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Abstract: The article surveys and extends variational formulations of the thermodynamic free
energy and discusses their information-theoretic content from the perspective of mathematical
statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling
within the framework of importance sampling and Girsanov change-of-measure transformations. The
implications of the different variational formulations for designing efficient stochastic optimization
and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.
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1. Introduction

It is one of the standard problems in statistical physics and its computational applications, e.g. in
molecular dynamics, that one desires to compute expected values of an observable f with respect to a
given (equilibrium) probability density r,

Edlf] = [ f(0)7(x)dx

Even if samples from the density 7t are available, the simplest Monte Carlo estimator, the mean value,
may suffer from a large variance (compared to the quantity that one tries to estimate), such that
the accurate estimation of E;[f] requires an unreasonably large sample size. Various approaches
to circumvent this problem and to reduce the variance of an estimator are available, one of the
most prominent representatives being importance sampling where samples are drawn from another
probability density p and reweighted with the likelihood ratio 7z/p [20,37]. It is well-known that
theoretically—and under certain assumptions—there exists an optimal importance sampling density
p* such that the resulting estimator has variance zero. By a clever choice of the importance sampling
proposal density, it is thus possible to completely remove the stochasticity from the problem and to
obtain what is sometimes called certainty equivalence. Yet, drawing samples from the optimal density
(or an approximation of it) is a difficult problem in itself, so that the striking variance-reduction due to
importance sampling often does not pay off in practice.

The zero variance property of importance sampling and the challenge to utilize it algorithmically
is the starting point of this article where the focus is on its generalization to path sampling problems and
its algorithmic realization. Regarding the former, we will show that the Donsker-Varadhan variational
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principle, a well-known measure-theoretic characterization of the cumulant generating functions [7]
that gives rise to a variational characterization of the thermodynamic free energy [6,10] permits several
stunning utilizations of the importance sampling framework for path sampling problems; examples
involve trajectory-dependent expectations like expected hitting times or free energy differences [4,21].
We will see that finding the optimal change of measure in path space is equivalent to solving an optimal
control problem for the underlying dynamical system in which the dynamics is controlled by external
driving forces and thus driven out of equilibrium [18,22]. By this connection, optimized importance
sampling is shown to share some features with the famous non-equilibrium fluctuation relations for
the thermodynamic free energy by Jarzynski and Crooks [5,27]. We will elaborate on how to explore
this connection to devise better non-equilibrium free energy algorithms, and hopefully obtain a better
understanding of Jarzynski-based estimators; cf. [35].

Regarding the algorithmic realization, the theoretical insight into the relation between (adaptive)
importance sampling and optimal control leads to novel algorithms that aim at utilizing the zero
variance property without having to sample from the optimal importance sampling density. We will
demonstrate how this can be achieved by discretizing the optimal control problem using ideas from
stochastic approximation and stochastic optimization [22,44]; see [14,15,42] for an alternative approach
using ideas from the theory of large deviations.

Outline

The article is organized as follows: Firstly, in Section 2 we review certainty equivalence
and the zero variance property of optimized importance sampling in state space, starting from
the Donsker-Varadhan principle and its relation to importance sampling, and comment on some
algorithmic issues. Then, in Section 3, we consider the generalization to path space, discuss the relation
to stochastic optimal control and revisit Jazynski-based estimators for thermodynamic free energies.
Section 4 surveys and discusses novel algorithms that are exploiting the theoretical properties of
the control-based importance sampling scheme. We briefly discuss some of these algorithms with
simple toy examples in Section 5, before the article concludes in Section 6 with a brief summary and a
discussion of open issues. The article contains three appendices that record various technical identities,
a brief derivation of Girsanov’s change of measure formula, and the proof of the main theorem.

2. Certainty equivalence

In mathematical finance, the guaranteed payment that an investor would accept instead of a
potentially higher, but uncertain return on an asset is called a certainty equivalent. In physics, certainty
equivalence amounts to finding a deterministic surrogate system that reproduces averages of certain
fluctuating thermodynamic quantities with probability one. One such example is the thermodynamic
free energy difference between two equilibrium states that can be either computed by an exponential
average over the fluctuating nonequilibrium work done on the system or by measuring the work of an
adiabatic transformation between these states.

2.1. Donsker-Varadhan variational principle

Before getting into the technical details, we briefly review the classical Donsker-Varadhan
variational principle for the cumulant generating function of a random variable. To this end, let
X be a real-valued, n-dimensional random variable with smooth probability density 7z and call

Exlf(X)] = [ f(x)m(x)dx 0

the expectation with respect to 7 for any integrable function f: R" — R.
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Definition 1. Let W: R" — R be a bounded random variable. The quantity
v: BR") - R, Wi —logEx[exp(—W)] )

is called the free energy of the random variable W = W (X) with respect to 7t, where 8(R") is the set of bounded
and measurable, real-valued functions on R 1

Definition 2. Let p be another probability density on R". Then

D(pl) = [ 1og 2 pa)ax ®)

RO 7(x)

is called the relative entropy of p with respect to 7t (or: Kullback-Leibler divergence), provided that rt(x) = 0
implies that p(x) = 0 for every x € R". Otherwise we set D(p|7) = +oo.

The requirement that 77(x) must not be zero without p(x) being zero is known as absolute
continuity and guarantees that the likelihood ratio L = p/ 7t is well defined. In what follows, we may
assume without loss of generality that 7 > 0. (Otherwise we may exclude those states x € R" for
which 7t(x) = 0.)

A well-known thermodynamic principle states that the free energy is the Legendre transform of
the entropy. The following variant of this principle is due to Donsker and Varadhan and says that (e.g.,
see [7] and the references therein)

~ log Ex[exp(~W)] = min {E, (W] + D(p|m)} , 4)

where the minimum is over all probability density functions p on R". The last equality easily follows
from Jensen’s inequality by noting that

—log/Rn exp(—W)mdx = —log/Rn exp(—W)%pdx
= _1og/Rnexp<—W—log%>pdx
g/.n (W+log%)pdx
:/]R” Wpdx—i—/Rnlog%pdx.

And it can be readily seen that equality is attained if and only if

p* =exp(y—W)m, (5)
which defines a probability measure with <y given in (2) .

Importance sampling

The relevance of (4)—(5) lies in the fact that, by sampling X from the probability distribution with
density p*, one removes the stochasticity from the problem, since the random variable

Tegf you can write it down, it’s measurable!” (S.R.S. Varadhan).
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is almost surely (a.s.) constant. As a consequence, the Monte Carlo scheme for computing the
free energy on the left hand side of (4) based on the empirical mean of the independent draws of
U* = U*(X) with X ~ p*, will have a zero variance. This zero-variance property is a consequence of
Jensen’s inequality and the strict concavity of the logarithmic function which implies that equality is
attained if and only if the random variable inside the expectation is almost surely constant. The next
statement makes this precise.

Theorem 1 (Optimal importance sampling). Let p* be the probability density given in (5). Then the random
variable Z = exp(—W)7t/p* has zero variance under p* and we have

Z = Ex[exp(—W)], p*-as.

Proof. We need to show that Var, (Z) = E,+[Z?] — (E,+[Z])? = 0. Using (5) and noting that p* > 0
since W is bounded and 7t > 0, it follows that Z has finite second moment and

Ey+[Z°] — (Ep+[2])* = Ex[exp(—2W)7/p"] — (Ex[exp(~W)))?

