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Abstract

Solving mixed-integer nonlinear programs (MINLPs) to global optimality efficiently
requires fast solvers for continuous sub-problems. These appear in, e.g., primal heuristics,
convex relaxations, and bound tightening methods. Two of the best performing algorithms for
these sub-problems are Sequential Quadratic Programming (SQP) and Interior Point Methods.
In this paper we study the impact of different SQP and Interior Point implementations on
important MINLP solver components that solve a sequence of similar NLPs. We use the
constraint integer programming framework SCIP for our computational studies.

Keywords. mixed-integer nonlinear programming, interior point, sequential quadratic program-
ming, global optimization

1 Introduction

We consider nonconvex mixed-integer nonlinear programs (MINLPs) of the form

min
x∈[`,u]⊆Rn

{
c>x | gj(x) ≤ 0 ∀j ∈M, xi ∈ Z ∀i ∈ I

}
, (1)

where c ∈ Rn, M := {1, . . . ,m}, N := {1, . . . , n}, I ⊆ N , `i, ui ∈ R ∪ {±∞}, i ∈ N , and
gj : [`, u]→ R, j ∈M, differentiable. MINLPs have applications in many areas, we refer to [4] for
an overview. The state-of-the-art algorithm for solving MINLPs to global ε-optimality is spatial
branch-and-bound, see, e.g., [5, 8, 9]. Solvers that implement this method typically need to
compute local optimal solutions of nonlinear programs (NLPs). For example, primal heuristics [1]
may require the solution of an NLP sub-problem of (1) and bounding methods may require the
solution of a convex NLP relaxation [10, 13]. Two important solution methods for NLPs are the
Inter-Point Method (IPM), which has been shown to be very efficient, and Sequential Quadratic
Programming (SQP), which is said to be more robust and has better warm-starting properties
than IPM.

The goal of this paper is to investigate the impact of different NLP solvers on the performance
of an MINLP solver. For that, we consider the use of a portfolio of NLP solvers to solve a sequence
of – sometimes very similar – NLPs as they arise in various components of an MINLP solver.
With dual components we refer to algorithms that aim to strengthen a relaxation of the problem

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, benjamin.mueller@zib.de
†University Bremen, Bibliothekstr. 5, 28195 Bremen, Germany, renke.kuhlmann@math.uni-bremen.de
‡GAMS Software GmbH, c/o Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, svigerske@gams.com

1



in each node of the spatial branch-and-bound tree, while with primal components we refer to
algorithms that aim on finding an improving feasible solution. Naturally, for dual components,
finding dual feasible solutions for convex NLPs is important, while for primal components finding
a primal feasible solution of an NLP is sufficient, though the NLP might be nonconvex.

1.1 Dual Components

Often, a convex NLP relaxation of (1) is obtained by replacing constraints where gj(x) is nonconvex
over [`, u] by a convex relaxation, e.g., by using convex underestimators of gj(x) [7, 10, 11]. As
the tightness of these underestimators depends on the variable bounds, branching decisions in the
branch-and-bound tree search can allow to update the convex underestimators and thus improve
the bound that the relaxation provides for the corresponding node in the tree.

The dual components that we consider in this paper are, first, the solution of convex nonlinear
relaxations to bound the objective function c>x in a node in the branch-and-bound tree. Thus,
this component solves an NLP in potentially all nodes of the branch-and-bound tree, each being
a convex relaxation of (1) when restricted to the variable bounds that are defining the node.
Second, we consider Optimization-Based Bounds Tightening (OBBT), where possibly tighter
bounds on selected variables are computed by minimizing and maximizing each of them over a
convex relaxation of (1). Improved variable bounds can help to tighten the relaxation that is
used to bound the optimal value of (1).

1.2 Primal Components

The NLPs that are solved by primal components are often obtained after fixing some or all of the
integer variables xi, i ∈ I, in (1) to a given value and relaxing the integrality requirement on all
non-fixed integer variables. A locally optimal (or at least feasible) solution to this NLP can be
used to update the incumbent for the original MINLP, if all non-fixed integer variables take an
integral value.

