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SCHÜTTE, SUSANNA RÖBLITZ
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Abstract

When estimating a probability density within the empirical Bayes
framework, the non-parametric maximum likelihood estimate (NPMLE)
usually tends to overfit the data. This issue is usually taken care of
by regularization – a penalization term is subtracted from the marginal
log-likelihood before the maximization step, so that the estimate favors
smooth solutions, resulting in the so-called maximum penalized likeli-
hood estimation (MPLE). The majority of penalizations currently in use
are rather arbitrary brute-force solutions, which lack invariance under
transformation of the parameters (reparametrization) and measurements.
This contradicts the principle that, if the underlying model has several
equivalent formulations, the methods of inductive inference should lead to
consistent results. Motivated by this principle and using an information-
theoretic point of view, we suggest an entropy-based penalization term
that guarantees this kind of invariance. The resulting density estimate
can be seen as a generalization of reference priors. Using the reference
prior as a hyperprior, on the other hand, is argued to be a poor choice for
regularization.

We also present an insightful connection between the NPMLE, the
cross entropy and the principle of minimum discrimination information
suggesting another method of inference that contains the doubly-smoothed
maximum likelihood estimation as a special case.

Keywords: Parameter estimation, Bayesian inference, Bayesian hierarchi-
cal modeling, hyperparameter, hyperprior, EM algorithm, NPMLE, MPLE, DS-
MLE, principle of maximum entropy, cross entropy, minimum discrimination
information, reference prior, Jeffreys prior

1 Introduction

Inferring a parameter X P X from a measurement Z P Z using Bayes’ rule
requires prior knowledge about X, which is not given in many applications.
This has led to a lot of controversy in the statistical community and to harsh
criticism concerning the objectivity of the Bayesian approach.

However, if independent measurements Zm P Z, m “ 1, . . . ,M , are given for
a large number M of “individuals” with individual parametrizations Xm P X ,
which is the case in many statistical studies, empirical Bayes methods can pro-
vide a solution to this controversy. Instead of applying Bayes’ rule to each
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measurement separately, these methods usually boil down to gathering all mea-
surements in order to construct an informative prior as a first step and then
using this prior for the Bayesian inference of the individual parametrizations in
a second step.

A typical application is the retrieval of patient-specific parametrizations in
large clinical studies, e.g. [14].

The first step is often performed by maximizing the marginal likelihood
Lpπq of all measurements over the prior π, for which the EM algorithm [3] is
the standard tool. This procedure can be viewed as an interplay of frequentist
and Bayesian statistics: The prior is viewed as a hyperparameter and chosen by
maximum likelihood estimation (MLE), the actual individual parametrizations
are then inferred using Bayes’ rule. Roughly speaking, there are two possible
assumptions on the prior distribution:

• Parametric MLE (PMLE): The prior π has a parametric form with a
finite number of parameters, e.g. π „ Npµ,Σq is a normal distribution,
and only these parameters have to be estimated, which are then referred
to as hyperparameters (in our example the mean µ and the covariance
matrix Σ).

• Non-parametric MLE (NPMLE): No parametric form of the prior π is
assumed, in which case the hyperparameter is the prior π itself and the
hyperparameter estimation problem is infinite-dimensional (in the contin-
uous case).

We will concentrate on the second scenario, where we have no information about
the form of the prior. In this case, it can be proven that the marginal likelihood
is maximized by a discrete distribution πNPMLE with at most M nodes, see [16,
Theorems 2-5] or [17, Theorem 21]. This typical “overconfidence” of the maxi-
mum likelihood estimator is often dealt with by subtracting a roughness penalty
Φpπq from the marginal log-likelihood function logLpπq, such that “smooth”
priors are favored, resulting in the so-called maximum penalized likelihood esti-
mation (MPLE):

πMPLE “ arg max
π

logLpπq ´ Φpπq. (1)

The EM algorithm can be adapted to this situation, see [18, Section 1.6].
This approach can be viewed from the Bayesian perspective as choosing a

hyperprior fpπq9 e´Φpπq for the hyperparameter Π “ π on the set of all con-
sidered priors and then performing a maximum a posteriori (MAP) estimation
for π:

πMAP “ arg max
π

Lpπq e´Φpπq “ arg max
π

logLpπq ´ Φpπq “ πMPLE . (2)

Favorable properties of the roughness penalty function Φ are:

(a) penalization of rough/peaked behavior

(b) non-informativity: Without any extra information about the parameter or
the prior, we want to keep our assumptions to a minimum (in the sense of
objective Bayes methods).

(c) invariance under (equivalent) reparametrizations
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(d) invariance under transformations of the measurement space Z

(e) convexity: Since logLpπq can be proven to be concave in the NPMLE case
[17, Section 5.1.3], a convex penalty function Φpπq would guarantee conver-
gence of the (modified) EM algorithm to a global optimum.

(f) implementability and simplicity

(g) natural and intuitive justification

We will concentrate mainly on the properties (c) and (d), which are formal-
ized in Definition 3, since they guarantee consistent results: If two statisticians
use equivalent models to explain equivalent data, their results must be consis-
tent. The penalty functions currently used are mostly ad hoc and rather brute
force solutions that confine amplitudes (e.g. ridge regression [18, Section 1.6])
or derivatives (see e.g. [10]) of the prior π, which are neither invariant under
reparametrization of X nor have a natural derivation.

