
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

JÖRG RAMBAU

Circuit Admissible Triangulations of
Oriented Matroids

ZIB-Report 00-45 (December 2000)



CIRCUIT ADMISSIBLE TRIANGULATIONS OF ORIENTED MATROIDS

JÖRG RAMBAU

ABSTRACT. All triangulations of euclidean oriented matroids are of the same PL-
homeomorphism type by a result of Anderson. That means all triangulations of
euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that
all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PL-
spheres. For non-euclidean oriented matroids this question is wide open.

One key point in the proof of Anderson is the following fact: for every trian-
gulation of a euclidean oriented matroid the adjacency graph of the set of all sim-
plices “intersecting” a segment [p-p+] is a path. We call this graph the [p-p+]-
adjacency graph of the triangulation.

While we cannot solve the problem of the topological type of triangulations
of general oriented matroids we show in this note that for every circuit admissible
triangulation of an arbitrary oriented matroid the [p-p+]-adjacency graph is path.

Triangulations of oriented matroids appeared in the literature as natural combi-
natorial models for triangulations of point configurations [2]. However, since not
all oriented matroids model point configurations the notion of a triangulation of
an oriented matroid gives rise to additional questions that do not come up in the
theory of triangulations of point configurations.

One of these questions is the following: is the abstract simplicial complex de-
fined by a triangulation of an oriented matroid homeomorphic ot a sphere in the
totally acyclic case or a ball in the acyclic case? The answer to this question in the
realizable case is of course affirmative because in the case of point configurations
the triangulation is naturally embedded as a convex set in a euclidean space.

Why care about the general case? An application of triangulations of oriented
matroids in their full generality is their appearance in the theory of combinatorial
differential manifolds. “Good” topological properties in this context lead to the
existence of differentiable strucures on these objects, making the combinatorial
model more suitable [1, 4].

But also as an investigation of what weird things might happen in the theory
of non-realizable oriented matroids this question has become a challenging open
problem in its own right. (An in-depth study of triangulations of oriented ma-
troids is presented in [5], background on oriented matroids can be found in [3].)

For a euclidean oriented matroid Anderson has proved that the topological types
of all its triangulations are the same. Since for all oriented matroids there are
triangulations known that are homeomorphic to a sphere resp. to a ball—the so-
called lifting triangulations—the answer to the above question is affirmative.

One important building block in the construction of Anderson is the fact that
the adjacency graph of the set of simplices in a triangulation “intersecting” an
arbitrary segment is always a path. (For exact definitions see below.)

In this note we show that this graph is also a path for general oriented matroids
provided the triangulation respects an additional property: it does not contain a
so-called intersection circuit, a circuit that has positive in one simplex and negative
part in another simplex in the triangulation.

We start by defining our main object of study. For simplicity, we call r-subsets
of full rank r simplices; subsets of rank r − 1 are called facets.
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Definition 1 (Circuit Admissible Triangulation). Let M = (E, Z) be a rank r ori-
ented matroid on the ground set E given by its set of circuits Z. Its set of facets be
denoted by L(M).

A non-empty set T of simplices is called a circuit admissible triangulation of M if
it satisfies the following conditions.

(UP) For every S ∈ T and every facet R ⊂ S of S either there is a facet F ∈ L(M)
of M with R ⊆ F or there is another simplex S ′ ∈ T different from S with
R ⊂ S ′.

(IP) For all S1, S2 ∈ T there is no circuit Z ∈ Z with Z+ ⊆ S1 and Z− ⊆ S2.

If two simplices or facets satisfy (IP) we call them circuit admissible. We follow
the suggestion of Santos [5] to call a circuit as in (IP) an intersection circuit of the
simplices involved. In the euclidean case this definition coincides with the defini-
tions of a triangulation of an oriented matroid in the literature.

Condition (UP) makes sure that there are enough simplices to “cover” the whole
oriented matroid, (IP) takes care of unwanted intersections between simplices. In
the definition of a triangulation of an oriented matroid the condition for proper
intersections is—at least locally—different: for every extension that lies in the con-
vex hulls of two simplices it also lies in the convec hull of the intersection. This
is called “proper intersection” in the literature. The author has shown earlier (un-
published) an example in rank four based on the non-euclidean 12-point oriented
matroid R(12) by Richter-Gebert where two simplices might intersect properly al-
though they contain an intersection circuit.

Meanwhile, Santos has shown that this behaviour already happens in the 8-
point non-euclidean oriented matroid EFM(8) [5], the first case in which non-
euclidean oriented matroids can appear. This shows a defect in the original def-
inition of triangulations of oriented matroids by Billera and Munson [2]: proper
intersection of simplices, although stated locally for two simplices, depends heav-
ily on the rest of the oriented matroid via the existence of certain extensions. For
example, the two simplices intersecting properly in R(12) but containing an inter-
section circuit would no longer intersect properly after suitable deletions, which
seems somewhat unnatural. However, by Santos’ work [5] we know that there are
definitions equivalent to the original one that do not have this unwanted property.

