38)

where q = πw.left and q′ = πw.right. The dual line πw ∈ Pv represents the dual
line (xq, yq) ∈ Pv with maximum value a ·xq +yq according to the current sweep
value a ∈ IR. The resolve value αw ∈ IR corresponds to the a-value where the two
dominating dual lines πw.left and πw.right intersect. That means, if the sweep
line reaches the value αw the domination order of the two dual lines changes, so
the tree Bv must be resolved, see Section 4.2. In this case, we eventually add a
resolve event to the event heap, see the next paragraph. But resolve events are
added to the event heap, only if the values of the dual lines πw.left and πw.right

are not overwritten due to any resolve event earlier than αw. Otherwise, the
resolve event becomes obsolete and resolving is not necessary anymore. For this
reason, we additionally store the minimum resolve value βw ∈ IR which marks
the earliest sweep value that may affect the recursive definition of πw.left or
πw.right. Hence, we add a resolve event at any node w ∈ V (Bv) to the event
heap only if it holds αw < βw.

The node components πw, αw, βw are equivalent to those used in [13]. Here
they apply for every node in every second-level tree Bv with v ∈ V (B).

Event Heap. The event heap stores two types of events: evaluation events
and resolve events which are sorted by a-value, respectively αw-value, in non-
decreasing order. At evaluation events, the sweep line is evaluated and at resolve
events a second-level tree node w ∈ V (Bv) is resolved, see Section 4.2. All evalu-
ation events are added to the heap before the sweeping, while resolve events can
be added dynamically during the sweeping.

4.2 Algorithm

In the following we describe the main phases of our sweep line algorithm.

Sweeping. The sweeping is performed by successively extracting the minimal
element from the event heap. If the extracted event is an evaluation event we
call the subroutine evaluate and otherwise, if it is a resolve event, we call the
subroutine resolve. In the following the single subroutines are explained more
explicitly.

Evaluate. At an evaluation event, we compute for a line segment pair (k, l) ∈ L
the point q∗ ∈ P for which

max
q∈P:xq∈[xk,xk]∧ak·xq+yq+bk>0

al · xq + yq

attains the maximum. For this, we iterate the first-level range tree B recursively.
If we traverse a tree node v ∈ V (B) with [xv, xv] ⊆ [xk, xk] we call a evaluation
subroutine on the second-level tree Bv that is either: easy-, standard- or dual
evaluate, see below. If we reach a tree node v ∈ V (B) with [xv, xv]∩ [xk, xk] 6= ∅
we perform recursion on the child nodes v.left and v.right, otherwise no recursion
is performed. In total, O(log |P|) first-level tree nodes are traversed.

(i) Easy Evaluate. This case is called for al = ak to compute problem (33):

max
q∈Pv

al · xq + yq

which can be done in O(1) since πw ∈ Pv, where w is the root node of Bv, yields
the desired point. We only have to ensure that al · xq + yq > −bk holds.

(ii) Standard Evaluate. This case is called for al 6= 0 to compute problem (34):

max
q∈Pv :yq>−bk

al · xq + yq

which, again, can be performed by descending the second-level tree Bv along tree
nodes w ∈ V (Bv) with [y

w
, yw] ∩ (−bk,∞) 6= ∅. If it holds [y

w
, yw] ⊂ (−bk,∞),

by construction the dual line πw ∈ Pv already represents the dual line for which
the objective function attains the maximum value. Hence, the globally optimal
dual line can be computed in O(log |Pv|) = O(log |P|).

(iii) Dual Evaluate. In contrast to (i) and (ii), this case is called for the sweep
value ak 6= 0 instead of al to compute problem (35):

max
q∈Pv :ak·xq+yq>−bk

yq

which is done by traversing Bv from the root to the rightmost leaf node w ∈
V (Bv) with q̃ = πw that satisfies ak · xq̃ + yq̃ > −bk. For any node w ∈ V (Bv)
on this path, the latter condition is maintained by testing whether it holds
ak · xq + yq > −bk or ak · xq′ + yq′ > −bk for q = πw.left and q′ = πw.right. If
the latter condition is true we enter the right subtree, since its leaves represent
dual lines with higher yq value. Otherwise, we enter the left subtree. Hence, one
dual evaluation takes O(log |Pv|) = O(|P|).