= exp(—7)Ex[exp(—W)] — exp(—27)
= 0,

where we have used that exp(—7) = Ex[exp(—W)]. O

The above theorem asserts that p*-almost surely (p*-a.s.)
Z = Ep[Z], (6)

which means that the importance sampling scheme based on estimating E,+[Z] using draws from the
density p* is a zero-variance estimator of E;[exp(—W)]. We will discuss the problem of drawing from
an approximation of the optimal distribution p* later on in Section 4.

Remark 1. Equation (4) furnishes the famous relation F = U — TS for the Helmholtz free energy F, with
U being the internal energy, T the temperature and S denoting the Gibbs entropy. If we modify the previous
assumptions by setting T = 1 and assuming that W = BE where B = (kgT) ! with kg > 0 being Boltzmann's
constant and E denoting a smooth potential energy function that is bounded from below and growing at infinity,
then

-7t log/exp(—ﬁE) dx :12)1>i51 /Epdx—!—ﬁ_l/plogpdx ,

~——
—F =Uu =-TS

with the unique minimizer being the Gibbs-Boltzmann density p* = exp(—BE) / Z with normalization constant
Z = exp(—PBF). In the language of statistics, p* is a probability distribution from the exponential family with
sufficient statistic E(X) and parameter p > 0.

2.2. Yet another certainty equivalence

A similar variational characterization of expectation values based on convexity arguments and
Jensen’s inequality can be formulated for non-negative random variables W = W(X) > 0. For
simplicity and as before, we assume W to be bounded and measurable and 7t > 0. Then, for all
p € [1,00), it holds that

(B (WP)7 = maxy W (2) 7] @
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where 7 is any non-negative probability density. If we exclude the somewhat pathological case W =0
a.s., it follows that E;[WF] > 0 and the supremum is attained for

T = E.[Wr]

7. (8)

The proof is along the lines of the proof of the Donsker-Varadhan principle (4). Indeed, applying
Jensen’s inequality and noting that # /7t is non-zero 7-a.s. it readily follows that

(B (W) =y (1))

and it is easy to verify that the supremum in (7) is attained at = n* given by (8).

Importance sampling, cont’d

Similar as in Subsection 2.1, the above discussions can be applied to study the importance
sampling schemes for the pth moment of random variable W. We have

Theorem 2 (Optimal importance sampling, cont’d). Let p > 1 and n* be defined in (8). Then the random
variable Y = WP (* /7t) =" has zero variance under * and we have

Y = Ez[WF], #n*-as.

Again, Theorem 2 implies that drawing random variable X from #* and then estimating the
reweighted expectation E,+[Y] provides a zero variance estimator for the quantity E;[W?].

Remark 2. When 0 < p < 1 the function f(u) = u? is concave for u > 0 and the variational principle (7)
need to be modified as (see [6])

PP — mi AN
(Ex [WP]) minE, [w (n) ) )
where the minimizer n* is given by (8). If W > 0 a.s., then n1* belongs to the exponential family with sufficient
statistic S(X) = plog W(X) and reference density .

2.3. Computational issues

In practice, the above result is of limited use because the optimal importance sampling distribution
is only known up to the normalizing constant C where the latter is just the sought quantity C =
exp(—7).

We recall that one possible way to sample the probability density 7 is based on the
Euler-Maruyama discretization of the stochastic differential equation (SDE)

dXs = —VV(Xs)ds +V2dBs, Xo=x. (10)

Here V: R" — R is a smooth potential that is bounded from below and at least quadratically growing
at infinity, so that the process (Xs)s>0 is ergodic with respect to the probability distribution with
density 7w = exp(—V). Depending on the desired accuracy and the discretization time step one may
use a metropolized variant of the Euler-Maruyama scheme [40]. The importance sampling density po*
can be generated in the same way by simulating

dY; = —V&(Y,)ds + V2dBs, Yo =7, (11)



6 of 27

with the modified potential
Sy) =Vy) +W(y). (12)

(The density #* can be generated likewise.) Clearly, we can draw from p* in the sense that, by the law
of large numbers (ergodic theorem) for ergodic diffusions such as (11), it holds

Epe[f] = lim — / () dt, as. (13)

T—o0

for almost all initial conditions Yy = x and any integrable function f: R” — R. The discrete form of
(13) then reads

Es[f] = lim N Z f(Y), as. (14)

where (Y;);>o is the time discretization of (Y;)s>0 and p* is the invariant distribution of the
corresponding Markov chain that clearly depends on the time discretization, but that we assume to be
a reasonable approximation of the exact density p*.

Sources of bias

In the situation at hand, we wish to apply either (13) or (14) to estimate Ey«(Z) in (6), where
Z = exp(—W)m/p* is given in Theorem 1. However, the problem is that the likelihood ratio 77/p*
is only known up to the normalizing factor. In this case, the self-normalized importance sampling
estimator must be used (see, e.g. [19]),

ZeXP W(Y;)) exp(W(Y7))

Cn = N-1 R ~ N-T 7 (15)
;) exp(W(Yi)) ;) exp(W(Yi))

which is a consistent estimator for C = exp(—7). Note that unlike in the case of the importance
sampling estimators with known likelihood ratio, the self-normalized estimator is only asymptotically
unbiased—even if we can draw exactly from p* (See Appendix A for details.)

To avoid the bias due to the self-normalization, it is helpful to note that exp(7) = E,+ [exp(W)]

holds p*-a.s. As a consequence,
N-1

Y. exp(W(Y)))

V=" (16)

is an unbiased estimator of C~! = exp(), provided that we can generate i.i.d. samples from p*. Taking
the logarithm, it follows that

N-1

4N = —log N + log ( Y exp(W(Yi))> , 17)

i=0

is a consistent estimator for v, which by Jensen’s inequality and the strict concavity of the logarithm
will again be only asymptotically unbiased.
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Comparison with the standard Monte Carlo estimator

In most cases, the samples from p* will be generated by Markov Chain Monte Carlo or by
simulating an SDE like (11). If we disregard the possible time disretization bias and consider the
advantages of 45 as compared to the plain vanilla Monte Carlo estimator

N-1
4N = log N — log < ) exp(—W(Xﬂ)) , (18)
i=0

with X; being a discretization of (10), there are two aspects that will influence the efficiency of (17)
relative to (18), namely

(a) the speed of convergence towards the stationary distribution and
(b) the (asymptotic) variance of the estimator.

By construction, the asymptotic variance of the importance sampling estimator is zero or close to zero if
we take numerical discretization errors into account, hence the efficiency of the estimator (17) is solely
determined by the speed of convergence for SDE (11) to its stationary distribution p* which, depending
on the problem at hand, may be larger or smaller than the speed of convergence of the original process
(10) to 7. It may even happen that 7 is unimodal, whereas p* o« e~
difficult to generate, for example when 7 is the standard Gaussian density and W = (x? — d)? with
d > 0 is a bistable (energy) function. We refrain from going into details here, and instead refer to the
review article [32] for an in-depth discussion of the asymptotic properties of reversible diffusions.