The advantage of circuit admissability is the fact that intersection of two sim-
plices is not affected by elements that are not contained in the union of the two
simplices involved. Note that every circuit admissible triangulation is a triangula-
tion and that every triangulation additionally satisfying (IP) is a circuit admissible
triangulation.

Here is a formal definition of our target:

Definition 2 (Segment Adjacency Part/Graph). Let T be a triangulation of M, and
let p− and p+ be interior extensions in general position.

The [p−p+]-adjacency part of T is the set of all simplices S of T , together with
their pairwise common facets, that form a vector with the segment [p−, p+] (the
restriction of M to {p−, p+}) or with one of its end points, i.e., simplices or facets S
such that (S, p−p+), (S, p−), or (S, p+) are vectors in M.

The [p−, p+]-adjacency graph G[p−,p+] of T is the adjacency graph of the [p−p+]-
adjacency part. In other words, it is the following graph:

• The vertex set of G[p−,p+] is the set of all simplices S in the [p−p+]-adjacency
part.

• There is an edge between to vertices S1 and S2 if the corresponding sim-
plices are adjacent, i.e., share a common facet.
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We speak of the segment adjacency part resp. segment adjacency graph when we do
not want to specify the segment explicitely.

Figure 1 depicts an easy example of a triangulation and a segment adjacency
graph in the realizable case.
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FIGURE 1. The segment adjacency graph.

The following lemma was proved by Anderson for arbitrary triangulations of
euclidean oriented matroids in a slightly different language.
Lemma 3 (Anderson [1]). Let T be a triangulation of a euclidean oriented matroid M
and let p− and p+ be interior extensions in general position. Then the [p−, p+]-adjacency
graph of T is a path.

We should remark the following at this point: because the restriction of M to a
segment plus a simplex is always realizable every node in G[p−,p+] has degree one
or two. Hence, the graph consists of one path and maybe some cycles. The point
is to show that there are no cycles.
Lemma 4 (Main Lemma). Let T be a circuit-admissible triangulation of M and let p−

and p+ be interior extensions in general position. Then the [p−, p+]-adjacency graph of T
is a path.

The idea for the proof is based on the following consideration: in the euclidean
case we can extend the oriented matroid by the intersection points of facets with
the segment [p−p+]. By looking at their cocircuit signature we can tell a total order
on these intersection points, thus on the facets involved. The existence of cycles is
incompatible with this observation.

In the non-euclidean case we might not be able to extend M by all those in-
tersection points. Thus, we do not have a total order of the facets intersecting a
segment at hand. We can, however, replace the total order by a certain weaker
relation. This relation will, however, be good enough to prove the Main Lemma.
The following definition is the key idea in this note.
Definition 5 (Segment Relation). Let T be a circuit-admissible triangulation of M.
For interior extensions p− and p+ in general position, we define a relation on the
facets in the [p−, p+]-adjacency part of T as follows:

F ≺[p−p+] G : ⇐⇒ ∃ circuit X in M: p− ∈ X+, X+ ⊆ p− ∪G, X− ⊆ F;

F �[p−p+] G : ⇐⇒ ∃ circuit X in M: p+ ∈ X+, X+ ⊆ p+ ∪G, X− ⊆ F.

See Figure 2 for an illustration in rank four.
This relation cannot provide a total order on the facets intersecting a segment

because this would contradict the existence of cycling oriented matroid programs,
a key property of non-euclidean oriented matroids. The following lemma shows,
however, that the segment relation is good enough to tell consistently which one
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FIGURE 2. The segment relation: F ≺[p−p+] G because there is a
circuit containing p− with light positive and dark negative part.

out of two circuit admissible facets is “closer” to p− and which one is “closer”
to p+. We will use the notation Z = (Z+, Z−) for a circuit and Z = Z+ ∪ Z− for its
support.
Lemma 6. Let T be a circuit-admissible triangulation of M. Furthermore, let F and G
be facets in the [p−, p+]-adjacency part of T for interior extensions p− and p+ in general
position. Then the following hold:

(i) F ≺[p−p+] G if and only if G �[p−p+] F;
(ii) either F ≺[p−p+] G or F �[p−p+] G.

Proof. All assertions follow from easy strong circuit elimination arguments.
To prove (i), let F ≺[p−p+] G, i.e., there is a circuit X with

p− ∈ X+; X+ ⊆ p− ∪G; X− ⊆ F.

Using the circuit
Y := (G,p−p+)

eliminate p− ∈ X+ ∩ Y− and introduce p+ ∈ Y \ X. This yields a circuit Z with

p+ ∈ Z−;

Z+ ⊆ (X+ ∪ Y+) \ p− ⊆ G;

Z− ⊆ (X− ∪ Y−) \ p− ⊆ p+F.

Thus, G �[p−p+] F. Since the statement is symmetric, the first claim is proved.
In order to prove (ii), we first show that at most one of the relations F ≺[p−p+] G

and F �[p−p+] G holds. To this end, assume—for the sake of contradiction—that
F ≺[p−p+] G and F �[p−p+] G. Using (i) we also have G ≺[p−p+] F. By definition,
there are circuits X and Y with

p− ∈ X+; X+ ⊆ p− ∪G; X− ⊆ F;

p− ∈ Y+; Y+ ⊆ p− ∪ F; Y− ⊆ G.