Resolve. This subroutine is called at a sweep value αw ∈ IR with w ∈ V (Bv)
and v ∈ V (B) to update the dual line ordering on the current sweep line.

If it holds πw = πw.left we update πw = πw.right or vice versa. Furthermore,
we set αw = ∞ and βw = min{αw.right, βw.right} or vice versa. Changing the

x1 x2 x3 x4 x5 x6 x7 x8

y6

y5

y8

y7

Fig. 1. Two-dimensional range tree: The first-level tree B (left) sorts all points q ∈ P
(leaves) according to their xq-coordinate. Every inner node v ∈ V (B) stores a second-
level tree Bv (right) that sorts all nodes q ∈ Pv according to their yq-coordinate. Every
second-level tree Bv additionally stores the dual line ordering of Pv on the current
sweep line. This is indicated by the thick lines in Bv which represent the paths to the
currently dominating dual line πw ∈ Pv in the interval [y

w
, yw].

values of πw, αw, βw may change the values πw′ , αw′ , βw′ of each parent node
w′ of w due to the recursive definition in (36)-(38). Hence, we propagate the
changes from w to the root node of Bv. Therefore, one resolve has complexity
O(log |Pv|) = O(log |P|).

Lemma 5. For every first-level tree node v ∈ V (B) every second-level tree node
w ∈ V (Bv) is resolved at most once.

Proof. Assume there exists a first-level tree node v ∈ V (B) such that a second-
level tree node w ∈ V (Bv) is resolved twice.

Then there are three dual lines q1, q2, q3 ∈ Pv that successively, in the order
of non-decreasing sweep value, represent the dominating dual line πw ∈ Pv. That
is, it holds πw = q1, after the first resolve it holds πw = q2 and after the second
resolve it holds πw = q3. It follows that x1 < x2 < x3 since dual lines with higher
slope will dominate with non-decreasing sweep value. Moreover, the dual line q2
belongs to a different subtree of w than the dual lines q1 and q3, because resolve
events are added only for intersecting dual lines of distinct subtrees. Without
loss of generality, let the dual lines q1 and q3 correspond to leaves of the right
subtree of w and the dual line q2 to a leaf of the left subtree of w. By the ordering
of the subtree, this implies y2 ≤ y1 and y2 ≤ y3. Let αw ∈ IR be the sweep value
of the first resolve event between the dual lines q1 and q2 and let α′w ∈ IR be the
sweep value of the second resolve event between the dual lines q2 and q3. It holds
αw < α′w because αw = α′w violates the adding condition αw < βw. It follows
αw · x1 + y1 = αw · x2 + y2 and α′w · x2 + y2 = α′w · x3 + y3 which is equivalent to

0 ≤ y1 − y2
x2 − x1

= α < α′ =
y2 − y3
x3 − x2

≤ 0

that forms a contradiction. The case of switching the subtrees of the dual lines
q1, q3 and q2 is analogous. ut

An explicit description of all algorithms can be found in the appendix.

4.3 Complexity

In this section, we investigate the total complexity of the sweep line algorithm,
which consists of four parts: tree construction, adding/deleting elements to/from
the event heap, evaluating all evaluation events and resolving all resolve events.

Lemma 6. The construction of the range tree takes O(|P| · log |P|).

Proof. For every inner tree node v ∈ V (B) of height h a second-level tree Bv

with O
(
|P|
2h

)
nodes is constructed. The data members of every node w ∈ V (Bv)

are generated in O(1). Hence, the total construction takes at most

dlog |P|e∑
h=0

2h · O
(
|P|
2h

)
= O(|P| · log |P|)

which shows that lemma. ut

Lemma 7. Let m = |L| + |P| · log |P|. The complexity of adding and deleting
elements from the event heap is O(m · logm).

