
Mixed-Integer Programming for
Clustering in Non-reversible

Markov Processes

Masterarbeit bei
Prof. Dr. Thorsten Koch

Zweitkorrektor: PD Dr. Marcus Weber

vorgelegt von
Leon Eifler

Technische Universität Berlin
Fachbereich Mathematik

4. January, 2018

Eigeständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ei-
genhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Ver-
wendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Hereby I confirm that the work contained in this thesis is my own unless
otherwise stated. All adoptions of literature have been referenced as such
and are listed in the References section.

Berlin, den 4. January, 2018

Leon Eifler

Abstract

The topic of this thesis is the examination of an optimization model
which stems from the clustering process of non-reversible markov processes.
We introduce the cycle clustering problem und formulate it as a mixed
integer program (MIP).

We prove that this problem is NP-hard and discuss polytopal aspects
such as facets and dimension. The focus of this thesis is the development of
solving methods for this clustering problem. We develop problem specific
primal heuristics, as well as separation methods and an approximation
algorithm. These techniques are implemented in practice as an application
for the MIP solver SCIP.

Our computational experiments show that these solving methods result
in an average speedup of ×4 compared to generic solvers and that our
application is able to solve more instances to optimality within the given
time limit of one hour.

Zusammenfassung

Inhalt dieser Arbeit ist die Untersuchung eines Optimierungsmodells, welches
zum Clustering von nicht-reversiblen Markow-Prozessen genutzt wird. Das
sogenannte cycle clustering problem wird motiviert und als gemischt ganz-
zahliges Programm formuliert. Wir beweisen, dass dieses Problem NP-
schwer ist und untersuchen die Dimension und Facetten des zugehörigen
Polytops. Schwerpunkt der Arbeit ist die Entwicklung von Lösungsmetho-
den für dieses Problem. Wir entwickeln primale Heuristiken, Separierungs-
methoden sowie einen Approximationsalgorithmus. Diese Methoden wer-
den als eine Erweiterung des MIP Lösers SCIP implementiert.

Unsere rechnerischen Experimente zeigen, dass diese Lösungsmethoden
eine durchschnittliche Beschleunigung um einen Faktor ×4 im Vergleich mit
generischen Lösern zeigen. Des weiteren können innerhalb des Zeitlimits
von einer Stunde mehr Instanzen optimal gelöst werden.

Contents

1 Introduction and Preliminaries 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Outline . 2
1.4 Preliminaries . 2

1.4.1 Mixed Integer Programming 2
1.4.2 Branch-and-Bound 3
1.4.3 Introduction to Markov State Models 3

2 Cycle Clustering 5
2.1 The Cycle Clustering Model 5
2.2 Complexity of Cycle Clustering 7
2.3 MIP-Formulation . 10
2.4 Polytopal Aspects . 13

2.4.1 Dimension of the Polytope 14
2.4.2 Facets of the Problem Formulation 18

2.5 Semidefinite Relaxation of Quadratic Programs 25

3 Solving Methods for Cycle Clustering 29
3.1 Primal Heuristics . 29

3.1.1 Greedy Heuristic . 30
3.1.2 Exchange Heuristic 31
3.1.3 Rounding Heuristic 32

3.2 Valid Inequalities . 33
3.2.1 Triangle Inequalities 33
3.2.2 Subtour and Path Inequalities 36
3.2.3 Partition Inequalities 40

3.3 Multinode Branching . 42
3.4 Approximation by Reducing Instance Size 43

4 Computational Experiments 45
4.1 Test Set . 45
4.2 Overall Performance . 48
4.3 Evaluation of Primal Heuristics 51
4.4 Evaluation of Valid Inequalities 53
4.5 Evaluation of Approximation Method 55
4.6 Comparing different Relaxations 57

5 Conclusion and Outlook 59

Bibliography 61

A Auxiliary Proofs 65

B Test set 73

1

Chapter 1

Introduction and Preliminaries

1.1 Introduction
Graphs are one of the most commonly used structures when mathematic-
ally modeling any kind of application problem. The study of large graphs
inherently leads to graph partitioning problems. Any time a graph has
to be decomposed into smaller parts, a graph partitioning problem has to
be solved. Example applications are VLSI layout design [24] and GSM
frequency planning [14].

Already the case where the graph is only split in two parts, the max-
cut problem isNP-complete [25]. However, several researchers have studied
graph-partitioning problems with a greater number of partitions. Grötschel
and Wakabayashi have studied the clique partitioning polytope [22] in order
to solve problems in data analysis. Later, Chopra and Rao have introduced
the k-partition problem [8] and a formulation that is beneficial if the studied
graph is not complete. Ferreira et al. have studied the node capacitated
graph partitioning problem [17] that imposes capacity restrictions on the
partitions.

