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Abstract
The task of the train timetabling problem or track allocation problem is to find conflict free
schedules for a set of trains with predefined routes in a railway network. Especially for non-
periodic instances models based on time expanded networks are often used. Unfortunately, the
linear programming relaxation of these models is often extremely weak because these models
do not describe combinatorial relations like overtaking possibilities very well. In this paper we
extend the model by so called connected configuration subproblems. These subproblems perfectly
describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a
Lagrangian relaxation approach we solve several of these subproblems together in order to produce
solutions which consist of combinatorially compatible schedules along the track segments. The
computational results on a mostly single track corridor taken from the INFORMS RAS Problem
Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed,
for this instance the solution of the Lagrangian relaxation is already integral.
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1 Introduction

The train timetabling problem (TTP) or track allocation problem aims for determining
schedules for a set of trains in a railway network such that certain technical constraints are
satisfied. The authors of [7] provide a recent overview of railway timetable design in practice
and the combinatorial optimisation models that have been proposed for this application. They
identify and compare two major streams of combinatorial optimisation models for railway
timetabling – periodic timetabling based on the classic Periodic Event Scheduling Problem
(PESP) and aperiodic train timetabling. The problem of timetabling is closely related to
the more operational task of train dispatching, see [5] and [19]. In these applications models
based on disjunctive formulations are successfully in use which where introduced for classic
job scheduling in [21].

In this work, we focus on the non-periodic case which goes back to the seminal paper
of [2]. The authors introduced a time index model which is the basis for a vast amount of
literature in which this model was used or extended in various aspects or applications, see
the following selection [1, 4, 6, 8, 9].

We investigate the time index model variant of the train timetabling model and in
particular improve the quality of the relaxation. Our model is based on configuration
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11:2 Strong Relaxations for the TTP Using Connected Configurations

networks introduced in [1], which model valid orderings and sequences of train on a single
track in the network. A similar approach describing feasible configurations using comparability
graphs for train schedules has been investigated in [3]. Extending first ideas from [12], the
new approach is to represent combinatorial properties like overtaking possibilities explicitly
in the model. Unlike [12], which only handled track segments without overtaking possibility,
this includes cases where a limited siding capacity is available along a sequence of tracks.

In a Lagrangian relaxation approach the TTP is solved exactly on small parts of the
network (one or two infrastructure arcs) for small subsets of trains (up to three). By
carefully solving the subproblems not in isolation but together combinatorial compatibility
is guaranteed along a sequence of tracks. We will illustrate the power of the new model
and solution approach in some preliminary but very encouraging numerical tests. Indeed,
our Lagrangian relaxation approach is able to compute an integer solution for a small but
challenging instance of 14 trains on a corridor consisting of single and double track parts
and few additional overtaking places.

The paper is organised as follows. Section 2 formally introduces the TTP. Section 3 re-
capitulates the classic integer programming model based on a time indexed graph formulation
and the configuration based models. Section 4 explains the entire solution approach based
on Lagrangian relaxation. We will introduce the concept of strong connected configurations
in Section 5 in order to model orderings of small subsets of trains for critical parts of the
network. The computational experiments are presented in Section 6 showing that the new
model and solution approach are clearly much stronger than the classic models. Finally, we
conclude and give suggestions for future work in Section 7.

Definitions and Notations

In this paper we use the following notation. We mainly use directed graphs G = (V,A),
which may contain loops (u, u) ∈ A. For a directed arc a = (u, v) ∈ A we write uv and the
arc running in the opposite direction is ←−a = (v, u) (if it exists). Given a subset of the nodes
V ′ ⊆ V , then G[V ′] denotes the subgraph induced by V ′. Let x, y ∈ Rn be two vectors, then
the inner product is 〈x, y〉 :=

∑n
i=1 xiyi. For a subset of the indices I ⊆ {1, . . . , n} the vector

xI refers to the components of x corresponding to I.

2 The Train Timetabling Problem

In this section we describe the Train Timetabling Problem (TTP). We focus with our
description on the aspects that we need in our subsequent analysis and ignore many properties
that have been considered in the literature, in particular for practical applications.