Many different strategies to find a good variable fixing have been developed. For our experi-
ments, we consider an algorithm that uses the solution point computed by any primal heuristic
applied to a MILP relaxation of (1) to fix all integer variables in (1) and to provide a starting
point for the NLP solver. Additionally, we consider an NLP-diving heuristic, where first all
integrality requirements are relaxed and then iteratively the NLP is solved and, based on its
solution, additional integer variables are fixed, until either the NLP solution is feasible for the
MINLP or the NLP solver fails to find a feasible solution to the NLP. In the latter case, a
backtrack strategy may be applied to investigate an alternative for the latest variable fixing
decision.

2 Computational Results

We used a development version of SCIP1 [11] as MINLP solver. This version is based on SCIP 4.0,
but next to the already existing interface to the IPM solver Ipopt [12], it includes new interfaces to
the IPM and SQP solvers of WORHP [2] and the SQP solver FilterSQP [3]. For our experiments,
we have used SCIP with the NLP solvers FilterSQP 20010817, Ipopt 3.12.7, WORHP-IP (IPM
algorithm of WORHP 1.10.3), and WORHP-SQP (SQP algorithm of WORHP 1.10.3). Except
for FilterSQP, all solvers use MA97 from HSL2 to solve systems of linear equations. For all

1Solving Constraint Integer Programs, http://scip.zib.de
2Harwell Subroutine Library, http://www.hsl.rl.ac.uk
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Figure 1: Performance profiles for dual (first row) and primal components (second row). Left:
sum of NLP solving times for all NLPs per MINLP instance. Middle: shifted geometric mean of
same solving times. Right: sum of solving times for NLPs where at least one solver returned a
certificate of (local) infeasibility.

solvers, we disabled scaled termination tolerances and used a feasibility tolerance of 10−6, an
optimality tolerance of 10−7, and equal limits on the number of NLP iterations. We used a time
limit of one hour for SCIP.

As test set we consider all instances of MINLPLib23 (as of 2017/7/10) which can be handled by
SCIP. When comparing the NLP solvers on dual components, we additionally discarded instances
where SCIP does not detect any convex nonlinear constraint, since the convex relaxations would
otherwise be linear (SCIP uses only polyhedral relaxations for nonconvex constraints). This
leaves 327 instances. Further, when comparing on primal components, we disregard instances
with only continuous variables, i.e., I = ∅, since the primal components would not be applied
otherwise. This leaves 938 instances.

The experiments were conducted on a cluster of 64bit Intel Xeon X5672 CPUs at 3.2 GHz
with 12 MB cache and 48 GB main memory.

2.1 Dual and Primal Components

To ensure that all NLP solvers solve the same sequence of NLPs, we solve each NLP that occurs
in the considered components of SCIP independently by all solvers, but pass only the result from
the first solver back to SCIP. Table 1 contains aggregated results for the consumed time and the
success of each NLP solver. Per instance, we collect the overall time spent in each solver and the

3MINLP Library 2, http://www.gamsworld.org/minlp/minlplib2.html
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dual components primal components

solver time nfeas nopt time nfeas nopt

Ipopt 37.0 663.4 613.4 4.4 65.5 58.5
FilterSQP 7.9 634.3 616.0 2.7 58.4 51.3
WORHP-IP 24.1 610.9 494.6 4.7 52.3 47.3
WORHP-SQP 179.2 568.3 235.9 21.7 57.7 31.7

virtual best 3.9 814.4 766.5 1.0 78.7 73.8

Table 1: Aggregated results for dual and primal components.

number of NLPs where a feasible or locally optimal solution has been found. Next, we compute
the shifted geometric mean over all instances with a shift value of one second. To reduce the
impact of trivial instances, we disregarded all instances where the sum of NLP solving times was
at most one second for the virtual worst, which is the theoretical worst performing solver on each
NLP– this leaves 607 instances for the primal and 201 instances for the dual components.