7 is multimodal and hence

3. Certainty equivalence in path space

The previous considerations nicely generalize from the case of real-valued random variables to
time-dependent problems and path functionals.

3.1. Donsker-Varadhan variational principle in path space

Let (Xs)s>0 with Xg = x € R" be the solution of the SDE
dXs = b(Xs,8)ds + 0(Xs)dBs, Xo=x, (19)

where b: R"” x [0,00) — R" is a smooth, possibly time-dependent vector field, c: R”" — R"*" is a
smooth matrix field and B is an m-dimensional Brownian motion. Our standard example will be an
SDE with b(x,s) = —VV(x) for a smooth potential energy function V and o'(x) = v/2I,;xn, so that X;
satisfies a gradient dynamics (10). We assume throughout this paper that the functions b, ¢, V are such
that either (19) or (10) have unique strong solutions for all s > 0.

Now suppose that we want to compute the free energy (2) where W is now considered to be a
functional of the paths X = {X; : 0 < s < 1} for some bounded stopping time T:

We(X) = [ F(Xe) ds + (o), (20)

for some bounded and sufficiently smooth, real valued functions f, g. We assume throughout the rest
of the paper that f, ¢ are bounded from below and that W is integrable.

We define P to be the probability measure on the space QO = C([0,00),R") of continuous
trajectories that is induced by the Brownian motion (Bs)s>o that drives the SDE (19). We call P a
path space measure, and we denote the expectation with respect to P by Ep|-].
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Definition 3 (Path space free energy). Let (Xs)s>o be the solution of (19) and Wy = W(X) > 0 be
integrable and defined by (20). The quantity

7= —logEp [exp(—Wr)] = — logEp {eXp (— /()Tf(xs,s) ds — g(Xr)ﬂ (1)

is called the free energy of Wr with respect to the path space measure P.

Note that (21) simply is the path space version of (2) which now implicitly depends on the initial
condition Xy = x. The Donsker-Varadhan variational principle now reads

T
= inf $Eq | [ f(Xes)ds+g(x0)| +DQIP) |, 2
7= dnt, {Ea | [ f0x5)ds-+ g(x0)| + DlCIP)} @)
where Q < P stands for absolute continuity of Q with respect to P, which means that P(E) = 0 implies
that Q(E) = 0 for any measurable set E C (), as a consequence of which

D(QIP) = [ 1og T2 (@) dQ(w), @)

exists. Note that (23) is just the generalization of the relative entropy (3) from probability densities on
R" to probability measures on the measurable space (), ), with £ being a c-algebra containing
measurable subsets of (), where we again declare that D(Q|P) = oo when Q is not absolutely
continuous with respect to P. Therefore it is sufficient that the infimum in (22) is taken over all
path space measures Q < P.
If Wr > 0, it is again a simple convexity argument (see, e.g. [6]) which shows that the minimum
in (22) is attained at Q* given by
aQ*
dpP

=exp(y — Wr), (24)
[0,7]

where ¢|(g ;] denotes the restriction of the path space density ¢(X) = (dQ*/dP)(X) to trajectories
X = (Xs)s>0 of length 7.2

Even though (24) is the direct analogue of (5), this result is not particularly useful if we do not
know how to sample from Q*. So let us first characterise the admissible path space measures Q < P
and discuss the practical implications later on.

Likelihood ratio of path space measures

It turns out that the only admissible change of measure from P to Q such that D(Q|P) < co results
in a change of the drift in (19). Let (us)s>0 be an R™-valued stochastic process that is adapted, in that
u; depends only on the Brownian motion B up to time s < ¢, and that satisfies the Novikov condition

(see e.g. [36])
Ep {exp (; /(;T |us|2ds>} < 0. (25)

t
Bf:Bt—/ s ds .
0

Now define the auxiliary process

More precisely, (p|[0/T] is understood as the restriction of the measure Q* defined by dQ* = ¢dP to the c-algebra F- that
contains all measurable sets E € &, with the property that for every t > 0 the set EN {7 < t} is an element of the o-algebra
Fi =0(X;: 0 <s <t)that is generated by all trajectories (X;)o<s<; of length ¢. In other words, Fr C £ is a v-algebra that
contains the history of the trajectories of (the random) length 7.
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Using the definition of B}, we may write (19) as
dXs = (b(Xs,s) + 0(Xs)us)ds + o(Xs)dBY, Xo=1x. (26)

By construction, (BY)s>0 is not a Brownian motion under P, because the expectation of B with respect
to P is not zero in general. On the other hand, (Bs)s>0 is a Brownian motion under the measure P,
and our aim is to find a measure Q < P under which (BY);>¢ is a Brownian motion. To this end, let
(Z¥)s>0 be the process defined by

t t
z;':/ us-st—l/ lug|2 ds, 27)
0 2 Jo
or, equivalently,
t 1 gt
z;f:/0 ”S’deJrE/o |2 ds (28)

Girsanov’s theorem (see e.g. [36, Thm. 8.6.4] or Appendix B) now states that (BY )o<s<¢ is a standard
Brownian motion under the probability measure Q with likelihood ratio

4Q
dp

— exp(2Y) 29)
[0,7]

with respect to P where the Novikov condition (25) guarantees that Eplexp(Z¥)] = 1, i.e. that Q is
a probability measure. Inserting (28)—(29) into the Donsker-Varadhan formula (22), using that BY is
Brownian motion with respect to Q, it follows that the term in Z% in the expression of the relative
entropy which is linear in 1 drops out, and what remains is (cf. [4,6])

7= infEq | [ (£0Xs) + glusl) ds-+5(x0)]

with X being the solution of (26). Since the distribution of B* under Q is the same as the distribution
of B under P, an equivalent representation of the last equation is

T 1
v =infEp [/0 (f(X;‘,s) + 2|us|2> ds +g(X¥)} . (30)
where XY is the solution of the controlled SDE
dXy = (b(XY,s) + o (X )us)ds + o(X¢)dBs, X =x, (31)

with Bs being our standard, m-dimensional Brownian motion (under P). See Appendix B for a sketch
of derivation of Girsanov’s formula.

Importance sampling in path space

Similarly to the finite dimensional case considered in the last section, we can derive optimal
importance sampling strategies from the Donsker-Varadhan principle. To this end, we consider the
case that T is a random stopping time, which is a case that is often relevant in applications (e.g. when
computing transition rates or committor functions [21]), but that is rarely considered in the importance
sampling literature. Let T > 0 and O C R” be an open and bounded set with smooth boundary 90.
We define

To = inf{s > 0: X! ¢ O},

as the first exit time of the set O and define the stopping time

T=1AT (32)
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to be the minimum of 1p and T, i.e. the exit from the set O or the end of the maximum time interval,
whatever comes first.> Here X satisfies the controlled SDE (31).
We will argue that the optimal Q* which yields zero variance in the reweighting scheme

Eq[Y7] = Eplexp (=Wr)]
via Y# = exp(—Z¥% — W¥), can be generated by a feedback control of the form
uf = c(X',s),

with a suitable function c: R” x [0,00) D D — R™. Finding u* turns the Donsker-Varadhan variational
principle (22) into an optimal control problem by virtue of (30)-(31). The following statement
characterises the optimal control by which the infimum in (22) is attained and which, as a consequence,
provides a zero variance reweighting scheme (or: change of measure).