We consider an infrastructure (railway) network GI = (V I , AI). The nodes V I correspond
to stations, track switches or crossings in the network and the arcs AI correspond to physical
tracks or track sections. If trains might stop and wait at some node v ∈ V I (e. g. if v is
a station), then vv ∈ AI , otherwise, if trains must not wait at v (e. g. if v is a crossing),
then vv /∈ AI . Next we have a finite set of trains R with predefined and fixed routes
Gr = (V r, Ar) ⊆ GI , r ∈ R, i. e. Gr corresponds to a path in GI with the exception that
it might contain loops vv ∈ Ar if train r is allowed to wait at v. Each train has a starting
time ~tr ≥ 0 and the time it takes for train r to traverse arc a ∈ Ar is called its running time
~tra ∈ N0 (in minutes). If a = vv ∈ V r, i. e. if a is a loop corresponding to waiting at v, we set
~tra := 1.

Considering all trains running in the network together, certain technical and operational
constraints must be satisfied. We deal with two main conditions, station capacities and
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Figure 1 Small stations with absolute and directional capacities.

headway times. First, each node is assigned an absolute capacity and each arc is assigned
a directional capacity c : V I ∪ AI → N. The absolute capacity cv for a node v ∈ V I is the
maximal total number of trains that may visit v at the same time. The directional capacity
ca for an arc a = (u, v) ∈ AI is the total number of trains reaching v over a that may be
at v at the same time. These two capacities suffice to model small stations and overtaking
places quite accurately, see Figure 1.

Second, for each pair of trains r, r′ ∈ R using the same infrastructure arc a ∈ AI ,
a ∈ Ar ∩ Ar′ , there is a minimal headway time t̃ar,r′ ∈ N0, which is the minimal time (in
minutes) that train r′ must wait before entering arc a after r has entered a. Note that
headway times may also exist for trains running in opposite directions if a corresponds to a
physical single line track. In slight abuse of notation we use for this case t̃ar,r′ , too, although
a = (u, v) ∈ Ar and ←−a := (v, u) ∈ Ar′ . We will assume throughout the paper that headway
times satisfy the triangle inequality t̃ar,r′ + t̃ar′,r′′ ≥ t̃ar,r′′ , see [20] for an in-depth analysis of
headway times.

The goal of the TTP is to determine precise arrival and departure times for each train at
each of its stations so that all trains run “as early as possible” (we deliberately do not make
this more specific at this point) such that the compound schedule satisfies the capacity and
headway restrictions.

3 The Model for the TTP

Several models for the TTP have been proposed in the literature. We use one successful
approach that is based on time discretised and time expanded networks. Let T = {1, 2, . . . } =
N be the set of discretised time steps (e. g. in minutes). Then GrT = (V rT , ArT ) is the associated
time expanded graph with (see Figure 2)

V rT := V r × T , ArT :=
{

((u, t), (v, t+ ~truv)) : uv ∈ Ar, t ∈ T
}
.

A feasible train run or train schedule is a path P r ⊆ GrT starting in a node corresponding to
the first station (at some arbitrary time t ∈ T ) and ending in a node corresponding to the
last station (at some arbitrary time). We denote the set of all feasible schedules by Pr. In
order to model the TTP as a mixed integer program (MIP) we introduce binary variables
xr : ArT → {0, 1}, r ∈ R, with the usual interpretation xra = 1 ⇐⇒ a ∈ P r ∈ Pr if P r is the
path (schedule) selected for r. With a slight abuse of notation we write xr ∈ Pr if xr is the
incidence vector of a path P r ∈ Pr.

Next we model the capacity and headway constraints. For a given infrastructure arc
a ∈ AI we denote by Ra :=

{
r ∈ R : a ∈ AI

}
the set of trains running on this arc. The
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Figure 2 Train graph Gr and its time expansion Gr
T . Nodes at which r may wait have a loop.

The red path corresponds to the train’s timetable.

absolute and directional capacity constraints can be formulated as follows:∑
r∈R

a=((u,tu),(v,t))∈Ar
T

xra ≤ cv, v ∈ V I , t ∈ T , (1a)

∑
r∈Ruv

a=((u,tu),(v,t))∈Ar
T

xra ≤ cuv, uv ∈ AI , u 6= v, t ∈ T . (1b)

Note that the left-hand side of (1b) sums only over the (arcs of the) trains Ruv actually
using the arc uv ∈ AI , whereas (1a) sums over all trains arriving at v ∈ V I independent of
the source node.

