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Generic Construction and Efficient Evaluation of
Network DAEs and Their Derivatives in the

Context of Gas Networks
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Abstract. We present a concept that provides an efficient description of
differential-algebraic equations (DAEs) describing flow networks which
provides the DAE function f and their Jacobians in an automatized
way such that the sparsity pattern of the Jacobians is determined before
their evaluation and previously determined values of f can be exploited.
The user only has to provide the network topology and local function
descriptions for each network element. The approach uses automatic dif-
ferentiation (AD) and is adapted to switching element functions via the
abs-normal-form (ANF).
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1 Introduction

The dynamic behavior of flow networks is often modeled by differential-algebraic
equations, cf. [7]. The network is considered as an oriented graph G = (N , E)
with a node set N and a hyper edge set E . A hyper edge E ∈ E is a non-empty
ordered tuple of nodes from N . Each hyper edge Ei ∈ E represents a network
element such as a junction, pipe, valve or compressor station. The element model
is then given by an element function f̃i : Rmi ×Rmi ×R→ Rni imposing

f̃i(ẋi(t), xi(t), t) = 0. (1)

When simulating gas networks, t refers to the time and x usually contains pres-
sures and flows. Depending on the topology some element functions may share
some of their variables with others. If, for example, two pipes represented by
Ei, Ej ∈ E are sharing the same junction, then their pressures associated to that
junction are equal.

Further, it is important to mention that f̃i may not depend on all components
of ẋi. And in the case of static elements ẋi has even no influence. By taking
the union x of all needed xi, i. e. ignoring redundant variables, and incerting
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hyperedge functions that describe certain xi explicitly, we obtain the whole flow
network model as

f(ẋ(t), x(t), t) =

 f1(ẋ(t), x(t), t)
...

fm(ẋ(t), x(t), t)

 = 0 (2)

with fj(ẋ(t), x(t), t) for j = 1, ...,m ≤ |E| being deduced from f̃i(ẋi(t), xi(t), t)
for i = 1, ..., |E|. Notice that the functions fj may be not smooth at certain points.
This is particularly the case when valves and limiting bounds are described
(usually by min- and max-evaluations).

Several solvers have been developed to solve DAEs of the form (2), e. g. DASPK
from L. Petzold, ode15i (in Matlab) from L.F. Shampine and IDAS from SUNDI-
ALS. Such solvers often run more efficiently and more stable if the user provides
not only evaluations of the residual function f(y, x, t) but also evaluations of the
partial derivatives fy(y, x, t) and fx(y, x, t).

In this paper we present a concept that automatically provides functions f ,
fy and fx. The user has to provide only the network graph G, the element

functions f̃i and their sparsity patterns. Thereby, the sparsity patterns of fy
and fx are determined prior to their evaluation. Previously determined values
of f , fy and fx can be exploited. The presented approach focusses on the use of
automatic differentiation [4] but could also use other variants of differentiation.
For treating non-smooth functions as min() and max() we use an approach via
their abs-normal-form representation, see Section 3.

2 Jacobian representation

We consider the structure of the nonlinear functions f to be differentiated for
the determination of fy and fx. Fixing x = x∗, t = t∗ and y = y∗, t = t∗,
respectively, we have to differentiate the functions

f(y) :=

 f1(y, x∗, t∗)
...

fm(y, x∗, t∗)

 , f(x) :=

 f1(y∗, x, t∗)
...

fm(y∗, x, t∗)

 (3)

in order to provide fy and fx. Since we are interested in an element-wise compu-
tation of f′(y) and f′(x) the CSR format (compressed row format [1]) is a suitable
choice to represent fy and fx.
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3 Treatment of switching elements using the
abs-normal-form

In the case of switching elements, we need min/max-evaluations. Consequently,
the element functions f̃i are only piecewise differentiable (PD). In order to treat
them, we introduce the following representation of functions.

A function f is called in abs-normal-form (ANF, [5]) if there exist twice differ-
entiable functions F and G such that the function value f(x) can be computed
via

z = G(x, |z|), f(x) = F (x, |z|)

where Gw(x,w) ≡ ∂
∂wG(x,w) is of strictly lower triangular form. The vector z

represents switching variables and is uniquely determined. Moreover it can be
evaluated component-wise in a forward fashion, because of the special nilpotent
form of Gw. So z = G(x, |z|) may be understood as an explicit evaluation of
z for given input x. Notice that all piecewise linear functions have an ANF
representation [2].