Proof. By Lemma 5, every second-level tree node is resolved at most once. Hence,
there are O(|P| · log |P|) resolve events. Additionally, there are |L| evaluation
events which gives a total complexity of O(m · logm) for adding and deleting
elements from the event heap. ut

Lemma 8. The complexity of processing all evaluation events is O(|L|·log2 |P|).

Proof. Every line segment pair (k, l) ∈ L is evaluated exactly once. In one evalu-
ation call O(log |P|) first-level tree nodes v ∈ V (B) are traversed, while for each
such tree node O(log |V (Bv)|) second-level tree nodes are traversed. This gives

dlog |P|e∑
h=0

O
(

log

(
|P|
2h

))
=

dlog |P|e∑
h=0

O(log |P|)−O(h) = O(log2 |P|)

which yields a total complexity of O(|L| · log2 |P|). ut

Lemma 9. The complexity of processing all resolve events is O(|P| · log2 |P|).

Proof. By Lemma 5, every inner tree node w ∈ V (Bv) of height h of some tree
node v ∈ V (B) is resolved at most once and each resolve takes h steps. Hence,
resolving one second-level tree Bv with m leaf nodes takes

dlogme∑
h=0

h · 2h

which we substitute by r = 2 and M = dlogme. It follows

M∑
h=0

h · rh = r · ∆
∆r

(

M∑
h=0

rh) = r · ∆
∆r

(
1− rM+1

1− r

)
=

(M + 1) · rM+1 · (r − 1) + rM+2 − r
(1− r)2

= O(M · rM) = O(m · logm)

that means resolving one subtree of size m takes O(m · logm). Hence, the total
complexity of resolving every second-level tree node is

dlog |P|e∑
h=0

2h · O
(
|P|
2h
· log

(
|P|
2h

))
= |P| ·

dlog |P|e∑
h=0

O
(

log

(
|P|
2h

))
= O(|P| · log2 |P|)

which completes the proof. ut

Theorem 2. Let m = |L| + |P| · log |P|. The sweep line algorithm has a total
complexity O(m · logm).

Proof. The computation time is dominated by adding and deleting elements
from the event heap. By Lemma 7, this takes O(m · logm). ut

Theorem 3. The maximum energetic reasoning propagations for all jobs can be
computed in O(n2 · log2 n).

Proof. In our case, we have |L| = O(n) and |P| = O(n). By Theorem 2, every
sweep line iteration takes

O(n · log n · log(n · log n)) = O(n · log2 n).

The sweep line algorithm is called for O(n) values of t1, so the total complexity
is O(n2 · log2 n). ut

Note that, compared to [13], the sweep line algorithm does not need to be
called twice, since all exact propagations are detected in one call of the algorithm.

5 Conclusion

In this paper, we introduced a new exact energetic reasoning propagation algo-
rithm with complexity O(n2 · log2 n) which improves the currently best known
complexity of O(n3) for exact energetic reasoning. Our algorithm is based on a
geometric interpretation of the underlying slack polyhedra. A special property of
the problem allows us to solve the geometric problem efficiently by using a spe-
cific two-dimensional range tree. Besides the theoretical improvement it remains
to study the practical performance of the algorithm.

References

1. Baptiste, P., Le Pape, C., & Nuijten, W.: Satisfiability tests and time bound
adjustments for cumulative scheduling problems. Annals of Operations research,
92, 305-333 (1999)

2. Berthold, T., Heinz, S., & Schulz, J.: An approximative criterion for the poten-
tial of energetic reasoning. In Theory and Practice of Algorithms in (Computer)
systems (pp. 229-239). Springer Berlin Heidelberg (2011)

3. Bonifas, N. (2016): A O(n2log(n)) propagation for the Energy Reasoning, Con-
ference Paper, Roadef 2016 (2016)

4. De Berg, M., Van Kreveld, M., Overmars, M., & Schwarzkopf, O. C. (2000).
Computational geometry. In Computational geometry (pp. 1-17). Springer Berlin
Heidelberg.