Theorem 3. Let

Y(x,t) = Ep [exp (— /trf(Xs,s) ds — g(XT)> Xi=x (33)

be the exponential of the negative free energy, considered as a function of the initial condition X; = x with
0 <t <1 < T. Then the path space measure Q* induced by the feedback control

uf = o(X) TV, log ¥ (XY, s) (34)

yields a zero variance estimator, i.e.
Y¥ = ¥(x,0), QF-as. (35)

Proof. See Appendix C. O

Remark 3. Under the above conditions, if f, g > 0, excluding again the case W = 0, Theorem 3 readily carries
over to the case considered in (7), with Y replaced by

F(x,1) = Ep[(We)? | X, = 2],

and the optimal control given by
i =X )V, log ¥ (XY, s).

Remark 4. We should mention that Theorem 3 covers also the special cases that either T = T is a deterministic
stopping time (see e.g. [29, Prop. 5.4.4]) or, by sending T — oo, that T < oo is an a.s. finite hitting time or first
exit time.

3.2. Revisiting Jarzynski’s identity

The Donsker-Varadhan variational principle shares some features with the nonequilibrium free
energy formulae of Jarzynski [27] and Crooks [5], and, in fact, the variational form makes these
formulae amenable to the analysis of the previous paragraphs, with the aim of improving the quality
of the corresponding statistical estimators. It turns out that the resulting importance sampling scheme
shares some features with available adaptive numerical sampling schemes, such as the adaptive biasing

3 For the ease of notation, we will use the same symbol T to denote the stopping time under the controlled or uncontrolled

process (i.e. for u = 0) throughout the article. Unless otherwise noted, it should be clear from the context whether 7 is
understood with respect to X* or X = X*~0,
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force method [8,30,31], and we will discuss possible implications of this observation later on in Section
4.

Jarzynski’s identity relates the Helmholtz equilibrium free energy to averages that are taken over
an ensemble of non-equilibrium trajectories generated by forcing the dynamics. Let (V) )p<a<1 be
a parametric family of smooth potential energy functions V), : R” — R and define the free energy
difference between the two equilibrium densities 779 « exp(—Vj) and 717 « exp(—V;) (also called:
thermodynamic states) as the log-ratio

[, exp(=i(x)dx

AF = —log . (36)
[, exp(=Vo(x)dx
Defining the energy difference Vgif = Vi — V) and the equilibrium probability density
exp(—Vo(x
o ( x) — p ( 0 ( ) ) ,
[, exp(=Vo(x)dx
Rn
the Helmholtz free energy is seen to be an exponential average of the familiar form (2):
AF = —log Er, [exp(—Vaifr)] - (37)

Jarzynski’s formula [27] states that the last equation can be represented as an exponential average over
a non-stationary realizations of a parameter-dependent process X* = (X} )o<s<T. Specifically, letting
W2 = W(X?) denote the nonequilibrium work done on the system by varying the parameter from
A = 0to A = 1 within time [0, T], Jarzynski’s equality states that

AF = —log E[exp(—W3)], (38)

where W3 will be specified below. In the last equation the expectation is taken over all realizations
of X*, with initial conditions distributed according to the equilibrium density 7rg. To be specific, we
assume that the parametric process X7 is the solution of the SDE

dX} = —(1 = As)VVo(X))ds — AsVVy (X[ )ds + v/2dBs, (39)

with (As)p<s<T being a differentiable parameter process (called: protocol) that interpolates between
Ap = 0 and At = 1. Further let the work exerted by the protocol be given by

T .
Wi = [ V(X)) Asds, (40)

where A; = dA,/ds denotes the time derivative of A¢. Note that W?‘ is a path functional of the standard
form (20), with bounded deterministic stopping time T = T and cost functions

f(Xs,8) = Vai(X0)As, g=0.

Letting now P denote the path space measure that is generated by the Brownian motion (Bs)s>0 in the
parameter dependent SDE (39), we can express Jarzynski’s equality (38) by

AF = —log Elexp(—W3)] = —log/Rn Ep [exp(—W%)} mo(x)dx, (41)

where the (conditional) expectation Ep[exp(—W4)] = Ep[exp(—W#(X?))| X} = x| is understood over
all realizations of (39) with initial condition X{)‘ = Xx.
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Optimized protocols by adaptive importance sampling

The applicability of Jarzynski’s formula heavily depends on the choice of the protocol As. The
observation that an uneducated choice of a protocol may render the corresponding statistical estimator
virtually useless because of a dramatic increase of its variance is in accordance with what one observes
in importance sampling. An attempt to optimize the protocol by minimizing the variance of the
estimator has been carried out in [35], but here we shall follow an alternative route, exploiting the fact
that Jarzysnki’s formula has the familiar exponential form considered in this paper.

Having this said and recalling Theorem 3, it is plausible that there exists a zero variance
estimator for Eplexp(—W2)] which appeared in the integrand of Jarzynski’s equality (41), under
certain assumptions on the functional W For simplicity, we confine the following considerations to
the above example of a diffusion process of the form (39) with a deterministic protocol (As)sc(o,7)- To
make the idea of optimizing the protocol more precise, we introduce the shorthand Y; = X2 for the
solution of (39) and define

y(x, t) = mvinEp {/tT (f(Y;’,s) + ;|Us|2) ds

YP = x} ) (42)

with f(x,s) = Vyig(x)As and the expectation taken over all realizations of Y?. The process Y? solves a
controlled variant of the SDE (39), specifically,

aY? = (bA(Y,5) + V20, ) ds + v2dB,, Y{ = x. (43)

Here, we have used the shorthand b, (x,s) = —(1 — As)VVp(x) — A;VV;(x). Theorem 3 that specifies
the zero-variance importance sampling estimator in terms of a feedback control policy can be adapted
to our situation (see e.g. [21,42]) by letting O 1+ R" so that T = 19 AT — T a.s. The zero-variance
estimator is generated by the feedback control

v} = —V2V, 1 (Y7)s),
with 7 (x, t) given by (42), and thus by the SDE
R (bA(YS”*,s) — 2V, (YY, s)) ds+2dB,, YU =x. (44)

Specifically, given N independent draws x1,...,xN ~ 7y from the equilibrium distribution and
corresponding N independent trajectories (Y?") sefo,1] of (44) with initial conditions Y§ " = x;, an
asymptotically unbiased, minimum variance estimator of the free energy is given by

— 1y
AFN = —log 5} G (xi) (45)
i=1

where G = exp(—Z% — W4(Y?")) with Z4=%" given by (27) and W7 (Y?") being the nonequilibrium
work (40) under the controlled process (44).

Remark 5. Note that the estimator (45) is not a zero-variance estimator because we have minimized only the
conditional estimator (for fixed initial condition). Moreover the estimator is only asymptotically unbiased by
Jensen’s inequality and the strict concavity of the logarithm.