In order to model headway constraints we use the idea of configurations suggested in [1].
First observe that two train run arcs ((u, tu), (v, tv)) ∈ Ar and ((u, t′u), (v, t′v)) ∈ Ar

′ with
u 6= v violate the headway restrictions on infrastructure arc a = (u, v) ∈ AI if and only if

−t̃ar,r′ < tu − t′u < t̃ar′,r, (2)

(i. e. if the departure times at u are too close). This allows to define a conflict graph
Ghw = (Vhw, Ehw) on the run arcs, i. e.

Vhw := {(a, r) : a = ((u, tu), (v, tv)) ∈ Ar, u 6= v, r ∈ R} ,

Ehw :=
{
{(a, r), (a′, r′)} : a = ((u, tu), (v, tv)) ∈ Ar, a′ = ((u, t′u), (v, t′v)) ∈ Ar

′
,

u 6= v and r = r′ or a, a′ satisfy (2)
}
.

Note that each train r ∈ R can run only once on each infrastructure arc, so two different
runs (a, r), (a′, r) of the same train (on the same infrastructure arc) are implicitly in conflict.
The configuration model suggested by the authors in [1] works by enforcing the headway
restrictions independently on each infrastructure arc. For this, let uv ∈ AI , u 6= v, and
denote by

V uvhw = {(a, r) ∈ Vhw : a = ((u, tu), (v, tv)) ∈ ArT , r ∈ R}

the set of all run arcs corresponding to some train running on uv. A configuration is
the characteristic vector of some set of conflict free train runs on uv. In other words, a
configuration corresponds to a stable set in the conflict graph Guvhw := Ghw[V uvhw ]. We set

Cuv := {x : V uvhw → {0, 1} : x is a characteristic vector of a stable set in Guvhw} .
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In order to use configurations in the model, we introduce configuration variables zuv : V uvhw →
{0, 1}, uv ∈ AI , and coupling configuration constraints

xra = zuv(a,r), a = ((u, tu), (v, tv)) ∈ ArT , r ∈ R, uv ∈ AI . (3)

Constraints (3) couple the train graphs with the configurations and ensure that a train may
run on an arc a ∈ ArT if and only if that arc is allowed in the selected configuration.

The objective function is very simple and taken from [11]. For a train run arc a =
((u, tu), (v, tv)) ∈ ArT , u 6= v, r ∈ R, let tv be the earliest possible arrival time of r at v and
`ruv := ~truv/

∑
a∈Ar

~tra the relative length (running time) of arc uv compared to the complete
train path. Let δ > 0 be the discretisation step size (in seconds) and αr, r ∈ R, be some
specific weight factor αr > 0. The cost of arc a = ((u, tu), (v, tv)) ∈ ArT is

wra =
{
αr · `ruv · (δ · (tv − trv))

2
, u 6= v,

0, otherwise.
(4)

These costs penalise a late arrival of a train relative to the earliest possible arrival time
quadratically at each node the train visits. So each train aims to run as early as possible with
large delay of one train being more expensive than small delays distributed to several trains.
Note that the structure of this cost function allows to use the dynamic graph generation
technique introduced in [14]. In particular, there is no need for an a-priori bounded maximal
time index because the network grows automatically as required during the solution process.

Finally, the configuration formulation of the TTP is

minimise
{∑
r∈R
〈wr, xr〉 : xr ∈ Pr, r ∈ R, za ∈ Ca, a ∈ AI , (1), (3)

}
. (TTP-cfg)

Constraints xr ∈ Pr correspond to paths in GrT , r ∈ R, and can be formulated by linear
flow constraints. Constraints za ∈ Ca, a ∈ AI , are much more challenging, because they
correspond to a stable set polytope in Gahw, a ∈ AI . The authors in [1] used a weaker
formulation via so called configuration networks, which can also be described by linear flow
constraints. The model (TTP-cfg) therefore gives rise to a MIP formulation for the TTP,
which could, in principle, be solved by state-of-the-art solvers. This approach, however, is
computationally intractable even for small instances. Therefore, we use another solution
approach to be described in the next section.
I Remark. Another typical formulation (see, e. g. [11]) can be obtained by replacing configura-
tions and constraints (3) by inequalities of the form xra+xr′

a′ ≤ 1 for all {(a, r), (a′, r′)} ∈ Ehw.
These inequalities forbid the use of train run arcs that violate headway restrictions. However,
this formulation is often even weaker than the configuration formulation [1] and will not be
discussed in this paper.

4 Solution Approach

Standard solution approaches for (TTP-cfg) are usually based on column generation or
Lagrangian relaxation, see, e. g. [1]. In this work we focus on Lagrangian relaxation, which
we used in all of our tests.