At the center of many of these publications is the search for valid in-
equalities in order to produce tighter relaxation bounds. Other approaches
to solve the graph-partitioning problem involve semidefinite programming
[3], continuous non-convex quadratic programming [23] or combining dif-
ferent relaxations [28].

In this thesis, we investigate a specific graph partitioning problem and
attempt to solve it using mixed integer programing. The problem, called
cycle clustering, stems from the coarse graining process of markov state
models

1.2 Motivation
In the computational modeling of biological and chemical processes as
markov state models, one obtains a stochastic transition matrix that rep-
resents the time evolution of the system. As a direct interpretation of
this high-dimensional matrix is difficult, clustering methods are used to ex-
tract insight from the data. In [4], a MIP-based clustering approach called
cycle clustering was developed for non-reversible processes such as catalytic
cycles that do not meet the requirements of previous clustering methods.

2 Chapter 1. Introduction and Preliminaries

The idea of this method is to identify a cycle of clusters such that the
directed cut between consecutive clusters is maximal. It was proven in [4]
that the resulting optimization problem is NP-hard.

The aim of this thesis is to develop solving techniques for the cycle
clustering problem.

1.3 Outline
In the remaining part of Chapter 1, we present basics of mixed integer
programming, as well as a short introduction to markov state models.

In Chapter 2, we formally introduce the cycle clustering problem and
discuss MIP formulations for it. Moreover, we discuss the complexity in
detail and investigate polytopal aspects of the MIP formulation. In Chapter
3, we present problem specific primal heuristics and valid inequalities. As
the transition matrices obtained from molecular modeling are often not
sparse, we discuss possibilities to obtain approximate solutions by reducing
the instance size.

In Chapter 4, we conduct computational experiments, testing the overall
runtime and the impact of the various problem specific extensions presented
in Chapter 3. We compare our results to those of generic MIP solvers.
Finally we draw conclusions and give an outlook in Chapter 5.

1.4 Preliminaries

1.4.1 Mixed Integer Programming

Let m,n ∈ N. Let A ∈ Rn×m be a matrix of coefficients, c ∈ Rn, b ∈ Rm

and I ⊆ {1, . . . , n} be the index-set of integer variables.
A mixed integer program is an optimization problem of the form

(MIP) min cTx

s.t. Ax ≤ b

xi ∈ Z ∀i ∈ I
xi ∈ R ∀i ∈ {1, . . . , n} \ I.

Any x ∈ Rn that fulfills the restrictions above is called feasible solution
of the MIP. Special cases of MIPs that will be of interest in this thesis
are integer programs (IPs), where I = {1, . . . , n}, binary programs (BPs),
where I = {1, . . . , n} and all variables are bounded between 0 and 1, as
well as linear programs (LPs), where I = ∅.

Solving MIPs is NP-hard in general [19]. Omitting the integrality re-
quirement in the above problem is called the LP-relaxation of a MIP

(LP-relaxation) min cTx

s.t. Ax ≤ b

xi ∈ R ∀i ∈ {1, . . . , n}.

1.4. Preliminaries 3

In order to shorten notation, we will refer to the optimal solution of the
LP-relaxation as the LP-solution.

An optimal solution of the LP-relaxation provides a lower bound on
the optimal value of the MIP. The most common way to solve MIPs, the
LP-based branch-and-bound, exploits this property.

1.4.2 Branch-and-Bound

We illustrate the branch-and-bound technique at the example of LP-based
branch-and-bound, as this is the problem we focus on in this thesis. As
pointed out previously, the LP-solution x∗ of an LP-relaxation provides a
lower bound on the optimal solution of the MIP. If x∗ satisfies all of the
integrality conditions, then it is also a feasible solution of the MIP and
therefore the global optimal solution.

If this is not the case, we can select a variable xi, with bx∗i c < x∗i < dx∗i e.
We introduce two new subproblems that both consist of the original

MIP, with the added constraints xi ≤ bx∗i c and xi ≥ dx∗i e, respectively.
We select one of them, compute the LP-relaxation and proceed to create
further subproblems in the same way. This is called the branching step.
If the solution x∗ of one of the LP-relaxations of a subproblem satisfies all
integrality conditions, then it is a feasible solution to the original MIP and
thus provides an upper bound on the optimal solution. If the LP-relaxation
of any subproblem has a solution value greater than that of the best known
integer-feasible solution x̂, then this subtree can be discarded. This is called
the bounding step. A subtree can also be discarded if the LP-relaxation of
a subproblem has no feasible solution.

The whole concept can be visualized as a branch-and-bound tree, see
Figure 1.1.

1.4.3 Introduction to Markov State Models

We give a brief overview over the topic of markov state models [12, 33, 34].
A more extensive introduction for non-experts in this field can be found in
[32].