5. Derrien, A., & Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In Principles and Practice of Constraint Programming (pp. 289-297).
Springer International Publishing (2014)

6. Erschler, J., & Lopez, P. (1990, June). Energy-based approach for task scheduling
under time and resources constraints. In 2nd international workshop on project
management and scheduling (pp. 115-121).

7. Kameugne, R., Fotso, L. P., Scott, J., & Ngo-Kateu, Y.: A quadratic edge-finding
filtering algorithm for cumulative resource constraints. Constraints, 19(3), 243-
269 (2014)

8. Mercier, L., & Van Hentenryck, P. (2008). Edge finding for cumulative scheduling.
INFORMS Journal on Computing, 20(1), 143-153.

9. Ouellet, P., & Quimper, C. G.: Time-table extended-edge-finding for the cumula-
tive constraint. In Principles and Practice of Constraint Programming (pp. 562-
577). Springer Berlin Heidelberg (2013)

10. Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G.: Explaining the cumulative
propagator. Constraints, 16(3), 250-282 (2011)

11. Schutt, A., & Wolf, A.: A New O(n2 logn) Not-First/Not-Last Pruning Algorithm
for Cumulative Resource Constraints. In Principles and Practice of Constraint
Programming - CP 2010 (pp. 445-459). Springer Berlin Heidelberg (2010)

12. Schutt, A., Feydy, T., & Stuckey, P. J.: Explaining time-table-edge-finding propa-
gation for the cumulative resource constraint. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems (pp.
234-250). Springer Berlin Heidelberg (2013)

13. Tesch, A. (2016, September). A Nearly Exact Propagation Algorithm for En-
ergetic Reasoning in O(n2 logn). In International Conference on Principles and
Practice of Constraint Programming (pp. 493-519). Springer International Pub-
lishing.

14. Vilim, P.: Edge Finding Filtering Algorithm for Discrete Cumulative Resources
in O(kn logn). In Principles and Practice of Constraint Programming - CP 2009
(pp. 802-816). Springer Berlin Heidelberg (2009)

15. Vilim, P.: Timetable edge finding filtering algorithm for discrete cumulative re-
sources. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (pp. 230-245). Springer Berlin Heidelberg
(2011)

A Algorithms

Notes on the algorithms:

– define O3(t1) = {(j, t2 − t1) | (j, t2) ∈ O3}
– the computation of the overload values ω(t1, t2) is equal to Baptiste et al.

and involves dynamic slope updates.
– to keep the stated algorithms simple no dynamic line updates, as introduced

in [13], are added to the algorithms

Algorithm 1: O(n2 log2 n) Sweep Line Propagator

Input: CuSP instance
Output: false, if there exists a time interval with positive overload, otherwise

propagate exact energetic reasoning
1 O1 ← {(j, ej) | j ∈ J} ∪ {(j, lj − pj) | j ∈ J}
2 O2 ← {(j, lj) | j ∈ J} ∪ {(j, ej + pj) | j ∈ J}
3 O3 ← {(j, ej + lj) | j ∈ J}
4 told1 ←∞
5 e′j ← ej ∀j ∈ J
6 l′j ← lj ∀j ∈ J
7 for (i, t1) ∈ O1 non-decreasing t1 do

8 if t1 = told1 then continue
9 told1 = t1

10 told2 ←∞
11 for curr = (j, t2) ∈ O2 ∪O3(t1) non-decreasing t2 > t1 do

12 if ω(t1, t2) > 0 then return false // see Baptiste et al.

13 if t2 6= told2 then P ← P ∪ {(t2, ω(t1, t2))} // add points

14 told2 ← t2

15 L ← initializeLineSegmentPairs(t1) // add line segments

16 if P 6= ∅ ∧ L 6= ∅ then
17 sweepLinePropagation(P,L, e′, l′, t1) // propagate

18 for j ∈ J do
19 if e′j > ej then ej = e′j
20 if l′j < lj then lj = l′j
21 if ej + pj > lj then return false