Further notice that the estimator hinges on the availability of vy (x, t) which is typically difficult to compute.
An idea, inspired by the adaptive biasing force (ABF) algorithm [8,31] is to estimate «y on the fly and then
iteratively refine the estimate in the course of the simulation using a suitable parametric representation [24,43].
If good collective variables or reaction coordinates are known, it is further possible to choose a representation that
depends only on these variables and still obtain low variance estimators [23,25].
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4. Algorithms: gradient descent, cross entropy minimization and beyond

According to Theorem 3 designing reweighting (importance sampling) schemes on path space
that feature zero variance estimators comes at the price of solving an optimal control problem of the
following form: minimize the cost functional

T 1
T = e | [ (005)+ 2 s+ 50| o)
over all admissible controls and subject to the dynamics
dXy = (b(XY,s) + o (Xy )us) ds + o(X¢)dBs . (47)

Here admissible controls are Markovian feedback controls us = c(XY,s) such that (47) has a unique
strong solution. Leaving all technical details aside (see [18, Sec. IV.3]), it can be shown that the value
function (or: optimal cost-to-go)

) =B | [ (X9 G0t ) ds (X2 |1 =] )

with u* being the unique optimal control given by (34) is the solution of a nonlinear partial differential
equation of Hamilton-Jacobi-Bellman type. Solving this equation numerically is typically even more
difficult than solving the original sampling problem by brute-force Monte Carlo (especially when the
state space dimension 7 is large).

Note that (46)—(47) is simply the concrete form of the Donsker-Varadhan principle when the path
space measure is generated by a diffusion. Therefore the equivocation with the path space free energy
(21) or (42) is not a coincidence, because by definition the value function is the free energy, considered
as a function of the initial conditions. In other words and in view of Theorem 3, there is no need for
further sampling once the value function is known.

We will now discuss concrete numerical algorithms to minimize (46)—(47) without resorting to the
associated Hamilton-Jacobi-Bellman equation.

4.1. Gradient descent

The fact that solving the optimal control problem can be as difficult as solving the sampling
problem suggests to combine the two in an iterative fashion using a parametric representation of the
value function (or: free energy). To this end, notice that the optimal control is essentially a gradient
force that can be approximated by

N
s = —o (XY a;Vai( XY, ), (49)
i=1

based on a finite-dimensional approximation
N
F(xt) = ) aigi(Xg,s) (50)
i=1

of the value function with suitable smooth basis functions {¢; : D — R™:i = 1,...,N} that span
an N-dimensional subspace of the space C>'(D) N C(D) of classical solutions of the associated
Hamilton-Jacobi-Bellman equation. Plugging the above representation into (46)—(47) yields the
following finite-dimensional optimization problem: minimize

T = e | [ (05) + a2 s+ gxD)] o1



14 of 27

over the controls i where X% is the solution of the SDE (31) with control u = .

Let us define f(a) = J(i(a)), with the shorthand &« = (ay,...,ay)" € RN. Because of the
dependence of the process X* and the random stopping time T = 7" on the parameter «, the functional
J is not quadratic in &, but it has been shown [33] that it is strongly convex if the basis functions ¢; are
non-overlapping. In this case | has a unique minimum, which suggests to do a gradient descent in the
parameter «:

o) = o (m) _p (a(m)) . (52)
Here (I )m>0 is a sequence of step sizes that goes to zero as m — oo, and the gradient Vf(«) must be
interpreted in the sense of a functional derivative

5j(0) - E = ja+ed)| 63)

e=0

for suitable test functions § € ¥ (i.e. square-integrable and adapted to the Brownian motion). Then
the gradient VJ(a) has the components

o= ~01(0w) - (V). (54)

Introducing the shorthand
N ’ 0 Lo 0
o) = [ FXE9) + 5102 ) ds + g(xXD)
for the cost and the convention E[-] = Ep|-] for the expectation with respect to P, the derivative (53)

can again be found by means of Girsanov’s formula: there exists a measure Q¢ that is absolutely
continuous with respect to the reference measure P, such that

4 g e g BT PP o4
e =g [exmet 0+ e)] T aE[xase) TSl 6
with the likelihood ratio d0F
= exp(Zque‘:) .
dP [O,T] T

Assuming that the derivative and the expectation in (55) commute, we can differentiate inside the
expectation E[-] which is independent of the parameter € and then switch back to the controlled process
X" under the reference measure P, by which we obtain (see [33])

5](12).g:E{z(Xﬁ,ﬁ)/OTgs-st+/OTas.gsds} : (56)
Hence, using (54), we find
(_i]k = —E[e(xﬁ,ﬁ)/OT(aTvxfpk)(XE,s) -dBs +'/OT il - (UTngbk)(Xf,s)ds] . (57)

where the last expression can be estimated by Monte Carlo, possibly in combination with variance
minimizing strategies to improve the convergence of the gradient estimation in the course of the
gradient descent [33,39]. Before we conclude, we shall briefly explain why the gradient vanishes when
the variance is zero.
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Lemma 4. Under the optimal control u*, it holds that
SJ(u*)-¢=0 V¢ev.

Proof. By the It6 isometry [36, Cor. 3.1.7], we can recast (56) as
N T T
SJ(u*)-¢ = E[(E(X“ ,u®) +/ uy ~dBS) / s -st]
0 0
* * T
- E[(W(X” )+ Z! )/0 &, .st} (58)
* * T
= (W(x*) + 2 )E[/ gS'st},
0

where in the last equality we have used that W + Z is a.s. constant under the optimal control.
Since B is a Brownian motion under P, the expectation is zero and it follows that

6J(u*)-&=0 Veev,

and hence the assertion is proved. O

We summarize the above considerations in Algorithm 1 below.

Algorithm 1 Gradient descent

Set maximum no. of iteration M,yi; and € > 0

Initialize m = 0, a®©) € RN and hy > 0

Evaluate Gy = Vf(a(®)

while m < M,y & by, > € do
alm+1) = g(m) _p G,
Evaluate G, 1 = VJ(al")

. (m+1) _,(m) Y. G, —Gm
Evaluate step size, e.g. 1,11 = (« ) (G2 -G

2
‘ Gm+1 _Gm |

me—m+1
end while

Remark 6. The step size control in Algorithm 1 follows the Barzilai—Borwein procedure that guarantees
convergence as m —» oo when the funtional is convex. Another alternative is to do a line search after each iterate
in the descent direction and then determine hy, .1 so that it satisfies the Wolfe condition; see [34] for further
details.

Remark 7. In practice, it may be advantageous to pick the basis functions that are not be explicitly
time-dependent (e.g. Gaussians, Chebyshev polynomials or the alike). If the associated control problem is
stationary, as is for example the case when the SDE is homogeneous and the stopping time is a hitting time, the
value function will be stationary too and, as a consequence, the control policy will be stationary. If, however,
the problem is explicitly time-dependent, one may change the ansatz (50) to have stationary basis functions,
but time-dependent coefficients w;, where the time-dependence is mediated by the initial data; see [24] for a
discussion.

4.2. Cross-entropy minimization

Another algorithm for minimizing J(i7) is based on an entropy representation of J(u), namely,

J(u) = J(u*) + D(QIQ") (59)
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where u is any admissible control for (46)—(47), u* is the optimal control, and Q = Q(u) and Q* =
Q(u*) are the corresponding path space measures. Equation (59) is a consequence of the zero-variance
property of the optimal change of measure, since (35) implies that

dP
exp(— )dQ* =(x,0) = exp(—J(u")) (60)
and hence 4P 40
—1lo (deQ*>—](u*). (61)

Taking the expectation with respect to Q and using that both Q and Q* are absolutely continuous with
respect to P and vice versa yields (59).

