Takustr. 7
14195 Berlin
Germany

Zuse Institute Berlin

STANLEY SCHADE, THOMAS SCHLECHTE, JAKOB WITZIG

Structure-Based Decomposition for
Pattern-Detection for Railway
Timetables

ZIB Report 17-40 (Juli 2017)

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://wuw.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Structure-Based Decomposition for
Pattern-Detection for Railway Timetables*

Stanley Schade!, Thomas Schlechte?, and Jakob Witzig3

! Zuse Institute Berlin, Mathematics of Transportation and Logistics,
Takustr. 7, 14195 Berlin, Germany, schade@zib.de

2 LBW Optimization GmbH,
Obwaldener Zeile 19, 12205 Berlin, Germany, schlechte@lbw-optimization.de

3 Zuse Institute Berlin, Mathematical Optimization Methods,
Takustr. 7, 14195 Berlin, Germany, witzig@zib.de

Abstract. We consider the problem of pattern detection in large scale
railway timetables. This problem arises in rolling stock optimization
planning in order to identify invariant sections of the timetable for which
a cyclic rotation plan is adequate. We propose a dual reduction technique
which leads to an decomposition and enumeration method. Computa-
tional results for real world instances demonstrate that the method is
able to produce optimal solutions as fast as standard MIP solvers.

1 Introduction

The timetable is the starting point of a rotation planner. The objective is to
assign job sequences to the available railway vehicles, such that every trip of
the timetable is covered. In [4] the timetable is split up into distinct parts that
each consist of repeating patterns during the planning process. This leads to the
pattern detection problem, which was modeled using a mixed integer program.
In this paper we investigate alternative solution strategies for this model in
comparison to solving the model using a generic MIP solver.

In Section 2 we give an outline what the pattern detection problem is and how
it arises. Subsequently, we present two greedy heuristics and a dual reduction
that divides the problem into components that can be enumerated. In Section 4
we evaluate the run-time and accuracy of the presented algorithms.

2 Pattern-Detection

With regard to timetable patterns, it is only relevant whether two days of the
timetable are equal with respect to the trips that are operated on these days.

*The work for this article has been conducted within the Research Campus Modal
funded by the German Federal Ministry of Education and Research (fund number
05M14ZAM).

2 Stanley Schade, Thomas Schlechte, and Jakob Witzig

Hence, a number can be assigned to each day, such that these numbers for
two days are equal if and only if the trips to be operated agree. Note that the
timetable has a weekly structure. Thus, generally two days are only compared
if they correspond to the same weekday, e.g. two consecutive Mondays. As a
result, we define a timetable to be a finite sequence of integers. The length of
this finite sequence has to be a multiple of seven. Any subsequence of seven
consecutive days of a timetable is a pattern. Because of the cyclic structure
of patterns, we agree to start with the day that corresponds to Sunday, then
Monday, Tuesday and so on if we write them down. An example of a timetable
isT=(,1,1,1,1,2,2,1,1,1,1,1,2,2,2,1,1,1,1,1,2). Let us assume that the
first day of T is a Sunday. Then, it contains the patterns A = (1,1,1,1,1,2,2),
B=1(2,1,1,1,1,2,2) and C = (2,1,1,1,1,1,2). The pattern A matches the first
14 days of T', B matches days 8 to 20 and C matches the last seven days. If a
pattern matches at least 8 consecutive days of a timetable, we say that it covers
these days. Hence, A also covers the first 14 days of T and B also covers the
days 8 to 20, but C does not cover any part of 7. A more formal definition of the
cover relation can be found in [4], but is left out here due to space constraints.
More information on cyclic rotation planning with a period of one week can be
found in [1]. During the planning process, the timetable for a year is developed
gradually to include more and more details. A part of the timetable that is
covered by a pattern has a weekly periodic structure. Therefore, one can also
use a rotation plan with such a structure for this part. We aim to identify a
few patterns that cover as much of the timetable as possible. For each of these
patterns a rotation plan needs to be developed. The pattern detection, thus, is
a useful tool in early planning stages. Determining patterns that cover parts of
a timetable can be done by simple linear preprocessing. In practice, one aims to
select only a few relevant patterns that cover as much of the timetable as possible,
since each pattern corresponds to a rotation plan that needs to be developed.
Parts of the timetable usually also lack a periodic structure and are not covered
by patterns, e.g., extended holiday periods like Christmas. The following mixed
integer program to identify relevant patterns was presented in [4].

min—ixi+8§:yi (1)
i=1 j

s.t. i — Z y; <0 Vi=1,...,n (2)
j: j covers i
%'16[0,1] Vi=1,...,n
y; € {0,1} Vi=1,....,m

Let n be the number of days and m the number of patterns. Setting the
binary variable y; to 1 means that pattern j is selected. In an optimal solution
a day 4 is covered if and only if x; = 1. In this case the constraint (2) ensures
the existence of a pattern j that covers .