In [9], Good suggests to use the entropy as a roughness penalty

Φpπq “ ´γ HXpπq “ γ

ż

X
πpxq log πpxqdx,

where γ is a weight that balances the trade-off between goodness of fit and
smoothness of the prior (in this context, the term smoothness should be replaced
by uncertainty or non-informativity of the prior, since that is what entropy
measures), which is a very natural approach from an information-theoretic point
of view. However, though claiming to apply the principle of maximum entropy,
Good does not derive the roughness penalty from such a principle. Also, the
above Φ is not invariant under reparametrization of X, making it, as Good puts
it, “somewhat arbitrary” [9, p. 912]:

“It could be objected that, especially for a continuous distribution,
entropy is somewhat arbitrary, since it is variant under a transfor-
mation of the independent variable.”

The relative entropy (also called Kullback-Leibler divergence or information
gain) on the other hand provides a possibility to overcome this obstacle, since
its expected value, the mutual information IrX;Zs of X and Z, is invariant
under transformations of both X and Z. In the case of no measurements, when
the only information at hand is the likelihood model, this method coincides
with the construction of reference priors and thereby provides a generalization
of reference priors.

Remark 1. The idea to use information-theoretic considerations in order to
construct non-informative (hyper-) priors is not new. Jeffreys prior [13] and
its generalization to reference priors [2, 1] by Bernardo and Berger has become
a widely used tool in objective Bayesian analysis. However, though suitable for
constructing priors, these choices seem unfit for hyperpriors, since they promote
peaked behaviour of distributions instead of penalizing it, as shown in Example
7.

Remark 2. An alternative to MPLE is the method of sieves introduced in [11]
and applied to NPMLE in [8]. This approach restricts the space of priors to a
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suitable subspace and the restriction is weakened with the number of measure-
ments. For a general discussion of MPLE and similar methods, see [5] and
[6].

After introducing the mathematical framework in Section 2, the discussion
on penalty terms and hyperpriors is given in Section 3. Section 4 deals with a
connection between the log-likelihood and the cross entropy, which motivates
another approach to regularize the NPMLE that can be viewed as a regulariza-
tion in the measurement space Z and is a generalization of the doubly-smoothed
MLE (DS-MLE) introduced by Seo and Lindsay [21]. Both approaches, MPLE
and DS-MLE, are applied to a simple one-dimensional toy example in Section
5, followed by a short conclusion in Section 6. In Appendix A, we show how the
EM algorithm in the NPMLE framework is connected to gradient ascent.

In a companion paper [14] we apply these theoretical results to a high-
dimensional real life problem.

2 Setup and Notation

The main aim is to infer the parameter X P X Ď Rd from a measurement
Z P Z Ď Rn for several “individuals”, where X and Z are assumed to be
open and convex subsets of Rd and Rn. Denoting the probability density of a
random variable Y by ρY and its density conditioned on an event A by ρY p̈ |Aq,
the likelihood model is given by the conditional probability densities,

R “ tρZ p̈ |X “ xq | x P X u ,

which we will assume to be given.
However, the true density πtrue “ ρX of X is unknown and therefore Bayes’

rule has to be applied using some elicited or constructed prior π P M1pX q,
where

M1pX q :“
 

π P L1pX q | π ě 0, }π}L1 “ 1
(

is the set of all probability densities on X . As described in the introduction,
empirical Bayes methods rely on several measurements Z1 “ z1, . . . , ZM “ zm
for the construction of a prior π, which can be performed via MPLE with an
appropriate penalty Φpπq. The parameter X will serve as a latent variable,

Xm
i.i.d.
„ πtrue “ ρX , Zm

indep.
„ ρZ p̈ |Xm “ xmq, m “ 1, . . . ,M.

In other words, viewing the prior Π “ π as a hyperparameter, we assume our
hyperparametric model

`

tρZ p̈ |Π “ πq | π PM1pX qu , P
˘

to be correctly specified, i.e. there exists πtrue P M1pX q such that the data-
generating distribution P has the probability density ρZ p̈ |Π “ πtrueq:

Zm
i.i.d.
„ ρZ “ ρZ p̈ |Π “ πtrueq, m “ 1, . . . ,M.

We will also assume the hyperparametric model to be identifiable, see [26,
Section 5.5], i.e.

ρZ p̈ |Π “ πq “ ρZ p̈ |Π “ πtrueq ðñ π “ πtrue, (3)
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since otherwise there would be no chance to recover the true distribution from
no matter how many measurements. The marginal likelihood of the prior is
given by

Lpπq “
M
ź

m“1

ρZpzm|Π “ πq. (4)

Here,

ρZpz|Π “ πq :“

ż

X
ρZpz|X “ xqπpxqdx

denotes the “would-be probability density” of Z, if π was the correct prior. The
posterior density given the prior π and the measurement z P Z will be denoted
by

pzπpxq :“
πpxq ρZpz | X “ xq

ρZpz | Π “ πq
.

Our aim is to approximate πtrue given a large number of measurements. This
will be realized by MPLE after choosing an appropriate penalty Φpπq (or, equiv-
alently, a suitable hyperprior fpπq “ e´Φpπq):

πtrue « πMPLE “ arg max
π

logLpπq ´ Φpπq.

Throughout this manuscript, we will slightly abuse notation and not distinguish
between a probability distribution and its probability density.