The idea now is to seek a minimizer of D(Q|Q*) in the set of probability measures Q € M that
are generated by the discretized controls i, i.e. one would like to minimize

I(a) = D(Q(1(«))|Q") (62)

over & € RN, such that Q = Q(#1(«)) is absolutely continuous with respect to Q*. By (24) the optimal
change of measure is only known up to the normalizing factor exp(y), so unfortunately minimizing [
is not possible without knowledge of v or, equivalently, J(u*).* With a little trick, however, we can
turn the unfeasible minimization of (62) into a feasible minimization problem, simply by flipping the
arguments. To this end, we define

H(a) = D(Q"Q(a(w))). (63)

Clearly (59) does not hold with arguments in the KL divergence term reversed, since D(-|-) is not
symmetric, nevertheless it holds that

I(x) >0, H(x) >0 and I(a) =0ifand onlyif H(a) =0, (64)

where the minimum is attained if and only if Q = Q*. Hence, by continuity of the relative entropy,
we may expect that by minimizing the “wrong” functional H we get close to the optimal change of
measure, provided that the optimal Q* can be approximated by our parametric family Q. We have the
following handy result (see [44]).

Lemma 5 (Cross-entropy minimization). The minimization of (63) is equivalent to the minimization of the
cross-entropy functional
CE(ax) = —E {log go(ﬁ)efw(x)] (65)

where the log likelihood ratio log¢ = log(dQ/dP) between controlled and uncontrolled
trajectories is quadratic in the unknown « and can be computed via Girsanov’s theorem.

Proof. By definition of the KL divergence, we have

“)_/k’g(dp> ar P~ /1 <dP) '

4 We call exp(7y) or exp(J(u*)) a normalizing factor, even though it is clearly a function of the initial conditions (x, t) or (x,0).
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since all measures are mutually absolutely continuous. The first term in the last equation is independent
of « and the second term is proportional to the cross-entropy functional —E[log ¢ exp(—W)] up to the
unknown normalizing factor exp(y). O

The fact that the cross-entropy functional is quadratic in & implies that the necessary optimality
condition is of the form
Se =D, (66)

where S = (5;j)1<;j<n and b = (b;)1<i<N are given by

S;j =E {ew(m / T(UTVx(pi)(Xs,s)(UTVx(pj)(Xs,s) ds}
C (©7)
bj=—E [EW(X)/O (cTV ;) (Xs,5) -st] )

Note that the average in (67) is over the uncontrolled realizations X. It is easy to see that the matrix
S is positive definite if the basis functions ¢; are linearly independent, which implies that (66) has
a unique solution and our necessary condition is in fact sufficient. Nevertheless it may happen in
practice that the coefficient matrix S is badly conditioned, in which case it may be advisable to evaluate
the coefficients using importance sampling or a suitable annealing strategy; see [24,44] for further
details.

A simple, iterative variant of the cross-entropy algorithm is summarized in Algorithm 2.

Algorithm 2 Simple cross-entropy method

Set maximum no. of iteration M,,;; and a0 =0
Evaluate $ = S and b = p(© according to (67)
for m = 0 to M,y do
Solve linear system of equations §(") g ("+1) = p(m)
Evaluate S("*+1) and b("+1) by importance sampling using realizations of xe!
end for

m+1)

4.3. Other Monte-Carlo-based methods

We refrain from listing all possibilities to compute the optimal change of measure or the
optimal control, and mention only two more possilities that are functional in situations in which
grid-based discretization methods (e.g. for solving the nonlinear Hamilton-Jacobi-Bellman equation)
are unfeasible.

Approximate policy iteration

The first option that is based on successive linearization of the Hamilton-Jacobi-Bellman equation
of the underlying optimal control problem. The idea is the following: Given any admissible control
us = c(XY,s), the Feynman-Kac Theorem [36, Thm. 8.2.1] states that the cost functional J(u), considered
as a function of the initial data (x,t) of the controlled process X" = (X¥);>; with X} = x, solves a
linear boundary value problem of the form

A(0)O(c) = £(x,¢), (68)

where A(c) is a linear differential operator that depends on the chosen control policy and which
precise form (e.g. parabolic, elliptic or hypoelliptic) depends on the problem at hand. Clearly, y(x,t) =
min; O(c; x, t) is the value function (or free energy), i.e. the solution we seek. For an arbitrary initial
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choice of a control policy ¢y # c* we have v < ©(cp), and a successive improvement of the policy can
be obtained by iterating

Cnp1(x,8) = —0(x,5) TV, O(cu; x, 1), n>0. (69)

Under suitable assumptions on the drift and diffusion coefficients, iteration of (68)-(69) yields a
convergent series of control policies ¢, that converges to the unique optimal control, hence the name
of the method is policy iteration. Clearly, solving the linear partial differential equation (68) by any
grid-based method will be unfeasible if the state space dimension is larger than, say, 3 or 4. In this
case, it is possible to approximate the infinitesimal generators A(c) by a suitable grid-free Markov
chain approximation of the underlying dynamics X* = X*(<); see e.g. [1]. In this case, one speaks of an
approximate policy iteration. For further details on approximate policy iteration algorithms we refer to
the article [3] and the references therein.

Least-squares Monte Carlo

If T = T is a finite stopping time, another alternative is to exploit that the value function of the
control problem (46)—(47) can be computed as the solution to a forward-backward stochastic differential
equation (FBSDE) of the following form

dXs = b(Xs,s)ds + 0(Xs)dBs, Xi = x
1, . (70)
dYs = —f(Xs,s)ds + §|Zs| +Zs-dBs, Yr = ¢(X7) .

where t <s < T and the second equation must be interpreted as an equation that runs backwards in
time. A solution of the FBSDE (70) is a triplet (X, Ys, Zs), with the property that Yy and Zy at time
s’ € [t, T] depend only on the history of the forward process (Xs);<s<y up to time s’. In particular,
since X; = x, the backward process Y; is a deterministic function of the initial data (x,t) only, and it
holds that (e.g. [17])

v(xt) =Y. (71)

The specific structure of the control problem (46)—(47) implies that the forward equation is decoupled
from the backward equation and that the backward process (Y, Zs) can be expressed by

Ys = 'Y(Xs/s) , Zs= _U(Xs)Tvx'7<Xs/S) ’

where X; is the uncontrolled forward process. Since we can simulate the forward process and we know
the functional dependence of (Ys, Zs) on X, the idea here is again to use the representation (50) of -y in
terms of a finite basis. It turns out that the coefficient vector « € RN can be computed by solving a
least-squares problem in every time step of the time-discretized backward SDE, which is why methods
for solving an FBSDE like (70) are termed least squares Monte Carlo; for the general approach we refer to
[2,16]; details for the situation at hand will be addressed in a forthcoming paper [26].

5. Illustrative examples

From a measure-theoretic viewpoint, changing the drift of an SDE (a.k.a. Girsanov transformation)
is an exponential tilting of a Gaussian measure on an infinite-dimensional space. Here, for illustration
purposes, we consider a one-dimensional paradigm that is in the spirit of Section 2 and that illustrates
the basic features of Gaussian measure changes, Girsanov transformations and the cross-entropy
method.
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To this end, let 1 = N(0,1) the density of the standard Gaussian distribution on R, and define an
exponential family of “tilted” probability densities by

pa(x) = exp (ucx — “;) mt(x). (72)

It can be readily checked that p, is the density of the normal distribution N («, 1) with mean « and
unit variance, in other words, the exponential tilting results in a shift of the mean, which represents a
change of the drift in the case of an SDE.?