22 return true

Algorithm 2: Initialize Line Segment Pairs

Input: jobs J , fixed interval value t1
Output: set of line segment pairs L

1 L ← ∅
2 for j ∈ J do
3 if t1 ≤ min{ej + pj , lj − pj} then
4 L ← Lleftj,1 ∪ L

left
j,2 ∪ L

left
j,3 // see Section 3.2

5 if t1 ∈ [ej , lj] then

6 L ← Lrightj,1 ∪ Lrightj,2 // see Section 3.2

7 return L

Algorithm 3: Sweep Line Propagation

Input: points P, line segment pairs L, earliest start times e′j , latest completion
times l′j , fixed interval value t1

Output: updated start times e′j and updated completion times l′j for all j ∈ J
1 H ← ∅ // empty event heap

2 for (k, l) ∈ L do // fill heap with evaluation events

3 if al = ak then
4 H.insert(k, l, easy)

5 else if ak = 0 then
6 H.insert(k, l, standard)

7 else if al = 0 then
8 H.insert(k, l, dual)

9 a0 ← H.getMin.V alue // start slope

10 B ← initializeRangeTree(P, a0, H) // build range tree

11 while ¬H.empty do // sweep over all events

12 event← H.extractMin()

13 if event.type = evaluation then
14 (k, l)← event.lines
15 j ← l.job
16 if event.type = easy then
17 (t2, ω(t1, t2))← B.evaluate(k, l, easy) // easy evaluate

18 else if event.type = standard then
19 (t2, ω(t1, t2))← B.evaluate(k, l, standard) // standard evaluate

20 else if event.type = dual then
21 (t2, ω(t1, t2))← B.evaluate(k, l, dual) // dual evaluate

22 if l.shift = left ∧ ωleftj (t1, t2) > 0 then

23 update← t2 − µj(t1, t2) +
⌈
ω(t1,t2)
dj

⌉
24 if update > e′j then e′j ← update

25 else if l.shift = right ∧ ωrightj (t1, t2) > 0 then

26 update← t1 + µj(t1, t2)−
⌈
ω(t1,t2)
dj

⌉
27 if update < l′j then l′j ← update

28 else if event.type = resolve then
29 v ← event.firstLevelTreeNode
30 w ← event.secondLevelTreeNode
31 B.resolve(Bv, w,H) // resolve

32 return e′, l′

Algorithm 4: Initialize Range Tree

Input: set of points P, initial slope a0, event heap H
Output: range tree B

1 B ← binary interval tree with 2dlog2 Pe+1 empty nodes
2 P ← P sorted by xq in non-decreasing order
3 q ← P.first

// leaf nodes

4 for v ∈ V leaf (B) from left to right ∧ q 6= P.end do
5 [xv, xv]← [xq, xq]
6 Bv ← {v}
7 q ← P.next

// inner nodes

8 for v ∈ V noleaf (B) sorted bottom-up and left-right do
9 if v.left = null then continue

10 if v.right 6= null then
11 [xv, xv]← [xv.left, xv.right]
12 Pv.left ← Bv.left.leaves
13 Pv.right ← Bv.right.leaves

// merge by yq-value first, then by xq-value
14 Pv ← merge(Pv.left,Pv.right)
15 Bv ← initializeSecondLevelTree(a0,Pv, H)

16 else
17 [xv, xv]← [xv.left, xv.left]
18 Pv ← Bv.left.leaves
19 Bv ← initializeSecondLevelTree(a0,Pv, H)

20 return B

Algorithm 5: Initialize Second-Level Range Tree

Input: initial slope a0, set of points Pv sorted by y-coordinate, event heap H
Output: second-level range tree Bv

1 Bv ← binary interval tree with 2dlog2 Pve+1 empty nodes
2 q ← Pv.first

// leaf nodes

3 for w ∈ V leaf (Bv) from left to right ∧ q 6= Pv.end do
4 [xw, xw]← [xq, xq]
5 πw ← q
6 αw ←∞
7 βw ←∞
8 q ← Pv.next

// inner nodes

9 for w ∈ V noleaf (Bv) sorted bottom-up and left-right do

10 if w.left = null then continue

11 if w.right 6= null then
12 [xw, xw]← [xw.left, xw.right]
13 βw ← min{αw.left, αw.right, βw.left, βw.right}
14 q ← πw.left
15 q′ ← πw.right