3 Choosing the Penalty Φpπq

As motivated in the introduction, penalizing by means of entropy provides a
natural approach to incorporate the idea of non-informativity about the param-
eter into the inference process. However, there is more than one type of entropy
that can be considered in our setup. We choose to penalize by means of the ex-
pected Kullback-Leibler divergence (relative entropy), the mutual information
IrX;Zs of X and Z, which we will view as a function of π:

IrX;Zspπq “ EZ„ρZ p̈ |Π“πq
“

DKL

`

pZπ }π
˘‰

“

ż

X

ż

Z
πpxq ρZpz | X “ xq log

„

ρZpz | X “ xq

ρZpz | Π “ πq



dz dx

“ HZpπq ´HZ|Xpπq,

(5)

where

HZpπq :“´

ż

Z
ρZpz | Π “ πq log rρZpz | Π “ πqs dz,

HZ|Xpπq :“´

ż

X
πpxq

ż

Z
ρZpz | X “ xq log rρZpz | X “ xqs dz dx

are the entropy of Z P Z and the conditional entropy of Z given X, respectively,
and DKL denotes the Kullback-Leibler divergence.

The main reason for this choice is its invariance under transformations of
X and Z, see properties (c) and (d) from the introduction, which guarantees
consistent results. Let us make this more precise:
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Definition 3. Let R “ tρZ p̈ | X “ xq | x P X u be a likelihood model.

(i) We call a function F “ F rRs : M1pX q Ñ R invariant under transforma-
tion of X or invariant under reparametrization, if for any diffeomorphism
ϕ : X Ñ X̃ , x ÞÑ x̃ and any π PM1pX q,

F rRspπq “ F rR̃spπ̃q,

where R̃ is the transformed likelihood model and π̃ “ ϕ#π is the pushfor-
ward of π under ϕ:

ρZpz | X̃ “ x̃q “ ρZpz | X “ ϕ´1px̃qq,

π̃px̃q “
ˇ

ˇdetpDϕ´1qpx̃q
ˇ

ˇ ¨ πpϕ´1px̃qq. (6)

(ii) We call a function F “ F rRs : M1pX q Ñ R invariant under transforma-
tion of Z, if for any diffeomorphism ψ : Z Ñ Z̃, z ÞÑ z̃,

F rRspπq “ F rR̃spπq,

where R̃ “ ψ#R is the pushforward of the likelihood model under ψ:

ρZ̃pz̃ | X “ xq “
ˇ

ˇdetpDψ´1qpz̃q
ˇ

ˇ ¨ ρZpψ
´1pz̃q | X “ xq,

Here, Dχ denotes the Jacobian of a diffeomorphism χ.

We are now ready to formulate and prove the invariance property of the
mutual information IrX;Zs of X and Z in a slightly more general setup.

Proposition 4. Let R “ tρZ p̈ | X “ xq | x P X u be a likelihood model with
measurements Zm “ zm P Z, m “ 1, . . . ,M and

Φgpπq “ ΦgrRspπq “ ´
ż

X

ż

Z
πpxq ρZpz |X “ xq g

„

ρZpz |X “ xq

ρZpz |Π “ πq



dz dx

for some measurable function g : RÑ R, for which the integral is defined. Then
Φg, and in particular Φlog “ ´IrX;Zs, is invariant under transformations of
X and Z and the marginal likelihood L “ LrRs defined by (4) is invariant under
transformations of X and Z up to a constant (transformation-dependent) factor.

Proof. Let ϕ : X Ñ X̃ , x ÞÑ x̃ be a diffeomorphism, R̃ the transformed like-
lihood model and π̃ “ ϕ#π the pushforward of π under ϕ. Then, using the
change of variables formula for x̃ “ ϕpxq,

LrR̃spπ̃q “
M
ź

m“1

ż

X̃
ρZpzm | X̃ “ x̃qπpx̃qdx̃

“

M
ź

m“1

ż

X
ρZpzm |X “ xqπpxqdx “ LrRspπq,

ΦgrR̃spπ̃q “ ´
ż

X̃

ż

Z
π̃px̃q ρZpz | X̃ “ x̃q g

«

ρZpz | X̃ “ xq

ρZpz | Π̃ “ π̃q

ff

dz dx̃

“ ´

ż

X

ż

Z
πpxq ρZpz |X “ xq g

„

ρZpz |X “ xq

ρZpz |Π “ πq



dz dx “ ΦgrRspπq.
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Let ψ : Z Ñ Z̃, z ÞÑ z̃ be a diffeomorphism and R̃ “ ψ#R the pushforward of
the likelihood model under ψ. Then, using the change of variables formula for
z̃ “ ψpzq and denoting cm :“

ˇ

ˇdetpDψ´1qpz̃mq
ˇ

ˇ,

LrR̃spπq “
M
ź

m“1

ż

X
ρZ̃pz̃m |X “ xqπpxqdx

“

M
ź

m“1

cm

ż

X
ρZpzm |X “ xqπpxqdx “

ˆ M
ź

m“1

cm

˙

LrRspπq,

ΦgrR̃spπq “ ´
ż

X

ż

Z̃
πpxq ρZ̃pz̃ |X “ xq g

„

ρZ̃pz̃ |X “ xq

ρZ̃pz̃ |Π “ πq



dz̃ dx

“ ´

ż

X

ż

Z
πpxq ρZpz |X “ xq g

„

ρZpz |X “ xq

ρZpz |Π “ πq



dz dx “ ΦgrRspπq.

Corollary 5. Let R “ tρZ p̈ | X “ xq | x P X u be a likelihood model and
Zm “ zm P Z, m “ 1, . . . ,M and Φ “ ΦrRs “ ´IrX;Zs. Then the maximum
penalized likelihood estimator πMPLE defined by (1) is invariant under trans-
formations of X and Z, where the invariance of a prior density is defined by
(6).