5.1. Example 1 (moment generating function)

Let B > 0 and define

¥p = Ex[exp(—pX)] . (73)
By Jensen’s inequality, it follows that
-1 -1 Pu
— B logExlexp(—BX)] < Eq {X + B log — (74)
where E,[-] denotes the expectation with respect to p,. A simple calculation shows that the inequality
is sharp where equality is attained for « = —p, i.e. when p, = p*, with
p*=N(-B1). (75)

As a consequence, the Donsker-Varadhan variational principle (4) holds when the minimum is taken
over the exponential family (72) with sufficient statistic X.
We will now show that p* can be computed by the cross-entropy method. To this end, let

J(#) = Eq [X +p llog %“] : (76)

As we have just argued, there exists a unique minimizer #* = —f of J that by Theorem 1 has the zero
variance property which implies that

J(@) = J(&*) + B~ D(palp*) - (77)

The associated cross-entropy functional has the form (see page 16)

CE(a) = —Ex [1og%"‘ exp(—ﬁX)} . (78)

Using (72), it is easily seen that the cross-entropy funtional is quadratic,

CE(x) = Ex [((X; - oaX) exp(—,BX)} , (79)

with unique minimizer
Ex[Xexp(—BX)] _
Edloxp(—BX)] 0 BYP %0

5(:

5 Compare equations (27)—(29).



20 of 27

where the second equality follows from (73), using the fact that the derivative and the expectation
commute because 77 is Gaussian and hence the moment-generating function ¢ exists for all € R.
Rearranging the terms in the last equation, we obtain

- aaﬁlogtpﬁ; =E; [Xexp <—,8X - ﬁ:ﬂ =E_g[X] = -8, (81)

showing that

a=uo"=—-p.
The above consideration readily generalize to the multidimensional Gaussian case, and hence this
simple example illustrates that the cross-entropy method yields the same result as direct minimization
of the functional (76)—at least in the finite-dimensional case.

5.2. Example 2 (rare event probabilities)

The following example illustrates that the cross-entropy method can be used and produces
meaningful results, even though the Donsker-Varadhan principle does not hold. To this end consider
again the case of a real-valued random variable X ~ P with density 7 = A/ (0,1) and W = —log 1 (X>d)
with d > 0. Then

P(X > d) = Ex [exp(—W)] (52)

is a small probability that is difficult to compute by brute-force Monte Carlo. In this case, a zero-variance
change of measure exists, but it is not of the form (72). As a consequence, equality in (74) cannot be
attained within the exponential family {p,: « € R} given by (72). Instead, the optimal density in this
case would be the conditional density

() = 2 ), )
p
where the normalization constant p = P(X > d) is of course the quantity we want to compute (cf. page
3). Note that this expression formally agrees with the optimal density (5), which was derived under
different assumptions though.
The idea now is to minimize the distance between p, and p* in the sense of relative entropy, i.e. we
seek a minimizer of the Kullback-Leibler divergence D(p*|p,) in the exponential family {p,: « € R}.
The associated cross-entropy functional is given by

CE(a) = En[(a: - IXX) 1{X>d}] , (84)

with unique minizer

o = ErXlpea] E[X|X > d]. (85)

Er[1x>a)]
Comparing (85) and (83), we observe that both densities p,+ and p* # p,+ have the same mean (namely
«*), hence the suboptimal density p,+ is concentrated around the typical values that the optimal density
p* would produce when samples were drawn from it.

Clearly, the optimal tilting parameter (85) is probably as difficult to compute by brute-force Monte
Carlo as the probability p = P(X > d) since {X > d} is a rare event when d >> 0 is far away from the
mean. The strength of both gradient descent and cross-entropy method is, however, that the optimal
tilting parameter can be computed iteratively. This is illustrated numerically in Figure 1 for the choice
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Figure 1. Comparison of the cross-entropy (green) and the gradient descent method (blue) for a rare
event with probability p ~ 2.867 x 107 for fixed sample size N = 10%. Both algorithms quickly
converge to the optimal tilting parameter a* = 5.187 for the family A (&, 1) of importance sampling
distributions (left panel) and lead to a drastic reduction of the normalized relative error by a factor of
1000, from about 2000 to 2.38 after few iterations (right panel).

d = 5, where we use Algorithm 1 with a constant stepsize and Algorithm 2 as specified. In each

1)

iteration m we draw a sample of size N = 10% from the density p“(" , estimate the mean

1

AL 7T
P=N

Lix,>d) o (Xi)
{ >}p“<> !

I

1

and the sample variance in each sample. The latter is proportional to the normalized variance K Var(p)
of an estimator that has been estimated K times.

For this (admittedly simple) example both gradient descent and cross-entropy method converge
well and lead to a drastic reduction of the normalized relative error 6 = v/Var(p)/p of the estimator
by a factor of about 1000, from about 2000 without importance sampling to about § ~ 2.38 under
(suboptimal) importance sampling with exponential tilting, indicating that both methods can handle
situations in which the optimal (i.e. § = 0) change of measure is not available within the set of trial
densities.

6. Conclusions

We have presented a method for constructing minimum-variance importance sampling estimators.
The method is based on a variational characterization of the thermodynamic free energy and essentially
replaces a Monte Carlo sampling problem by a stochastic approximation problem for the optimal
importance sampling density. For path sampling, the stochastic approximation problem boils down to
a Markov control problem, which again can be solved by stochastic optimization techniques. We have
proved that for a large class of path sampling problems that are relevant in e.g. molecular dynamics or
rare events simulation the (unique) solution to the optimal control problem can yield zero-variance
importance sampling schemes.

The computational gain when replacing the sampling problem by a variational principle
is—besides improved convergence due to the variance reduction and often a higher hitting rate of the
relevant events—due to the fact that the variational problem can be solved iteratively, which makes it
amenable to multilevel approaches. The cross-entropy method as an examples of such an approach
has been presented in some detail. A substantial difficulty still is a clever choice of basis functions
that is highly problem-specific, and hence future research should address non-parametric approaches
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as well as model reduction methods in combination with the stochastic optimization/approximation
tools that can be used to solve the underlying variational problems.
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Appendix A Ratio estimators

We shall briefly discuss the properties of the self-normalized importance sampling estimator (15)
that is based on estimating a ratio of expectation values

1 N 1 N
gN N;Q,m Ngz

where Q; and P; are i.i.d. random variables living on a joint probability space and having finite
variances (Té and 03 and covariance ogp. Further assume that ¢ = E[Q;] # 0, then, by the strong law
of large numbers, the ratio pn/qn converges a.s. to p/q where p = E[Py].