Generally speaking, a markov state model can be used as a way to
describe and analyze data from a simulation in a meaningful way as a
discrete system of states. Having a set of data (e.g., trajectories from a
molecular dynamics simulation), we define a set of n microstates and then
assign each data point from our simulation to one of these microstates. It
is possible to assign membership to a microstate on a continuous basis (see
[37]), i.e., every data point is assigned fractionally to different microstates,
using a membership function.

The number of transitions between any two microstates i and j that
occur within some defined lag time τ is counted, i.e., if the system is in
microstate i at time t, how often will it go to state j at time t+ τ .

The probability pij of a transition from i to j can be estimated by
dividing the count of those transitions by the overall number of transition

4 Chapter 1. Introduction and Preliminaries

N

N1

N3

N5 N6

N4

N2

N7 N8

xi1 ≤ bx
?,N
i1
c

xi2 ≤ bx
?,N1

i2
c

xi3 ≤ bx
?,N3

i3
c xi3 ≥ dx

?,N3

i3
e

xi2 ≥ dx
?,N1

i2
e

xi1 ≥ dx
?,N
i1
e

xi4 ≤ bx
?,N2

i4
c xi4 ≥ dx

?,N2

i4
e

feasible solution x̂ infeasible LP
bounded by x̂

Figure 1.1: Illustration of a branch-and-bound tree. We
solve the LP-relaxation of the root problem N and branch
on the fractional variable xi1 , creating the subproblems
N1 and N2. We select N1 as the active node and branch
again. In this example, the LP-relaxation of N5 is feasible
for the original MIP. N6 can be discarded because the LP-
relaxation is infeasible. The other nodes N4, N7, and N8 can
be discarded due to bounding as their LP-relaxation has a

larger objective value than x̂.

starting at i. We will call the matrix of conditional probabilities obtained
this way the transition matrix P ∈ [0, 1]n×n.

The markov state model is usually a high-resolution model, i.e., it will
have a large number of states n. Thus, it is often hard to gain insight from
the data or visualize the process in an intuitive way.

For that reason, clustering or coarse graining methods are used to create
models with a lower resolution, i.e., a lower number of states. There are
several ways to do this. Spectral clustering methods can be used to cluster
states that are kinetically related into metastabilities [11], by taking into
account the m leading eigenvalues of P . If the dynamics of the process can
be characterized by dominant cycles, then eigenvalues of P that are close to
the complex unit circle can be identified and used to create a clustering [9].
These methods are well-studied and fast due to the well-developed linear
algebra solving techniques for eigenvalue decompositions. However, if one
wants to investigate general cyclic behavior of a process that does not have
a dominant cycle, a different approach is needed.

We will present such a clustering method that can be used to identify
and evaluate cycles in a markov state model.

5

Chapter 2

Cycle Clustering

In this chapter, we formally introduce and discuss the cycle clustering prob-
lem. First, we formulate a high-level description of the problem and prove
that it is NP-hard. Afterwards, we construct an IP-formulation which we
obtain by linearizing a binary quadratic program. Moreover, we investigate
the dimension and facets of the polytope corresponding to this formulation.
Finally, we present an alternative formulation for cycle clustering, using
semidefinite programming.

2.1 The Cycle Clustering Model
As we briefly illustrated in the previous section, clustering methods are
needed for the analysis and understanding of markov state models. In
[4] a new clustering approach called cycle clustering was developed that
identifies an ordered set of clusters.

We construct the clustering model in the same way as in [4], starting
from a markov process with a finite set of states S = {1, . . . , n} and a
fixed number of clusters m ≥ 3. A clustering of S has to contain all states
i.e.,

⋃m
i=1Ci = S, and for each t 6= t′ ∈ {1, . . . ,m} the clusters have to be

disjoint, i.e., Ct ∩ Ct′ = ∅. Furthermore, all clusters have to be non-empty,
i.e., Ct 6= ∅, for all t ∈ {1, . . . ,m}.

This markov process has a matrix of conditional transition probabilities
P ∈ Rn×n, where each entry pij is the probability of moving from one state
i to another state j in one time step. We assume that P is stochastic,
i.e., that the row-sum of each row is equal to one. We also assume that
there exists a stationary distribution vector π ∈ [0, 1]n such that πTP = π
and

∑n
i=1 πi = 1. A sufficient condition for this is if the markov process is

irreducible [13].
We define the unconditional transition matrix Q ∈ Rn×n by setting

qij := πipij for all i, j ∈ S. Each entry qij is the unconditional probability
of a transition from i to j among all transitions. The sum of all entries in
Q equals one, as

n∑
i,j=1

qij =
n∑
i=1

πi

n∑
j=1

pij =
n∑
i=1

πi = 1.