Lagrangian relaxation is based on the following observation: without the coupling con-
straints (1) and (3), problem (TTP-cfg) decomposes into smaller, independent subproblems.
Therefore, instead of enforcing these constraints their violation is penalised in the objective
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function. Write the coupling constraints (1) as
∑
r∈RM

r
capx

r ≤ c for appropriate matrices
Mr

cap, r ∈ R. Then the Lagrangian dual problem is

max
ycap≥0
ycfg free

[
−cT ycap +

∑
r∈R

min
xr∈Pr

〈
wr + (Mr

cap)T ycap + ycfg, x
r
〉

+
∑
a∈AI

min
za∈Ca

〈−ycfg, za〉

]
.

An optimal solution of this problem gives a lower bound on the optimal objective value of the
primal problem (TTP-cfg). Because the minimum over affine functions is concave and the
sum of concave functions is concave as well, the term within the max is a concave function in
(ycap, ycfg). Hence (by taking its negative) the above problem is a convex optimisation problem
that can be solved using, e. g. subgradient or bundle methods. In our implementation we use
a proximal bundle method [17] that in addition to optimal multipliers ycap, ycfg computes
approximate (fractional) primal solutions xr, r ∈ R. These algorithms require the solution
of the subproblems

min
xr∈P r

〈
wr + (Mr

cap)T ycap + ycfg, x
r
〉
, r ∈ R, (5)

min
za∈Ca

〈−ycfg, za〉 , a ∈ AI , (6)

for given Lagrangian multipliers ycap, ycfg. The exact algorithmic details of this solution
approach are not important in this paper, as we focus on the modelling aspect. We refer the
reader to [11] for more information.

Note that solving the subproblems (5) is easy (because they are shortest-path problems
in acyclic networks, see [11]), but solving (6) corresponds to solving a weighted stable-set
problem in Gahw, which is hard in general. However, if the number of trains is sufficiently
small, the subproblems (6) can be solved efficiently. This and the observation, that in many
instances typically only few trains compete for the same physical track at the same time,
motivate the strong configuration approach to be described in the next section.

5 Strong Configurations for Small Subsets of Trains

One important step in solving (TTP-cfg) is the computation of lower bounds, e. g. by the
Lagrangian relaxation approach sketched in the previous section. The quality of these bounds
has a major impact on the performance and the solution quality of the overall solution
process. However, even if configuration subproblems (6) are solved exactly, optimal solutions
of the relaxation are very weak, even for trains running on a corridor. Figure 3 shows a
typical situation: two trains run on a sequence of single line tracks, such that no overtaking is
allowed on the intermediate nodes. For instance, the intermediate nodes could be small local
stations without overtaking/passing possibility or the arcs represent a sequence of blocking
areas (guarded by signals) which must not be occupied by more than one train. In particular,
stopping and waiting at these intermediate nodes is allowed. Obviously, because there is no
overtaking possibility, in a feasible solution one train must go first through the complete
sequence of tracks and then the other. However, the fractional solution can easily exploit
the weak formulation: both trains can run fractionally in short succession and pass at an
intermediate node.

The reason for this behaviour is that the combinatorial properties of the network (no
overtaking is possible) are not represented well in the current linear model. Headway
constraints are only enforced on each single infrastructure arc in isolation but the relation of
neighbouring arcs is only enforced by the integrality, which, however, is lost when solving
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Figure 3 Tiny example with two trains running in opposite directions on a single line track with
two passing possibilities. The white nodes have capacity 2, the other nodes have capacity 1. Nodes in
the same row correspond to a sequence of stations at the same time step, nodes in the same column
correspond to one station but at different time steps (time grows from top to bottom). All arcs are
single track. The left picture shows an optimal solution for the standard linear relaxation. Note
that the solution exploits the weak formulation allowing the two trains to meet and pass on a single
line part. The right picture shows the optimal solution if the strong configurations of Section 5.3 are
used: one train has to wait at a capacity 2 node for the other train to pass.

a relaxation. In [12] an approach has been presented that adds some of these relations on
track sections without overtaking to the model in terms of so called “ordering constraints”.
This works by enriching the configuration subproblems by additional variables and coupling
them by special equality constraints that enforce that all trains run in the same order on
each arc of the track section. Unfortunately, this approach cannot easily be extended to
more complex situations.