Proof. Since logL and Φ are invariant under transformations of X and Z up to
an additive constant by Proposition 4, so is

πMPLE “ arg max
π

logLpπq ´ Φpπq.

Definition 6. For γ ą 0, we will refer to ΦI,γ “ ´γIrX;Zs as the entropy
penalty and to the corresponding hyperprior fI,γpπq “ expp´γIrX;Zsq as the
entropy hyperprior.

Penalizing with the mutual information IrX;Zs has a beautiful interpreta-
tion in the context of reference priors: If we have no measurements at hand, we
want to maximize IrX;Zs in order to incorporate minimal informativity of the
prior or, in other words, to maximize the expected information gain from some
future measurement(s) [2, 1]. This results in the reference prior

πref “ arg max
π

IrX;Zspπq.

If we do have measurements, we want to get a trade-off between goodness of
fit and non-informativity of the prior, therefore we regularize the log-likelihood
with IrX;Zs.

One might also come up with the idea of using the concept of reference
priors to construct hyperpriors. However, this appears to be a poor choice
for regularization, since reference priors seem to favor peaked behaviour, as
demonstrated in the following simple example:
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(a) likelihood model (b) hyperpriors as functions of π1

Figure 1: Jeffreys hyperprior tends to unregularize the prior, while the entropy
hyperprior has a smoothing effect. Since π1 ` π2 “ 1, it is sufficient to plot the
hyperprior over π1.

Example 7. Assume that X “ tx1, x2u consists of only two points, Z “ R and
that the likelihood model is given by normal distributions:

ρZ p̈ |X “ x1q “ N p2, 1q, ρZ p̈ |X “ x2q “ N p4, 1q.

The hyperprior for the prior Π “ pπ1, π2q, where πj ě 0, π1 ` π2 “ 1, can
be represented by a density over π1. Figure 1 shows the results for the entropy
hyperprior and for Jeffreys hyperprior. This example shows that Jeffreys hyper-
prior tends to unregularize the prior, since it favors the priors with high π1 (and
low π2) as well as those with high π2 (and low π1) over the ones with balanced
values of π1, π2. The entropy hyperprior, on the other hand, has its maximum
at π1 “ π2 “ 1{2 and takes smaller values as the prior becomes more peaked.

In order to prove convexity of the entropy penalty ΦI,γpπq, we will have to
switch from M1pX q to a convex subset K of the Banach space

B “ tf P L1pX q | }f}1 “ 0u.

For this, we view M1pX q “ π˚ `K as a subset of an affine space, where π˚ is
any element of M1pX q that acts as a displacement vector and

K “ tf P B | π˚ ` f ě 0u

is a convex subset of B.

Proposition 8. The entropy penalty ΦI,γpπq is convex in π.

Proof. Since IrX;Zspπq “ HZpπq´HZ|Xpπq by (5) and HZ|Xpπq is linear in π,
it is sufficient to consider the HZpπq. We transform it to a function Φ: K Ñ R
via

Φpfq :“ ´HZpπ˚ ` fq.

Its Fréchet derivative DΦ: K Ñ BpK,Rq, where BpK,Rq denotes the set of
bounded linear functionals on K, is given by

rDΦpfqspgq “

ż

Z

ż

X
ρZpz | X “ xq gpxqdx log ρZpz | Π “ π˚ ` fqdz.
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Since

Φpgq ´ Φpfq ´ rDΦpfqspg ´ fq “

ż

ρZpz |π˚ ` gq log

„

ρZpz |Π “ π˚ ` gq

ρZpz |Π “ π˚ ` fq



dz

“ DKL

`

ρZpz |π˚ ` gq } ρZpz |π˚ ` fq
˘

ě 0,

the claim follows from Kachurovskii’s theorem [22, Proposition 7.4].

Corollary 9. Since the marginal log-likelihood logLpπq is concave in π (see
[17, Section 5.1.3]) and ΦI,γpπq is convex in π, the optimization problem

πMPLE “ arg max
π

logLpπq ´ ΦI,γpπq

is concave in π. Therefore, the (modified) EM algorithm converges globally.

3.1 Derivation of the entropy penalty from a maximum
entropy principle

Many Bayesian inverse problems are of the form [23]

Z “ GpXq ` E, E „ ρE , (7)

where Z is a noisy observation of GpXq, G : X Ñ Z is the underlying model
and E is an additive (often normally distributed) error term. In this case, the
likelihood model consists of shifted versions of ρE ,

ρZpz | X “ xq “ ρEpz ´Gpxqq

and hence the conditional entropy

HZ|Xpπq :“´

ż

X
πpxq

ż

Z
ρZpz | X “ xq log rρZpz | X “ xqs dz dx

“

ż

Z
ρEpzq log rρEpzqs dz

is constant in π. Since IrX;Zspπq “ HZpπq ´ HZ|Xpπq by (5), the entropy
penalty ΦI,γ is equivalent to the “Z-entropy penalty” ΦHZ ,γ :“ ´γHZ .