16 if a0 · xq + yq > a0 · xq′ + yq′ then
17 πw ← q

18 else
19 πw ← q′

20 val← (yq′ − yq)/(xq − xq′)
21 if val > a0 then
22 αw ← val
23 if αw < βw then
24 H.insert(αw, v, w, resolve) // add resolve event

25 else αw ←∞
26 else
27 [xw, xw]← [xw.left, xw.left]
28 πw ← πw.left
29 αw ←∞
30 βw ← min{αw.left, βw.left}

31 return Bv

Algorithm 6: Evaluate

Input: range tree B, line segment pair (k, l), evaluation type eval
Output: optimal point q∗ ∈ P with respect to eval

1 max← −∞
2 q∗ ← null
3 S ← ∅ // empty stack

4 S.push(B.root)

5 while S 6= ∅ do
6 v ← S.pop
7 if v = null then continue

8 if [xv, xv] ⊆ [xl, xl] then
9 if eval = easy then // easy evaluate

10 w ← Bv.root
11 q ← πw

12 else if eval = standard then // standard evaluate

13 q ← standardEvaluate(Bv, al, bk)

14 else if eval = dual then // dual evaluate

15 q ← dualEvaluate(Bv, al, bk)

16 if q 6= null then
17 if eval = easy ∨ eval = standard then
18 val← al · xq + yq

19 else if eval = dual then
20 val← yq

21 if val > max then
22 max← val
23 q∗ ← q

24 else if [xv, xv] ∩ [xl, xl] 6= ∅ then
25 S.push(v.left)
26 S.push(v.right)

27 return q∗

Algorithm 7: Standard Evaluate

Input: second-level range tree Bv, slope value al, intercept bk
Output: point q ∈ P with yq > −bk such that al · xq + yq is maximal

1 max← −∞
2 q ← null
3 S ← ∅ // empty stack

4 S.push(Bv.root)

5 while S 6= ∅ do
6 w ← S.pop
7 if w = null then continue

8 if y
w
> −bk then

9 q′ ← πw
10 val← al · xq′ + yq′

11 if val > max then
12 max← val
13 q ← q′

14 else if yw ≥ −bk then
15 S.push(w.left)
16 S.push(w.right)

17 return q

Algorithm 8: Dual Evaluate

Input: second-level range tree Bv, slope value ak and intercept bk
Output: point q ∈ P with ak · xq + yq > −bk such that yq is maximal

1 w ← Bv.root

2 if ak · xπw + yπw ≤ −bk then
3 return null

4 while w /∈ V leaf (Bv) do
5 if ak · xπw.right + yπw.right > −bk then
6 w ← w.right

7 else if ak · xπw.left + yπw.left > −bk then
8 w ← w.left

9 q ← πw
10 return q

Algorithm 9: Resolve

Input: second-level range tree Bv, range tree node w ∈ V (Bv), event heap H
Output: updates πw and all values πw′ , αw′ , βw′ from w to the root of Bv,

eventually adds new resolve events to the event heap H
// resolve current node

1 αw ←∞
2 if πw = πw.right then
3 πw = πw.left
4 βw ← min{αw.left, βw.left}
5 else
6 πw ← πw.right
7 βw ← min{αw.right, βw.right}

// propagate changes to root node

8 prev ← w
9 w ← w.parent

10 while prev 6= Bv.root do
11 if w.right 6= null then
12 if αw <∞ then
13 q ← πw.left
14 q′ ← πw.right
15 αw ← (yq − yq′)/(xq′ − xq)
16 βw ← min{αw.left, αw.right, βw.left, βw.right}
17 else if πw = πw.left then
18 βw ← min{αw.left, βw.left}
19 else if πw = πw.right then
20 βw ← min{αw.right, βw.right}
21 if αw < βw then
22 H.insert(αw, v, w, resolve) // add resolve event

23 else βw ← min{αw.left, βw.left}
24 prev ← w
25 w ← w.parent