A first order Taylor expansion of F and G at (̊x, ẘ) ∈ Rn+s followed by a
subsequent substitution ẘ = |̊z|, ∆w ≡ |̊z + ∆z| − |z(̊x)|, where z̊ ≡ z(̊x) =
G(̊x, |̊z|) leads to a piecewise linear operator in ANF mapping ∆x ≡ x − x̊ to
f(̊x) +∆f:(

z̊ +∆z
f(̊x) +∆f

)
=

(
G(̊x, |̊z|)
F (̊x, |̊z|)

)
+

[
Gx(̊x, |̊z|) Gw (̊x, |̊z|)
Fx(̊x, |̊z|) Fw (̊x, |̊z|)

]
·
(

x− x̊
|̊z +∆z| − |̊z|

)
, (4)

that satisfies the approximation property f(x) = f(̊x) + ∆f + O(‖x − x̊‖2). The
block matrix of the piecewise linear operator (4) can be stored in a CSR fashion
as well as the Jacobians in the differentiable case.

For standard DAE solvers we have to provide one suitable representative f′(x)
for the Bouligand subdifferential ∂Bf(x). This can be derived from equation (4)

f′(x) := J + Y Σ(I − LΣ)−1Z,

[
Z L
J Y

]
:=

[
Gx(̊x, |̊z|) Gw (̊x, |̊z|)
Fx(̊x, |̊z|) Fw (̊x, |̊z|)

]

using a suitable signature Σ, see [2].

A better way would be to exploit (4) directly in the numerical integration scheme
for the differential-algebraic equation. It is demonstrated in [3] for the implicit
Trapezoidal method for the integration of ordinary differential equations.
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Then, the ANF operators propagated from network structures appear in a more
complex form compared to (4):

zI

yI

zII

yII

...
zK

yK


=



cI

bI

cII

bII

...
cK

bK


+



• GI
w ∗ ∗

• F I
w ∗ ∗

∗ • GII
w ∗

∗ • F II
w ∗

...
...

...
∗ ∗ • GK

w

∗ ∗ • FK
w


·



xI

|zI |
xII

|zII |
...
xK

|zK |


. (5)

Here ∗ (typically empty or sparse) and • (typically sparse or dense) are sub-
matrices of Gj

x and F j
x , respectively. The horizontal lines indicate element blocks.

4 Network structure preserving representation and
implemention

First, for each fi, we realize the Jacobian evaluations or, if necessary, their
ANF representations by a new class, which we call partial CSR. Contrary, each
ANF representation of f is stored in a so-called complete CSR class, obtained by
merging all the corresponding partial CSRs.

These CSR classes implement slightly modified versions of the CSR format, each
comprising a data-, indices- and indptr-array as well as a shape-attribute.
Further, there is implemented a new attribute nabs containing the number of
switching variables. In contrast to the classical CSR format, the indices-array
shall be initialized as a signed array to mark all indices of nonzero entries from
Gw and Fw by signs. In doing so we can distinguish coefficients for x from those
of the absolute value of the switching vector |z|.

The relationship between both classes and their individual attributes are illus-
trated in Figure 1. Here it becomes clear that the corresponding partial CSRs
are collected in a list partialCSRs and parsed, as the only argument, to the
constructor of complete CSR. On the other hand partial CSR objects are cre-
ated with the arguments nnzPerRow, ncols and nabs. It is nnzPerRow a list
containing the numbers of variable dependencies per component of the element
function f̃i. Further, ncols is the amount of variables contributed to the whole
DAE system (2).

The partial CSR object proceeds as follows: A local indptr is created as the
cumulative sum of nnzPerRow. Additional informations are derived, such as nnz
the number on non zero entries of the local CSR and nrows the number of rows
of the CSR. The signature = sign(z) stores the sign-vector of switching vari-
ables and is needed for certain evaluation routines.
The complete CSR proceeds in a different manner: Its indptr-array gets aggre-
gated from the indptr-arrays of the elemental partial CSR instances. Thereafter,
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the lengths of the indices- and data-array is determined, the arrays can be allo-
cated and local views are provided to the partial CSRs. In this way an arbitrary
number of complete CSR instances for any purpose, e. g. all arguments, can be
created dynamically.

Fig. 1: Schema to manage Jacobians and ANFs of flow networks in CSR format.

5 Jacobians for a gas network example

We tested the GasLib40 instance from the open gas network library [6]. Figure
2 shows the topology of the network and fingerprints of the Jacobians fy and fx.
The Jacobian fy is constant. The Jacobians fx is in ANF representation, due
to check valve functionality of two (modified) resistors. Their partial CSRs are
displayed as enlarged section on top of Figure 2. The first and third row of the
partial CSRs represent the data of Gx and Gw for the determination of the two
switching variables.
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Fig. 2: Modified version of GasLib-40 [6], Fy and Fx are fingerprints of fy and fx,
respectively. On the top is a zoom of the fingerprints of the two partial CSRs belonging
to the switching elements of the nework (two check valve resistors).
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