We conjecture that this penalty can be derived from a hyperprior stemming
from a maximum entropy principle, this time of the whole system pΠ, Zq (re-
member that, when inferring the density Π from measurements Z, X serves
only as a latent variable). So far, we were only able to formulate and prove this
statement for discrete parameter spaces X “ tx1, . . . , xKu, where the hyperprior
can be expressed by a probability density fpπq on M1pX q Ď RKě0. Maximizing
the entropy of the whole model pΠ, Zq, which is given by

HpΠ,Zqpfq “ HZ|Πpfq `HΠpfq “

ż

M1pX q
fpπq

`

HZpπq ´ log fpπq
˘

dπ,

leads to the following hyperprior:

Proposition 10. If fE is a (possibly improper) prior onM1pX q that maximizes
the total entropy HpΠ,Zqpfq, then

fEpπq9 exppHZpπqq.

9



Proof. Differentiation of HpΠ,Zqpfq with respect to f yields

BfHpΠ,Zqpfq “ HZ p̈ q ´ log f p̈ q,

which proves the claim.

Corollary 11. If the Bayesian inverse problem takes the form (7), then, for
γ “ 1, the penalty ΦI,γ “ ΦHZ ,γ corresponds to a hyperprior fE that maximizes
the total entropy HΠ,Z .

Proof. By Proposition 10, fE is given by fE 9 expr´γΦHZ ,1s.

4 Cross entropy and the EM algorithm

In this section, we will discuss an interesting connection between the marginal
likelihood Lpπq and the cross entropy Hcross

`

ρZ , ρZ p̈ |Π “ πq
˘

between the true
measurement distribution ρZ “ ρZ p̈ | Π “ πtrueq and the one induced by
π, ρZ p̈ | Π “ πq. As we shall see, the latter can be viewed as a (negative)
infinite data log-likelihood relying on the knowledge of the entire distribution
ρZ of Z instead of just a finite number of measurements Z1, . . . , ZM „ ρZ . This
connection suggests an alternative approach to MPLE that is a generalization
of the doubly-smoothed MLE [21, 20].

Further, we will generalize the EM algorithm to the infinite data scenario.
Throughout this section, we will not restrict ourselves to the non-parametric
case, therefore Π “ π can denote either a parametrization of the prior density,
ρX p̈ | Π “ πq, in the PMLE setting or the prior density itself in the NPMLE
setting, in which case ρX p̈ | Π “ πq “ π.

Our generalization requires only the following two adaptations, where πpxq
is replaced by the more general formulation ρXpx | Π “ πq:

ρZpz|Π “ πq :“

ż

X
ρZpz|X “ xq ρXpx | Π “ πqdx

and

pzπpxq :“
ρXpx | Π “ πq ρZpz | X “ xq

ρZpz | Π “ πq
.

The application of the EM algorithms in the NPMLE setting and the connection
between the resulting fixed point iterations are discussed in the next section.

Let us first recall the usual EM algorithm, which maximizes the marginal
likelihood Lpπq by iterations constructed in the following way:

• Formulate the complete data likelihood function

Lcomppx, z | Π “ πq “
M
ź

m“1

ρXpxm | Π “ πq ρZpzm | X “ xmq,

where the term “complete data” refers to the knowledge of both X “ x “
px1, . . . , xM q and Z “ z “ pz1, . . . , zM q.
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• Formulate the expected complete data log-likelihood Qcdpπ | πnq (the in-
dices c and d are explained in Appendix A) with respect to the conditional
distribution of X given Z under the current estimate πn of Π:

Qcdpπ | πnq :“
1

M
E
”

logLcomp
`

rX | Z “ z,Π “ πns, z | Π “ π
˘

ı

“
1

M

M
ÿ

m“1

ż

X
pzπn
pxq log

`

ρXpx | Π “ πq ρZpzm | X “ xq
˘

dx

The scaling factor 1{M is usually left out in the definition of Qcd, but it
will slightly simplify our notation.

• In each iteration step, maximize Qcdpπ | πnq over π:

πn`1 “ arg max
π

Qcdpπ | πnq.

It is more convenient to work with the marginal log-likelihood (scaled by
1{M),

Lcdpπq :“
1

M
logLpπq,

instead of the likelihood Lpπq itself (obviously, the local and global maxima
of these two quantities coincide). It is well-known [3] that the above iteration
increases Lcd in each step,

Lcdpπn`1q ě Lcdpπnq, n P N, (8)

and therefore converges to a local maximum of Lcd (and even to a global one
in the NPMLE setting, in which Lcd is concave).

In order to prove the analogous statements in the infinite data scenario, let
us introduce the analogues of Lcd and Qcd:

Definition 12. We define the infinite data log-likelihood as

Lccpπq :“ ´Hcross
`

ρZ , ρZ p̈ |Π “ πq
˘

“

ż

Z
ρZpzq log ρZpz|Π “ πqdz

and the infinite data expected complete data log-likelihood as

Qccpπ | πnq :“

ż

Z
ρZpzq

ż

X
pzπn
pxq log

`

πpxq ρZpz | X “ xq
˘

dx dz.

These analogues are meaningful, since they appear as limits of Lcd and Qcd,
if we let the number M of measurements go to infinity (therefore the term
“infinite data”):

Lcd
MÑ8
ÝÝÝÝÑP Lcc and Qcd

MÑ8
ÝÝÝÝÑP Qcc, (9)

since the measurements Z1, . . . , ZM are independent and ρZ-distributed (the
index P denotes convergence in probability).

We will now prove the analogous statement to (8) in the infinite data sce-
nario:

11



Proposition 13. The EM algorithm given by

πn`1 “ arg max
π

Qccpπ | πnq (10)

has the property

Lccpπn`1q ě Lccpπnq for each n P N.