Title Suppressed Due to Excessive Length 3

U I S O % RSN RNSRISR SRR
Yo [TTITTIIIT] Y [
Ys IR 4

Fig. 1. Structure-based decomposition. Long pattern 1 covers 9 days exclusively (left).
This pattern will be part of at least one optimal solution. The search space decomposes
into two independent parts (right) after removing pattern 1, all days in C~*(1), and all
days covered by 1 that are in C~*(2) and C™*(3).

3 Structure-Based Propagation

In this section, we present two structure-based procedures for solving the pat-
tern detection problem presented in the previous section. One procedure aims to
decompose the search space into independent components, such that the result-
ing components are (hopefully) easier to solve. The other procedure is a greedy
heuristic.

In the following, we denote set of patterns j covering a day i by C(i). Anal-
ogous, the set of days i that are covered by a pattern j is denoted by C~1(3).
Moreover, the set of days ¢ that are covered by a unique pattern j is denoted by

UG)={i=1,....,n: j€C() and |C(¥)] = 1}.

We call a pattern j a long pattern if and only if [U(5)] > 9.

Due to the fact that choosing a pattern that covers at most seven days will
lead to a deterioration of the objective value, every y; with [C~1(j)| < 7 can be
fixed to 0. In fact, such patterns are ruled out by the preprocessing.

Decomposition by Days The special structure of the objective function of (1)
allows us to determine patterns that will be part of at least one optimal solution.
Selecting a long pattern always leads to an improvement of the objective func-
tion value by at least 1, because they cover at least 9 days that are covered by no
other pattern. Usually, reductions guaranteeing that at least one optimal solu-
tion is preserved are called dual reductions, e.g., propagation with the objective
function. On the other hand, a reduction that preserves all optimal solutions is
called primal. In our case, we use a dual argument, i.e., the objective function,
but we can guarantee that all optimal solution will be preserved.

Two patterns are called overlapping if and only if they mutually cover at
least one day of a timetable. Consider a pattern j that has no overlap with any
other pattern. Clearly, whether we set y; to 0 or 1 does not influence the other
patterns. If j overlaps with a pattern k, the objective function value may be
improved by setting y; or y;, to 1. But it can be possible that the objective value
does not improve if both variables are set to 1 at the same time. Let us call two
patterns j and k connected if they overlap or they are both connected to a third
pattern [. In our decomposition approach we aim to split the search space into
smaller pieces that are (hopefully) easier to solve, e.g., by complete enumeration
or a MIP solver. To decompose an instance, we first remove all long patterns as

4 Stanley Schade, Thomas Schlechte, and Jakob Witzig

Algorithm 1 Structure-Based Propagation Procedure

1: (z,y) < (0,0) > initialize zero solution
20 X+ {1,...,n}, Y+ {1,...,m} > initialize index set of days and patterns
3: for all j € {1,...,m} with [U(j)| >9 do > apply trivial fixings
4: yi L, YV Y\J

5: forall icC'(j) do

6: T 1; X+ X\

7: for all k€Y withie€ C ' (k) do

8: CU k) «C (k) \i

9: while X # (0 do

10: s+ ¢y(a, B) > get current scores
11: Get a permutation 7 such that Smj 2 Smiia forall j €y
12: success < false
13: for j=1,...,]Y| do > find pattern to fix with highest scores
14: if |C’1(7rj71)\ >9 then
15: Y1 LYY \ 7r;1; success <— true
J
16: for all ic 671(7‘!’771) do
17: i1, X+~ X\
18: for all k€Y withieC '(k) do
19: C k)« C (k)\i
20: break
21: if lsuccess then > stop if no pattern was chosen
22: break

23: return (z,y)

depicted in Figure 1. In the computational experiments, we used an enumeration
approach and never had to enumerate more than 400 solutions with this strategy.
But potentially, an instance could contain patterns that cover several different
parts of the year and foil the decomposition. In this case using a MIP solver
would be superior with regard to performance.

Heuristic A simpler approach is to score patterns and to greedily choose the
patterns with the highest score one after another. We use the length of a pattern
or the number of days that are uniquely covered as its score. To generalize this,
we can use a scoring function ¢y (a, 8) = (a - [C71(4)| + B - |U(j)])jey. The
heuristic looks for a pattern j with highest score, such that setting y; to 1 leads
to an improvement of the objective value. If no such pattern can be found,
the heuristic terminates. Otherwise, the days covered by j are removed from
the timetable. Thus, the scores of the patterns that overlap with j need to be
recalculated. To avoid unnecessary update steps, it is reasonable to select all long
patterns beforehand. The full heuristic is given as pseudocode in Algorithm 1.
Note that the heuristic may lead to suboptimal solutions. Say, we use the
length of patterns as score, i.e., « = 1,3 = 0. We have three patterns 1, 2 and 3
of lengths 10, 11 and 10, respectively. They are arranged in a similar way as the
patterns in Figure 1 with 1 and 2 having an overlap of 3 days and 2 and 3 having
an overlap of 2 days. In this case the heuristic would first select 2, because it is

Title Suppressed Due to Excessive Length 5

the longest pattern, and set y, to 1. However, it can easily be checked that we
have y; = y3 = 1 and yo = 0 for the optimal solution. A similar example can
also be constructed for the case a = 0,8 = 1.