Thus, we present in this paper an alternative, more direct way of adding combinatorial
relations to the relaxed models. We will apply this approach to the basic case of no overtaking
possibilities (the case the ordering constraint approach has been designed for) in Section 5.3
and show how it can easily be extended to more general settings, which we demonstrate in
Section 5.4.

5.1 Connected Configurations

Motivated by the example shown in Figure 3, the goal of our approach is to prevent incompat-
ible configurations that might appear if the subproblems are evaluated in isolation. Whereas
in [12] the idea was to use additional constraints that forbid incompatible configurations,
the new idea is more direct. When evaluating the subproblems (6) for certain adjacent
infrastructure arcs, we force the generated configurations to be compatible during the solution
of the subproblems. This requires that the subproblems are not evaluated in isolation but
some of them must be evaluated together. The downside of this approach is that it leads to
much more difficult subproblems so that a careful design of the subproblems and the solution
process is mandatory.

Let P I = v0P
I
1 v1 . . . P

I
k vk, vi ∈ V I , be a path in the infrastructure network consisting of

subpaths P Ii , i = 1, . . . , k. Consider a subset R′ ⊆ R of trains running over the complete path
P I . Furthermore, for i = 1, . . . , k we denote by πini , πouti : {1, . . . , |R′|} → R′ two orderings
of the trains R′ entering and leaving path P Ii at vi−1 and vi, respectively. The idea is to
solve the TTP exactly on each subpath P Ii for trains R′ such that the trains enter P Ii in
order πini at vi−1 and leave P Ii with order πouti at vi. Thus, the exact solutions for each P Ii
are connected to a solution on the entire path P I by selecting solutions of compatible orders
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11:8 Strong Relaxations for the TTP Using Connected Configurations

only, i. e. enforcing

πouti−1 = πini , i = 1, . . . , k. (7)

Formally, for a given path P I and trains R′ let AIR′ [P I ] be the set of those arcs in
⋃
r∈R′ ArT

that correspond to P I . Then we denote the set of extended configurations

CP
I ,R′

πin,πout :=
{
x : AIR′ [P I ]→ {0, 1} : x is a characteristic vector of a feasible

timetable for R′ on P I with orders πin, πout
}
.

(8)

This set consists of all vectors corresponding to feasible timetables for R′ on P I where the
trains run in orders πin and πout when entering and leaving P I , respectively. In other words,
each vector in CP

I ,R′

πin,πout is a feasible solution when restricting the TTP to only scheduling
trains R′ on path P I . Note, in contrast to the standard configurations Ca, the extended
configurations may span more than one infrastructure arc, but the solutions are restricted
to the fixed orders πin, πout. Given linear objective terms c̃i, i = 1, . . . , k, we define the
connected configurations subproblem as

minimise
k∑
i=1

min
{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
subject to πouti−1 = πini , i = 1, . . . , k,

πini , π
out
i orders of R′.

(9)

Problem (9) selects feasible configurations on each subpath P Ii in such a way that the order
of trains on consecutive subpaths must match. Note, however, that solutions of (9) are not
feasible TTP solutions on the whole path P I in general: although the orders of trains on
P Ii and P Ii+1 must be the same, the exact times when the trains leave P Ii may not match
the exact times when the trains enter P Ii+1. We deliberately allow this inexactness in the
subproblem in order to keep (9) computationally tractable (because really solving the TTP
exactly on the whole path P I becomes very hard quickly).

5.2 Solving Connected Configuration Subproblems
In general, the connected configurations subproblem is computationally hard, in particular,
enforcing the compatibility constraints (7). However, if the number of trains R′ is sufficiently
small (e. g. |R′| ≤ 5), we can solve it by full enumeration over all possible train orders.
First, consider the extended configuration subproblem on some subpath P Ii for fixed orders
πini , π

out
i :

vi,i(πini , πouti , c̃i) := min
{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
. (10)

This subproblem can be modelled and solved straight forward as MIP (it is basically a
standard TTP model on a very small network, additionally with fixed train orders). Now
denote by

vi1,i2(πin, πout) := minimise min
i2∑
i=i1

{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
subject to πouti−1 = πini , i = i1 + 1, . . . , i2,

πini1 = πin, πouti2 = πout.
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the optimal value of the connected configuration subproblem restricted to the subpath
between vi1 and vi2 with fixed first and last order. Then the following simple recursion holds
for i1 < i2

vi1,i2(πin, πout) = min
π order of R′

[
vi1,i1(πin, π) + vi1+1,i2(π, πout)