Proof. First note that Jensen’s inequality implies

Lccpπq “

ż

Z
ρZpzq log

ˆ
ż

X
ρZpz | X “ xqπpxq

pzπn
pxq

pzπn
pxq

dx

˙

dz

ě

ż

Z
ρZpzq

ż

X
pzπn

pxq log

ˆ

ρZpz | X “ xqπpxq

pzπn
pxq

ρZpz | Π “ πnq

ρZpz | Π “ πnq

˙

dx dz

“

ż

Z
ρZpzq log ρZpz | Π “ πnq dz

loooooooooooooooooooomoooooooooooooooooooon

“Lccpπnq

`

ż

Z
ρZpzq

ż

X
pzπn

pxq log

ˆ

πpxq

πnpxq

˙

dxdz
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“: `pπ|πnq

.

Since `pπ | πnq “ 0 for π “ πn and

arg max
π

`pπ | πnq “ arg max
π

Qccpπ | πnq,

we have `pπn`1 | πnq ě 0 and therefore Lccpπn`1q ě Lccpπnq.

Remark 14. Note that for πn “ πtrue the quantity Qccpπ | πnq is equal to
the cross entropy between the true distribution of the pair pX,Zq and the one
induced by π:

Qccpπ | πtrueq “ ´H
cross

`

ρpX,Zq, ρpX,Zqp̈ |Π “ πq
˘

.

This proves that πtrue is a fixed point of the EM algorithm (10).

Summing things up, we would like to apply the EM algorithm to maxi-
mize Lcc and recover the true prior πtrue. This corresponds to minimizing the
cross entropy and is thereby equivalent to the principle of minimum discrim-
ination information (or “Minxent”), see [15, 9]. Note that the cross entropy
Hcross

`

ρZ , ρZ p̈ |Π “ πq
˘

is minimal if and only if the two distributions ρZ and
ρZ p̈ |Π “ πq coincide, which is equivalent to π “ πtrue in the identifiable case
(3).

However, since we have a finite number of data points Z1, . . . , ZM , we can
only apply the EM algorithm to maximize Lcd, which in general will not recover
πtrue exactly (see Section A). Alternatively, the desire to maximize Lcc gives
rise to another approach for the inference of Π:

(A) Approximate ρZ from Z1, . . . , ZM , ρappr
Z « ρZ , by your favorite density

estimation method (e.g. Gaussian mixtures or kernel density estimation).

(B) Maximize Lappr
cc pπq :“ ´Hcross

`

ρappr
Z , ρZ p̈ |Π “ πq

˘

.

This can be viewed as performing the regularization in the measurement space
Z before the application of MLE.

Remark 15. For this method to be invariant under transformations of Z, the
density estimation ρappr

Z « ρZ has to be performed by a transformation invariant
method. We will not discuss this issue here.

12



4.1 Kernel density estimation and doubly-smoothed MLE

We will now discuss the case where the approximation ρappr
Z « ρZ in step (A)

is performed by a kernel density estimation,

ρappr
Z pzq “

1

M

M
ÿ

m“1

Khpz ´ zmq, (11)

where Kh denotes the kernel and h its bandwidth. In this case, it is meaningful
to adjust the likelihood model by replacing ρZpz | Π “ πq by

ρ̃Z p̈ | X “ xq “ ρZ p̈ | X “ xq ˚Kh

in the computation of ρZ p̈ |Π “ πq, since (for fixed h) we have an additional
smoothing by the kernel:

ρappr
Z

MÑ8
ÝÝÝÝÑ ρ̃Z :“ ρZ ˚Kh “

ż

ρ̃Z p̈ | X “ xqπtruepxqdx.

Alternatively, one could replace ρZ p̈ | Π “ πq directly by

ρ̃Z p̈ | Π “ πq :“ ρZ p̈ | Π “ πq ˚Kh.

This method was discussed by Seo and Lindsay [21], who called it the doubly-
smoothed MLE (DS-MLE) due to the additional smoothing by the kernel density
estimation and proved universal consistency under weak assumptions on the
kernel and the likelihood model. The resulting density estimate is given by

πDS-MLE :“ arg max
π

Lappr
cc pπq.

If the numerical computation of Lappr
cc pπq is performed by Monte Carlo approx-

imation,

Lappr
cc pπq “

ż

Z
ρappr
Z pzq log ρ̃Zpz|Π “ πqdz «

1

J

J
ÿ

j“1

log ρ̃Zpζj |Π “ πq (12)

where the points ζ1, . . . , ζJ
i.i.d.
„ ρappr

Z are samples of the density ρappr
Z (usu-

ally J " M), this approach retrieves the form of the standard NPMLE with
measurements ζj instead of zm (compare the right-hand side of the above ex-
pression with Lcd). In other words, performing the kernel density estimation
(11) and the Monte Carlo approximation (12) is equivalent to first “inflating”

or “augmenting” each measurement zm to a sampling ζ
pmq
1 , . . . , ζ

pmq
ι

i.i.d.
„ Khp̈ ´

zmq and then applying NPMLE to the union of these samples tζ1, . . . , ζJu “
ŤM
m“1tζ

pmq
1 , . . . , ζ

pmq
ι u (and adjusted likelihood model), see [20].

5 Toy Example

We will illustrate the performance of the discussed methods on the FitzHugh-
Nagumo model [7, 19], which is a simple model for the activation dynamics of
a spiking neuron given by the following system of ODEs:

"

9v “ v ´ v3

3 ´ w ` Iext, v0 “ 1
τ 9w “ v ` a´ bw, w0 “ 0.1

13
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Figure 2: The prior estimates discussed in Sections 3 and 4. πNPMLE and
πDS-MLE were computed with the EM algorithm, while for the reference prior
πref and πMPLE a gradient ascent was used (with γ “ 19). 200 iterations were
performed. Note that for a higher number of iterations πNPMLE and πDS-MLE

(due to the discretization method discussed in Section 4.1) will not stop peaking.