Appendix A.1 The delta method

We can apply the delta method (e.g. [19, Sec. 4.1]) to analyse the behaviour of the ratio estimator
in more detail. Roughly speaking, the delta method says that forasum Sy = X1 +...+ Xy, NN
of square-integrable, i.i.d. random variables X; with mean y € R", covariance matrix > € R"*" and
a sufficiently smooth function ¢: R” — R which can be Taylor expanded about y, the central limit
theorem applies. Specifically, using mean value theorem, it is easily seen that

P(SN/N) —¢(n) = Vo(In)(SN/N — 1)

for some {n € R" lying component-wise in the half open interval between Sy /N and p. By the
continuity of V¢ at y, the fact that Sy /N — pa.s.as N — co and that /N (Sy /N — p) is approximately
Gaussian with mean zero and covariance ¥, we have

VN (¢(Sn/N) = 9() 5 N (0,Ve(n)EV(H)) , N = oo

Appendix A.2 Asymptotic properties of ratio estimators

Applying the delta method to the function ¢: R> — R, (1,v) — u/v, and assuming that o
is bounded away from zero, we find that the ratio estimator satisfies a central limit theorem too.
Specifically, assuming that g # 0 so that |gy| is asymptotically bounded away from zero, the delta
method yields

VR (B 1) 5 (o),
N 9
with variance
_F
, Var(P—2Q)
=
In particular, the estimator is asymptotically unbiased.

o

Appendix B Finite-dimensional change of measure formula

We will explain the basic idea behind Girsanov’s Theorem and the change of measure formula
(29). To keep the presentation easily accessible, we present only a vanilla version of the theorem based
on finite-dimensional Gaussian measures, partly following an idea in [38].
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Appendix B.1 Gaussian change of measure

Let P be a probability measure on a measurable space (), ), on which an m-dimensional
random variable B: (3 — R" is defined. Further suppose that B has standard Gaussian distribution
Pg = P o B~1. Given a (deterministic) vector b € R" and a matrix ¢ € R"*™, we define a new random
variable X: () — R" by

X(w) =b+0B(w). (A1)

The similarity to the SDE (19) is no coincidence. Since B is Gaussian, so is X, with mean b and
covariance C = ¢o!. Now let u € R" and define the shifted Gaussian random variable

BY(w) = B(w) —u
and consider the alternative representation
X(w) = b" + 0B"(w) (A2)
of X that is equivalent to (A1) if and only if
ou=">b"—-b

has a solution (that may not be unique though). Following the line of Section 3.1, we seek a probability
measure Q < P such that B is standard Gaussian under Q, and we claim that such a Q should have
the property

Q. _ 1
ﬁ(w) = exp (u B(w) 2|u\ > (A3)
or, equivalently,
9Q () = exp (- B*(w) + HuP? (A4)
ap ) TP 2" )

in accordance with (27)-(29). To show that B* is indeed standard Gaussian under the above defined
measure Q, it is sufficient to check that for any measurable (Borel) set A C R™, the probability
Q(B* € A) is given by the integral against the standard Gaussian density:

|x?

QB"e A)= (an)m/z /A exp <—2> dx.

Indeed, since B is standard Gaussian under P, it follows that

QB" e A) = / exp <u -B(w) — ;|u2> dP(w)

{w:B*(w)eA}
- /{w:B<w)—ueA} exp (“ -B(w) - ;ulz) dP(w)
B (an)m/z /{XIXquA} P (” X %|”|2 - ;|x|2> dx
Y
- (27'5"[/2 /{X:xfueA} exp <_x2u> dx

1 lyI?
~ 2y /A P (_2 4y,

showing that B" has a standard Gaussian distribution under Q.
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Appendix B.2 Reweighting
Clearly, by the definition of Q, it holds that

BL(X)) = Bo| /(X0 exp (—u- B*(w) ~ 3 1uf)| (5)

for any bounded and measurable function f: R" — R, where E[-] = Ep[-] denotes the expectation
with respect to the reference measure P. Now let

X*(w) = b* + 0B(w).

Since the distribution of the pair (X", B) under P is the same as the distribution of the pair (X, B%)
with X = b" 4+ ¢B" under Q, the reweighting identity (A5) entails that

BLACX)) = B | £ exp (- B(@) - 51ul?) | (6)

with E[B] = 0. Equation (A6) is the finite dimensional analogue of the reweighting identity that has
been used to convert the Donsker-Varadhan formula (22) into its final form (30).

Remark 8. If o(-) in the SDE (26) is square and invertible, then an alternative derivation of Girsanov’s
Theorem and (29) can be based on the Euler-Maruyama discretization of the SDE and a change of measure for
the corresponding Markov chain.

Appendix C Proof of Theorem 3

The proof is based on the Feynman-Kac formula and It6’s Lemma. Here we give only a sketch of
the proof and leave aside all technical details regarding the regularity of solutions of partial differential
equations, for which we refer to [18, Sec. VI.5]. Recall the definition

T
¥(x,0) = B oxp ([ (%) s - g0%0) ) [x =]
By the Feynman-Kac formula, function ¥ solves the parabolic boundary value problem

(A-fl¥Y =0, for (x,t) € O x[0,T),

Y =exp(—g), for(x,t)eD". (A7)

on the domain D = O x [0, T) where D = (90 x [0,T)) U (O x {T}) denotes the terminal set of the
augmented (control-free) process (X;, t) and

_ 90 1 7 .
A—g+§aa.vx+b'vx

is its infinitesimal generator under the probability measure P. By construction, the stopping time 7 is
bounded, and we assume that ¥ is of class C>! on D, and continuous and uniformly bounded away
from zero on the closure D. Now let us define the process

C = ~log ¥(XY,5),
with X¥ given by (26). Then, using It6’s Lemma (e.g. [36, Thm. 4.2.1]) and introducing the shorthands

Y =Y (X{s), b = b(X{,s), o = 0(X),
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we see that ({¥)o<s<r satisfies the SDE

act = — %log‘l”g ds — Vylog ¥y - (bY + olus)ds

— 2Ot Vi(log ¥)ds — ((0)" V. log ¥ - dB!
Ag AV 4 1](c) TV, P42 A\
- { ¥ ((%“)T ‘;ys> '“s—z(s?wzfzs'} o (WV ‘;gs) “dBs
VvV, P 1 [(e)TV, 4|2 v,y

In the last equation, we have used that the first equation in (A7) holds in the interior of the bounded
domain D, i.e. for s < 7. Choosing us = u; for 0 < s < 7 to be the optimal control

= o(X¥,5) TV, log ¥ (X", s)
as in (34), the last equation can be recast as
* * 1 *
act = — (f(X;‘ ,8) + 2u:|2) ds —u’ - dBY" .

Similar to (28), if we introduce
* T « 17
2t = [ up-dBy + 3 [P,
! s 2 Js

gy = —f(X¥,s)ds — dzZ"..

then Z(L)‘*T = 7% and we have

As a consequence, using the continuity of the process as s | 0,

*

o =gy -z - [ s (A8)

By definition of }, the initial value 6‘* =— log‘I’(Xg*, 0) = —log ¥ (x,0) is deterministic. Moreover
" = —log¥ (XY, 1) = g(X*"), which in combination with (A8) yields

—log ¥(x,0) = g(X*) + /()Tf(xg‘*,s)ds -7, (A9)

Rearranging the terms in the last equation, we find

* T * *
¥(n,0) =exp (28— ["100 s —g(x)) (A10)
0
with probability one, which yields the assertion of Theorem 3.
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