]
(11)

and the optimal value of (9) can be computed with dynamic programming:

Algorithm 1 Solve connected configuration subproblem
1 Input: P I

i , c̃i , i = 1, . . . , k
2 for i := 1 to k do
3 foreach πin

i , πout
i do

4 compute vi,i(πin
i , π

out
i ) by solving (10)

5 end
6 end
7 compute an optimal solution of (9) by (11)

For each i the loop in lines 3–5 is executed at most (|R′|!)2 times, i. e. we need to solve at
most k · (|R′|!)2 (independent) subproblems (10). The dynamic programming step in line 7
is extremely quick (less than 1 ms) because the recursion has only a depth of k and in each
step only (|R′|!)2 numbers have to be considered (recall we assume |R′| ≤ 5).

5.3 Configurations on Non-Overtaking Sections
In this section we consider the special case of an infrastructure path P I without overtaking
possibility. This implies that the order of trains must not change along the whole path.
Therefore, we decompose P I = v0a1v1 . . . akvk with ai ∈ AI into single-arc subpaths P Ii =
vi−1aivi, i = 1, . . . , k. Obviously, overtaking on one of the subpaths P Ii is not allowed, hence
the extended configuration subproblems (10) have only a feasible solution if πini = πouti .
Note that this reduces the number of problems to be solved for P Ii from (|R′|!)2 to |R′|!.
Furthermore, because no two trains can change their order along P I , intuitively it might be
enough to enforce correctness for each pair of trains only. Hence, we only consider subsets
of exactly two trains |R′| = 2, reducing the number of subproblems to be solved on each
subpath P Ii to two. Therefore, in order to solve (9) we only need to solve k subproblems on
a single arc for each of the two possible orders of the trains and take the better one of the
two solutions. (But note that it is not clear whether considering only pairs of trains will be
sufficient in general).

It is interesting to observe that these simple subproblems are sufficient to solve the
problem illustrated in Figure 3. In fact, the right picture shows the solution obtained by the
Lagrangian relaxation with these subproblems, which is already an integral solution.

5.4 Configurations with One Siding
As already observed in [12], enforcing compatible orderings along non-overtaking sections
improves the relaxation, but more complex situations are still problematic. Indeed, we
consider the case with a single siding between two non-overtaking sections. The best that
can be achieved with the approach of Section 5.3 is to enforce compatible configurations on
the section left of the siding and on the right of the siding. But the structural influence of
the overtaking possibility at the siding is not covered well. For illustration, consider the case
where three trains run on this track section from left to right. The additional side track at
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Figure 4 Relaxation of three trains running on two non-overtaking sections with one siding in
between. The left picture shows the relaxation with perfect configurations on both non-overtaking
sections only. All arcs have a flow of 0.5. One can check that this is not a convex combination of
feasible integer solutions. The right picture shows the same situation with an additional capacity-2
configuration for the siding.

vsas as+1
vsas as+1

Figure 5 The left picture shows the structure of single-arc only subproblems. The right picture
shows the case with the new siding configuration, which covers the arcs adjacent to vs.

the siding allows the order of the trains to be changed (e. g. the first train enters the siding
and waits for the second train to pass), but not arbitrarily. For instance, the order of the
three trains might not be reversed: if three trains A, B and C enter the section in this order
from the left but would leave the section in order C, B, A at the right, then both trains, A
and B would have to wait somewhere for C to pass. But this is impossible because there is
only one side track. Similar situations occur for trains running in opposite directions. Indeed,
Figure 4 shows an example for three trains where only compatibility along the non-overtaking
parts is enforced.

In order to guarantee the validity of the change of train orders in the siding, we encapsulate
the siding node along with the two adjacent arcs in a single configuration subproblem.
Formally, consider a track section P I = v0a1v1 . . . asvsas+1 . . . akvk with ai ∈ AI , where
cvi

= 1 for all i 6= s and cvs
= 2 and all arcs are single track. Therefore, overtaking can only

happen if some train stops and waits at node vs until some other train passes. Similar as
before we split the path in several subpaths each consisting of a single infrastructure arc
with one exception: the siding node vs and its two adjacent arcs are put in a single subpath:
P Ii = vi−1aivi, i = {1, . . . , k} \ {s, s+ 1}, and P Is = vs−1asvsas+1vs+1. Figure 5 visualises
the structure of the configuration subproblems.