We will assume the parameters a “ 0.7, b “ 0.8, Iext “ 0.5 to be given and only
X “ τ P X “ r15, 45s to be inferred from a perturbed measurement Z of v at
time t˚ “ 40:

Z “ φpXq ` E, φpXq “ vpt˚q, E „ N p0, 0.12q.

We assume the true distribution of X to be the sum of two Gaussians:

πtrue “ ρX “
1

2

“

N
`

25, 12
˘

`N
`

32, 1.52
˘‰

.

The resulting prior estimates πNPMLE, πMPLE and πDS-MLE as well as the true
prior and the reference prior are shown in Figure 2.

6 Conclusion

We have introduced a penalty term for MPLE that is invariant under transfor-
mations in parameter and measurement space and thereby provides a consistent
method of inference. It can be seen as a generalization of reference priors, since
the two coincide in the case when no measurements are given.

Further, we have shown that the marginal log-likelihood and the EM algo-
rithm have insightful analogues in the infinite data scenario. More precisely, if
the number of measurements tends to infinity, the marginal log-likelihood con-
verges to the negative cross entropy Hcross

`

ρZ , ρZ p̈ | Π “ πq
˘

. The analogue
of the EM algorithm can therefore be viewed as resulting from the principle of
minimum cross entropy. The connections between the different log-likelihoods

14



and the corresponding EM algorithms is discussed more deeply in Appendix A
and visualized as an demonstrative commutative diagram in Figure 3.

Since in practice only finitely many measurements are available, the min-
imization of the above cross entropy can not be implemented directly (ρZ is
not accessible). However, it motivates another approach for density estimation
by replacing ρZ by an approximation ρappr

Z and minimizing Hcross
`

ρappr
Z , ρZ p̈ |

Π “ πq
˘

instead. As discussed in Section 4.1, this methodology contains the
DS-MLE as a special case.

All methods were implemented for a simple one-dimensional toy example.
In a companion paper [14], they were applied to a high-dimensional real life
problem.

A EM algorithm and NPMLE

We now return to the NPMLE setting, where the hyperparameter Π “ π is
the prior density itself, ρX p̈ | Π “ πq “ π. We show how the NPMLE can be
computed by a Monte Carlo discretization tx1, . . . , xKu Ď X of the space X
and, correspondingly, of the prior π,

π “
K
ÿ

k“1

wk δxk
, w PW :“

!

w P RK | wk ě 0@k,
K
ÿ

k“1

wk “ 1
)

, (X-MC)

(of course, this also works if X is already discrete).
Here, the weights W “ w take the place of the hyperparameter and we

have an analogous statement to (9) for the corresponding log-likelihoods and
expected complete data log-likelihoods:

Lddpwq “
1

M

M
ÿ

m“1

log ρZpzm|W “ wq

MÑ8
ÝÝÝÝÑP

ż

Z
ρZpzq log ρZpz|W “ wqdz

“: Ldcpwq,

Qddpw | wnq “
1

M
E
”

logLcomp
`

rX | Z “ z,W “ wns, z |W “ w
˘

ı

“
1

M

M
ÿ

m“1

K
ÿ

k“1

“

βzwn

‰

k
log

`

wk ρZpzm | X “ xkq
˘

MÑ8
ÝÝÝÝÑP

ż

Z
ρZpzq

K
ÿ

k“1

“

βzwn

‰

k
log

`

wk ρZpz | X “ xkq
˘

dz

“: Qdcpw | wnq,

where

ρZpz|W “ wq :“
K
ÿ

k“1

wk ρZpz|X “ xkq and rβzwsk :“
wk ρZpz|X “ xkq

ρZpz|W “ wq
.

The indices c and d denote whether we consider the parameter space X (first
index) and the measurement space Z (second index) to be discrete or continuous.
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While the discretization in the parameter space X is just the Monte Carlo
discretization (X-MC), the discretization in the measurement space Z,

ρZ «
1

M

M
ÿ

m“1

δzm , (Z-MC)

traces back to our lack of knowledge – instead of ρZ , we only have M ρZ-
distributed measurements Z1, . . . , ZM .

It is easy to see that, in the NPMLE setting, the application of the EM
algorithms

πn`1 “ arg max
π

Qcdpπ | πnq, wn`1 “ arg max
w

Qddpw | wnq

results in the fixed point iterations πn`1 “ Ψcdπn and wn`1 “ Ψddwn, respec-
tively [16], where

Ψcdπ pxq “
πpxq

M

M
ÿ

m“1

ρZpzm|X “ xq

ρZpzm|Π “ πq
, (13)

rΨddwsk “
wk
M

M
ÿ

m“1

ρZpzm|X “ xkq

ρZpzm|W “ wq
. (14)

These iterations were first formulated by Turnbull [24, 25] and are usually re-
ferred to as self-consistency algorithms, since they fulfill the self-consistency
principle introduced by Efron in 1967 [4].