Elimination of p− ∈ X+ ∩ (−Y)− in X yields a circuit Z with

Z+ ⊆ (X+ ∪ (−Y)+) \ p− ⊆ G;

Z− ⊆ (X− ∪ (−Y)−) \ p− ⊆ F.

In other words, F and G are not circuit admissible. Consequently, F ≺[p−p+] G and
F �[p−p+] G cannot hold at the same time.

We finally show that at least one of the relations F ≺[p−p+] G or F �[p−p+] G
holds. Since F and G are in the [p−, p+]-adjacency part, we have two circuits X :=
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(F, p−p+) and Y := (G,p−p+). Eliminating p− yields a circuit Z with

Z+ ⊆ (X+ ∪ (−Y)+) \ p− ⊆ F ∪ p+;

Z− ⊆ (X− ∪ (−Y)−) \ p− ⊆ G ∪ p+.

If p+ /∈ Z then F and G are not circuit admissible: contradiction. If p+ ∈ Z+ then
Z is a circuit showing G �[p−p+] F; if p+ ∈ Z− then Z shows F �[p−p+] G. This
proves the claim using (i) one more time. �

We are now in a position to prove our lemma.

Proof of Lemma 4. Since T is a triangulation of M and p− and p+ are in general
position it follows from the work of Santos [5] that there is a unique simplex S+

“containig” p+, i.e., such that (S+, p+) is a vector, and a unique simplex S− “con-
taining” p−, i.e., such that (S−, p−) is a vector in M.

From the fact that M restricted to a segment plus one simplex is realizable it
follows that S− and S+ have degree one in G[p−,p+] whereas all other simplices
have degree two. Hence, there is a path from S− to S+ contained in G[p−,p+]. We
have to show that all simplices in the [p−, p+]-adjacency part belong to that path.

Let S0 = S−, S1, . . . , Sk = S+ be the successively adjacent simplices in the path
from S− to S+. Assume, for the sake of contradiction, that there exists another
simplex S in T with S 6= Si for all i = 1, . . . , k. Define Fj := Sj−1∩Sj for j = 1, . . . , k.
Furthermore, let F be a facet of S “pierced” by [p−p+], i.e., so that (F, p−p+) is a
circuit.

By Lemma 6, there are three cases:
• F ≺[p−p+] F1,
• F �[p−p+] Fk, or
• Fi ≺[p−p+] F ≺[p−p+] Fi+1 for some i ∈ {1, 2, . . . , k − 1}.

The case F ≺[p−p+] F1. Then there exists a circuit X with

p− ∈ X+; X+ ⊆ p− ∪ F1; X− ⊆ F.

Eliminate p− ∈ X+ ∩ Y− using the circuit

Y := (S0, p−).

This yields a circuit Z with

Z+ ⊆ (X+ ∪ Y+) \ p− ⊆ F1;

Z− ⊆ (X− ∪ Y−) \ p− ⊆ F.

Thus, F1 and F are not circuit admissible, and neither are S0 and S: contradiction.
The case F �[p−p+] Fk. This case is analogous to the previous one.
The case Fi ≺[p−p+] F ≺[p−p+] Fi+1 for some i = 0, . . . , k. Then there exist circuits X
and Y with

p− ∈ X+, X+ ⊆ p− ∪ F, X− ⊆ Fi;

p− ∈ −Y−, −Y− ⊆ p− ∪ Fi+1, −Y+ ⊆ F;

Eliminate p− ∈ X+ ∩−Y−. This yields a circuit Z with

Z+ ⊆ (X+ ∪−Y+) \ p− ⊆ F;

Z− ⊆ (X− ∪−Y−) \ p− ⊆ Fi ∪ Fi+1.

However, by construction Fi ∪ Fi+1 = Si, and thus S and Si are not circuit admis-
sible: contradiction. �



6 JÖRG RAMBAU

REFERENCES

1. Laura Anderson, Topology of combinatorial differential manifolds, Topology 38 (1999), 197–221.
2. Louis J. Billera and Beth Spellman Munson, Triangulations of oriented matroids and convex polytopes,

SIAM Journal of Algebraic Discrete Methods 5 (1984), 515–525.
3. Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented

matroids, Encyclopedia of Mathematics, vol. 46, Cambridge University Press, Cambridge, 1993.
4. Robert D. MacPherson, Combinatorial differential manifolds, Topological Methods in Modern Mathe-

matics: A Symposium in Honor of John Milnor’s Sixtieth Birthday, Stony Brook NY, 1991 (Lisa R.
Goldberg and Anthon V. Phillips, eds.), Publish or Perish, Houston TX, 1993, pp. 203–221.

5. Francisco Santos, Triangulations of oriented matroids, Preprint, Universidad de Cantabria, 2000, Mem-
oirs of the AMS, to appear.

KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK BERLIN, TAKUSTR. 7, 14195 BERLIN, GER-
MANY

E-mail address: rambau@zib.de