As before overtaking is not allowed on the single-arc paths, so πini = πouti for all i ∈
{1, . . . , k} \ {s, s+ 1}. However, this is not true any longer for the two orderings associated
with the siding, here πins and πouts may be different, although not all combinations are
possible (e. g. the order of three trains must not be reversed). In sum, we need to solve |R′|!
subproblems (one for each order of trains) on each single-arc subpath and at most (|R′|!)2

subproblems for the siding subpath.
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Figure 6 The infrastructure network of the test instance. The black nodes denote single line
parts, the red nodes double line parts. There are four sidings (white nodes) within the single line
parts and one siding in the double line part, which can only be used by trains coming from the left.

Obviously, the siding subproblems are the most challenging ones and take the longest
time, hence we need to keep the subproblems as simple as possible. Hence, we restrict to
small subsets of trains with |R′| = 3. In this case the analogue intuition is that three trains
is the smallest number of trains that cannot change their order arbitrarily, so if we ensure
that for each subset of three trains the configurations are valid then it might be sufficient for
larger subsets. Indeed, the right picture of Figure 4 shows the solution of the relaxation if
the siding configuration subproblem is used, which is integral.
I Remark. The trains considered in a configuration do not necessarily need to run on the
same track. For instance, if there are at least three trains, each may arrive at node vs from a
different direction in a star-like fashion. Similarly, one of the adjacent edges could be double
track whereas the other is single track, so trains running in opposite directions do not share
the same physical track. Both cases lead to slightly different configuration subproblems
around the node vs. Because the network considered in our computational tests is a corridor,
the first situation cannot happen (there are only two possible directions), but the second
situation does appear at the ends of the double track section.

6 Computational Experiments

In this section we present some promising computational results. We consider an instance
from the INFORMS RAS Problem Solving Competition 2012 [22] with only 14 trains.
The train graph subproblems have been implemented and solved using the DynG callable
library [13, 14] and the configuration subproblems are modelled as MIP and solved by Cplex
12.7 [18].

The Lagrangian relaxation is solved with a proximal bundle method based on [16]. All
experiments are done on an Intel Xeon E5–2690 with 56 cores @ 2.6 GHz and 256 GB
RAM. The evaluation of each subproblem runs in its own thread.

We compare the solutions of the Lagrangian relaxation of three different models:
Free: The basic model (TTP-cfg), configurations on single infrastructure arcs.
Simple: Connected configuration subproblems only on non-overtaking sections (see Sec-

tion 5.3).
Full: Connected configuration subproblems on non-overtaking sections and sections with one

siding (see Section 5.4).
Each connected configuration subproblem contains at most three trains.

First we compare the development of the objective values of the relaxation. Figure 7
shows the (dual) objective value after a certain number of iterations of the bundle method
and after some time for the three models.

The first observation is that the objective value of model “free” is much smaller than the
objective values of the other models. This is not surprising: because of the weak formulation
most trains are hardly slowed down at all (see Section 5). Because the objective function
penalises delays from the fastest possible train schedules, this leads to a very small objective
value and therefore to a huge gap. The objective values of the two other models are much
larger and very similar with “full” having a slightly larger value. It is clear that the objective

ATMOS 2017



11:12 Strong Relaxations for the TTP Using Connected Configurations

101 102 103 104 105

0.5

1

1.5

·104

# iterations

ob
je

ct
iv

e

free
simple
full

100 101 102 103 104

0.5

1

1.5

·104

time in s

ob
je

ct
iv

e

free
simple
full

Figure 7 Objective value after a number of iterations (left picture) and after some time (right
picture) for three models: classic subproblems without ordering coupling (free), with simple coupling
along non-overtaking (simple) and with full coupling at sidings of capacity one (full).

value of “full” is the largest because it is the strongest model. It might, however, be a little
surprising that this small difference results in a solution of apparently higher quality (see
below). This is an important observation because it indicates that we need to solve the
Lagrangian relaxation to a high accuracy in order to gain something from using the stronger
model.

The second observation is that the “full” model takes longer (in terms of computation
time) to converge to its optimal solution. The reason is that this model contains the most
complex configuration subproblem. In fact, in our tests the running time of the overall
algorithm was dominated by the solution of a single configuration subproblem for the siding
case, which took about 1-2 seconds per iteration. This sounds not that much, but recall that
the algorithm needs about 103 to 104 iterations, so it sums up. Although our implementation
takes advantage of the multi-core CPU by solving all subproblems in parallel, each single
subproblem is solved on a single core, so the slowest subproblem dominates the running time.