We will now formulate an analogous result for the two cases with continous
measurement space Z:

Proposition 16. In the NPMLE setting, the EM algorithms

πn`1 “ arg max
π

Qccpπ | πnq, πn`1 “ arg max
π

Qdcpπ | πnq

are given by the fixed point iteration πn`1 “ Ψccπn and πn`1 “ Ψdcπn, respec-
tively, where

Ψccπ pxq “ πpxq

ż

Z
ρZpzq

ρZpz|X “ xq

ρZpz|Π “ πq
dz,

rΨdcwsk “ wk

ż

Z
ρZpzq

ρZpz|X “ xkq

ρZpz|W “ wq
dz,

Proof. For the first iteration, this follows from the fact that the derivative of
Qccpπ | πnq with respect to π,

BπQccpπ | πnq “

ż

Z
ρZpzq

pzπn

π
dz,

has to be a constant for the maximizer π “ πn`1. The second case goes analo-
gously.

Putting things together, we end up with the commutative diagram presented
in Figure 3.
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Lcc

Ldc

Ldd

Lcd

Qcc

Qdc

Qdd

Qcd

Ψcc

Ψdc

Ψdd

Ψcd

(X-MC)

(X-MC)

(Z-MC)

(Z-MC)

(X-MC)

(X-MC)

(Z-MC)

(Z-MC)

(X-MC)

(X-MC)

(Z-MC)

(Z-MC)

EM

EM

EM

EM

Figure 3: The relations between the log-likelihoods L, the expected complete
data log-likelihoods Q and the fixed point iterations Ψ resulting from the appli-
cation of the EM algorithm can be summarized in a commutative diagram.

A.1 Connection to gradient ascent

In this section, we will establish an insightful connection between the EM algo-
rithm in the non-parametric framework (NPMLE) and gradient ascent for the
maximization of the log-likelihood Ldd. Analogous statements hold also for Lcc,
Ldc and Lcd. A natural way to maximize Ldd is by moving stepwise in the
direction of its gradient

∇Lddpwq “

˜

1

M

M
ÿ

m“1

ρZpzm|X “ xkq

ρZpzm|W “ wq

¸

k“1,...,K

after projecting it orthogonally onto the subspace U :“tu P RK |
ř

k uk “ 0u:

wn`1 “ wn ` τ Sorth ¨∇Lddpwnq, Sorth :“
1

K

¨

˚

˚

˝

K´1 ´1 ¨¨¨ ´1

´1 K´1
. . .

...
...

. . .
. . . ´1

´1 ¨¨¨ ´1 K´1

˛

‹

‹

‚

,

τ ą 0 being the step size. The projection is necessary to guarantee the condition
ř

k wn`1,k “ 1. However, wn`1 might violate the condition wn`1,k ě 0, k “
1, . . . ,K, and one would have to adjust the result after each iteration step in
some way in order to push it into the simplex W.

An alternative to this adjustment is to use a projection-like (and w-dependent)
map Sw : RK Ñ U instead of an orthogonal projection, which guarantees that
wn`1 lies in the correct simplex W (for τ “ 1):

wn`1 “ ΨS wn, ΨS w :“ w ` Sw ¨∇Lddpwq, (15)

where

Sw :“ diagpwq ´ wwᵀ “

¨

˚

˚

˝

w1p1´w1q ´w1w2 ¨¨¨ ´w1wK

´w2w1 w2p1´w2q
. . .

...
...

. . .
. . . ´wK´1wK

´wKw1 ¨¨¨ ´wKwK´1 wKp1´wKq

˛

‹

‹

‚

. (16)
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Proposition 17. For all w PW “
!

w P RK | wk ě 0@k,
řK
k“1 wk “ 1

)

,

(i) Sw maps into U :“ tu P RK |
ř

k uk “ 0u,

(ii) Sw is positive semi-definite,

(iii) ΨS w PW and the fixed point iteration (15) coincides with Ψdd.

Proof. (i) follows directly from

p1, . . . , 1q ¨ Sw “ wᵀ ´

´

K
ÿ

k“1

wk

¯

wᵀ “ 0,

while (ii) is a straightforward application of the Gershgorin circle theorem, see
e.g. [12, Theorem 6.1.1].

A simple computation shows:

rΨS wsk “ wk `
wk
M

˜

M
ÿ

m“1

ρZpzm|X “ xkq

ρZpzm|W “ wq
´

K
ÿ

j“1

wj

M
ÿ

m“1

ρZpzm|X “ xjq

ρZpzm|W “ wq

¸

“ wk `
wk
M

M
ÿ

m“1

ρZpzm|X “ xkq

ρZpzm|W “ wq
´
wk
M

M
ÿ

m“1

ρZpzm|W “ wq

ρZpzm|W “ wq

“
wk
M

M
ÿ

m“1

ρZpzm|X “ xkq

ρZpzm|W “ wq
“ rΨdd wsk .

Since Sw
“

RK
‰

Ď U by (1) and ρZpz|X “ xq ě 0 for all x P X , z P Z, this
proves (iii).

Remark 18. Since xv, Swvy ě 0 for all v P RK by Proposition 17, Sw∇Lddpwq
points in a non-descending direction of Ldd, though not in the steepest possible
one. Therefore, the fixed point iteration (15) can be viewed as a nearly-gradient
ascent. The classical results on the EM algorithm (see e.g. [3, Theorems 1
and 2]) combined with the equivalence of (14) and (15) (Proposition 17(iii))
prove that it actually yields a non-decreasing sequence and converges to a local
maximum, which in the case of NPMLE is even a global one.

The multiplication of Sw with a vector v P RK can be performed in a simple
way, since diagpwq¨v is just the pointwise multiplication and pwwᵀqv “ wpwᵀvq.
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