4 Computational Results

The decomposition procedure presented in Section 3 is used to decompose the
problems into smaller pieces, which are solved by a complete enumeration af-
terwards. In the following we will refer to this by Enumerate. The heuristic (cf.
Algorithm 1) runs with the scoring function ¢y and parameters (1,0) and (0, 1).

A test set of 22 real-world instances provided by DB Fernverkehr AG is used.
The number of patterns is shown in Table 1. All instances cover a time horizon
of 364 days. All procedures were implemented in Python. The experiments were
performed on a Dell Precision Tower 3620 with 3.50 GHz and 32 GB main
memory.

In Table 1 we use Enumerate as a base line, for which we give the optimal
objective value and running times in ms. For the heuristics, we instead give the
optimality gap? and factors w.r.t. the base line. In [4] the arising MIP (1) was
solved using the academic non-commercial mixed integer programming solver
SCIP [3] and the according python interface PySCIPOpt [2]. However, all pattern
detection problems as described in this article have a time horizon of one year
and even for the largest instance the number of arising patterns cannot exceed 52.
Such instances are not challenging for a sophisticated MIP solver and, therefore,
we omit the SCIP running times in Table 1. Surprisingly, the heuristics determine
the optimal solution in all cases, but one. However, as demonstrated in Section 3,
examples where they do not find an optimal solution are easy to construct.
In contrast to that Enumerate guarantees optimality and is still competitive
with respect to the running time. Enumerate could even be further improved by
solving the independent subproblems in parallel.

5 Conclusion

In this paper we presented an enumerative decomposition method and a heuristic
for solving the pattern detection problem that arises in the context of railway
rotation planning. It is a pity that the real-world instances are not challenging
for a generic MIP solver. However, all presented methods perform quite good
and it is funny that there is only one “bad” instance where the heuristic did not
find an optimal solution.

Acknowledgments The work for this article has been conducted within the
Research Campus Modal funded by the German Federal Ministry of Education
and Research (fund number 05M14ZAM).

“Gap to optimality: |primalbound — dualbound/ min{|primalbound|, |dualbound|}|
if both bounds have same sign, or infinity, if they have opposite sign.

6 Stanley Schade, Thomas Schlechte, and Jakob Witzig
Table 1. Detailed computational results on 22 real-world instances.

Instance Enumerate oy(1,0) ¢y(0,1)
Name m ObjVal Time Gap TimeQ Gap TimeQ
DB1 23 -201 0.57 0.00% 0.60 0.00% 0.59
DB2 20 -230 0.53 0.00% 0.49 0.00% 0.49
DB3 29 -187 0.69 0.00% 0.81 0.00% 0.81
DB4 26 -205 0.61 0.00% 0.66 0.00% 0.66
DB5 21 =311 1.27 0.00% 0.18 0.00% 0.17
DB6 25 -256 1.54 0.00% 0.19 0.00% 0.19
DB7 18 -295 0.94 0.00% 0.20 0.00% 0.19
DB8 9 -322 0.44 0.00% 0.36 0.00% 0.35
DB9 28 -116 0.72 0.00% 0.91 0.00% 0.91
DB10 18 -281 0.59 0.00% 0.35 0.00% 0.35
DB11 15 -301 0.64 0.00% 0.24 0.00% 0.24
DB12 11 -323 0.80 0.00% 0.15 0.00% 0.19
DB13 16 -312 0.52 0.00% 0.27 0.00% 0.26
DB14 23 -225 4.84 0.00% 0.07 1.24% 0.09
DB15 24 -117 0.86 0.00% 0.46 0.00% 0.47
DB16 11 -318 1.34 0.00% 0.16 0.00% 0.16
DB17 10 -330 0.48 0.00% 0.28 0.00% 0.28
DB18 21 -215 0.57 0.00% 0.45 0.00% 0.45
DB19 12 -329 0.77 0.00% 0.17 0.00% 0.17
DB20 10 -339 2.36 0.00% 0.07 0.00% 0.07
DB21 16 -250 0.49 0.00% 0.42 0.00% 0.41
DB22 20 -282 1.01 0.00% 0.23 0.00% 0.23
References
1. Borndérfer, R., Reuther, M., Schlechte, T., Waas, K., Weider, S.: Integrated Opti-

mization of Rolling Stock Rotations for Intercity Railways. Transportation Science
50(3), 863-877 (2016)

Mabher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.:
PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization
Suite. In: Mathematical Software — ICMS 2016. vol. 9725, pp. 301 — 307 (2016)
Mabher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hen-
del, G., Koch, T., Liibbecke, M.E., Miltenberger, M., Miiller, B., Pfetsch, M.E.,
Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y.,
Weninger, D., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 4.0. Tech. Rep.
17-12, ZIB, Takustr.7, 14195 Berlin (2017)

Schade, S., Borndérfer, R., Breuer, M., Grimm, B., Reuther, M., Schlechte, T.,
Siebeneicher, P.: Pattern Detection For Large-Scale Railway Timetables. In: Pro-
ceedings of the IAROR conference RailLille (2017)