Next we take a closer look at the computed solutions of the relaxation. Figures 8 to 10
show the solutions for the three modes “free”, “simple” and “full”.

The solution of model “free” in Figure 8 shows the expected behaviour: by simply splitting
the train schedules into multiple fractional parts, the trains can pass/overtake each other
even at non-overtaking sections and are hardly slowed down. The result is that the trains
have almost no delay, but the solution is also a very bad starting point for obtaining the real
order of the trains in order to derive an integer solution. This is the typical case in classic
(time expanded) models for the TTP and one reason why it is hard to find provably good
integer solutions.

The solution of the second model “simple” in Figure 9 shows a different picture. This
model handles the meet/overtaking decisions on non-overtaking sections correctly. In fact,
all decisions have been resolved correctly for the earlier time steps (left picture of Figure 9).
The weakness of this model comes apparent if more than 2 trains meet at some siding (see
the right picture of Figure 9). In this case the relaxation may still make incorrect decisions
resulting in fractional train schedules and unclear orders of trains.

All of these issues have been resolved in the strongest model “full”, see Figure 10. This
model contains full configurations around the sidings for each 3 trains. In fact, in this
example the solution of the Lagrangian relaxation of the model “full” is integral. This cannot
be expected in general but demonstrates the strength of the proposed formulation. Even if
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Figure 8 Solution of the relaxation for model free. The time runs from top to bottom. By
exploiting the weakness of the formulation described in Section 5 many trains meet and pass in
non-overtaking sections, splitting the trains in several fractional parts.

the solution might not be integral for larger instances, they certainly provide much more
information and much better bounds a subsequent (heuristic) method can use for constructing
an integral solution.

7 Conclusions and Future Work

Classic, time expanded models for the TTP are computationally very challenging. One
reason for this are the weak relaxations for the standard models, which do not represent
combinatorial properties of the problem very well and, hence, do not provide strong bounds.
In particular the interplay of headway constraints and node capacities is not handled well.

In this paper we extend the configuration based models proposed in [1]. Instead of
modelling feasible configurations on single infrastructure arcs only, we propose a model
where configurations of consecutive track segments are handled together. These connected
configuration problems are very hard themselves in general, but can be solved reasonably
well (using complete enumeration) for small numbers of trains and on specific track segments
with only limited overtaking capabilities. The ability to solve these subproblems exactly
is then used in a classic Lagrangian relaxation approach. Our computational experiments
show that the proposed model and solution approach are able to resolve all overtaking/meet
decisions correctly for an instance on a mostly single track corridor with only few sidings,
producing even integral solutions in the relaxation. This instance could not be solved to
proven optimality using the classic model.

There are several directions for future research. First, for larger instances it is infeasible
to add all possible configuration subproblems to the model (even for subsets of up to only 3
trains) or to add them manually beforehand. Therefore, a method to automatically detect
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Figure 9 Solution of the relaxation for model simple. The time runs from top to bottom.
The connected configurations ensure that overtaking/meet decisions for pairs of trains along non-
overtaking sections are resolved. However, if more than 2 trains meet at some siding, the fractional
solution still contains unclear decisions (right picture).

Figure 10 Solution of the relaxation for model full. The time runs from top to bottom. The
model contains connected configurations on non-overtaking sections and on sections with sidings of
capacity two. All decisions have been resolved and (in this example) the solution is even integral.
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“missing” configuration subproblems during the solution process and add them to the model
on-the-fly while separating the coupling constraints needs to be developed. Secondly, the
model presented in this paper handles only cases with no siding or exactly one siding, larger
examples are expected to require more complex configuration subproblems.

The tests show that the algorithm has a relatively, but not hopelessly, high running time,
which should be improved. The connected configuration subproblems are currently solved
using a standard MIP solver, which could be done faster by a specialised combinatorial
algorithm. The requirement to solve the subproblems to optimality in each iteration could be
relaxed, e. g. by using inexact [10] or asynchronous bundle methods [15]. In fact, because the
model presented in this paper consists of many hard but widely independent subproblems, it
is expected that the algorithm is very well parallelisable and scales well by increasing the
number of parallel processes (more trains or tracks just mean more independent subproblems).
An implementation for distributed computation is a logical step.

Besides all of these challenging development paths, a near-time goal is to apply our
solution approach to larger, publicly available instances, e. g. from TTPLib [23].
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