Comparing the running time of the NLP solvers, FilterSQP is on both, the dual and primal
components, the fastest solver. Further, it is more than 3.1 times faster than the second fastest
solver, WORHP-IP, on the dual components. Interestingly, WORHP-IP performs 34.9% faster
than Ipopt on the dual components and 6.4% slower on the primal components. Furthermore,
the variability in performance of the NLP solvers is quite large. Choosing the best performing
solver for each NLP yields a speed-up of at least a factor of 2.0 compared to FilterSQP.

Regarding the solution quality, Ipopt found more often than all other solvers feasible and local
optimal solutions. On dual components, Ipopt found between 4.4% and 14.3% more feasible and
up to 61.5% more local optimal solutions than the other solvers. Even though WORHP-SQP finds
many feasible points, it frequently fails to converge to a local optimum. Again, the variability
with respect to the solution quality is large. Choosing the best NLP solver increases the success
rate of finding a feasible solution by 17.7% on average, and finding a local optimal point by
around 20.0% compared to Ipopt. This indicates that a dynamic and smart choice between a
portfolio of NLP solvers could allow for a considerably better performance than deciding for a
single NLP solver in advance.

Figure 1 shows different performance profiles comparing the sum and the shifted geometric
mean of NLP solving times per instance. As already observed above, FilterSQP outperforms all
solvers when considering the sum of NLP solving times on all NLPs. On the primal components,
we see that Ipopt performs more robust than the other solvers because its worst case ratio to
the virtual best is bounded by a factor of 100. A considerable part of the good performance of
FilterSQP seems to come from NLPs that might be infeasible. The speed-up on instances for
which at least one solver provided a certificate of infeasibility is much higher than on all NLPs.
This phenomena is more distinct on the dual components than on the primal components.

Due to fixing integer variables heuristically, many NLPs that appear in the primal components
turn out to be infeasible. Quickly detecting their infeasibility is important. FilterSQP seems to be
the fastest solver on these NLPs, too, but WORHP-IP performs significantly better than Ipopt.
This is due to the Penalty-IP approach of WORHP-IP, which is able to converge to infeasible
stationary points quickly without the necessity of a separate feasibility restoration phase [6].

In contradiction to the previous results, Ipopt and WORHP-IP perform better than FilterSQP
when considering the shifted geometric mean of solving times. The performance profiles in the
second column of Figure 1 show that the difference between the solvers is less distinct as when
considering the sum of solving times. This can be explained by the reduced impact of outliers in
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all all optimal

setting # solved time # solved nodes time

SCIP + Ipopt 55 984.0s 41 108312 227.7s
SCIP + FilterSQP 53 0.92% 41 0.93% 0.90%
SCIP + WORHP-IP 50 1.06% 41 1.06% 0.98%
SCIP + WORHP-SQP 49 1.17% 41 0.95% 1.09%

Table 2: Aggregated results for SCIP using different NLP solvers. The entries of the time and
nodes columns are relative to the first row.

the shifted geometric mean. Thus, the superior performance of FilterSQP could be caused by the
absence of sometimes expensive fallback strategies, which are implemented by the other solvers.
Within a MINLP solver, where not every NLP needs to be solved to optimality, such a “fast
fail” strategy seems to be advantageous. This presumption is reinforced by our observation that
tuning a solver to find more local optimal points decreased its average performance considerably.

Finally, we want to emphasize that the NLPs that arise within our experiments are typically
small. This might be a disadvantage for solvers like Ipopt and WORHP, which are designed to
solve large-scale NLPs.

2.2 Overall Performance

The impact of using different NLP solvers in SCIP is summarized in Table 2. For this comparison,
we used the selection of 115 instances from MINLPLib2 that is also used in a publicly available
MINLP benchmark4 and set a gap limit of 10−3.

Choosing a different NLP solver has a large impact on the performance and solvability of
MINLPs. Table 2 shows that SCIP with Ipopt could solve the largest number of instances.
However, SCIP performed fastest when using FilterSQP. On all instances the speed-up is 8%
compared to using Ipopt, and on all instances that could be solved by all settings, the speed-up
is even larger, namely 10%.
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