6 Chapter 2. Cycle Clustering

The goal of our clustering approach consists of two parts. The first part is to
identify cycles in this markov process, i.e., we want to partition the states S
into an ordered set of clusters C = (C1, . . . , Cm), such that the probability of
moving from one cluster to the next is higher than the probability of going
backwards. At the same time, we do not want to cluster states together that
rarely interact with each other, i.e., have a low transition probability. To
measure these two objectives we define the net flow between two clusters,
as well as the coherence within a cluster.

Definition 1. Let A,B ⊂ S be two disjoint sets of states. Then the net
flow from A to B is defined as

f(A,B) =
∑
i∈A

∑
j∈B

(qij − qji). (2.1)

Definition 2. Let A ⊆ S. Then the coherence of A is defined as

g(A) =
∑
i,j∈A
i<j

(qij + qji). (2.2)

The coherence of a set of states is the probability that a transition takes
place inside this set.

We define a function for denoting consecutive clusters as

φ : {1, . . . ,m} → {1, . . . ,m}, φ(t) =

{
t+ 1, if t < m,

1, if t = m.

Our goal is to find a clustering that maximizes the overall net flow while
still preserving some structural integrity, measured by the coherence. The
high-level description of this optimization problem is

max
m∑
t=1

f(Ct, Cφ(t)) + α

m∑
t=1

g(Ct)

s.t.
m⋃
t=1

Ct = S

Ct 6= ∅ ∀t ∈ {1, . . . ,m}
Ct ∩ Ct′ = ∅ ∀t 6= t′ ∈ {1, . . . ,m}.

Here, α > 0 is a scaling parameter that determines the influence of the
coherence. A low value α << 1 is usually used to find a clustering with
high net flow, whereas the coherence is needed to cluster states that have
no net flow between them. For an example that illustrates the importance
of coherence, we refer to [4].

2.2. Complexity of Cycle Clustering 7

f

Figure 2.1: Illustration of the clustering model. The
net flow from one cluster to the next along the cycle is
marked by the one-sided arrows. The transition probabilit-
ies between all the states in one cluster form the coherence.
These transitions are shown as the two-sided arrows in the

first cluster.

2.2 Complexity of Cycle Clustering
It was proven in [4] that the cycle clustering problem is NP-hard. In this
section, we give a more detailed proof using the same reduction technique
from the multiway cut problem, which is NP-hard for any fixedm ≥ 3 [10].

Definition 3 (multiway cut). Let G = (V,A) be an undirected graph with
non-negative edge weights c(a) ≥ 0 for all a ∈ A. Let T = {t1, . . . , tm} ⊆ V
be a subset of specified vertices, called terminals. A multiway cut is a subset
of edges A′ ⊆ A that separates the terminals t1, . . . , tm in the sense that
there exists no path from any terminal to any other terminal in (V,A \A′).
The multiway cut problem is finding a weight-minimal multiway cut.

t1

t2

t3

t1

t2

t3

Figure 2.2: Illustration of the multiway cut problem. On
the left is a graph with three terminals t1, t2, t3. On the
right side a subset of edges A′ was removed such that all
terminals are separated. Therefore A′ forms a multiway cut

Theorem 4. The cycle clustering problem defined in Section 2.1 is NP-
hard for any number of clusters m ≥ 3 and 0 < α < 1.

8 Chapter 2. Cycle Clustering

Proof. We consider an instance of the multiway cut problem, i.e., an un-
directed graph G = (V,A) with a set of nodes V = {1, . . . , n}, and a
set of edges A ⊆

(
V
2

)
with edge weights c(a) ≥ 0 for all a ∈ A. Let

T = {t1, . . . , tm} ⊆ V be the set of terminals with m ≥ 3. We construct an
instance of the cycle clustering problem whose optimal solution corresponds
to a weight-minimal multiway cut.

By definition, any edge a = {ti1 , ti2} between two terminal nodes has to
be in every multiway cut A′ ⊆ A, or the terminals would not be separated.
Therefore, the weight-sum over all edges connecting terminals provides a
constant offset to the objective value. W.l.o.g. let A ∩

(
T
2

)
= ∅.

Furthermore, we may assume that every non-terminal node has at least
one edge of positive weight connected to it, i.e.,

∑
v∈V : {u,v}∈A c{u, v} > 0

for all u ∈ V \T . If this is not the case, the node can be assigned arbitrarily.
We construct a cycle clustering instance with a set of states S = V and

m clusters, where we define the probabilities in such a way that

• the net flow forces the terminals into different clusters,

• the coherence represents the objective of the multiway cut,

• the weights are scaled so that the resulting transition matrix P is
stochastic.

Set for all u, v ∈ V

du,v =


M, if there exists ti ∈ T : u = ti, v = tφ(i),

c{u, v}/2, if {u, v} ∈ A,
0, else.

The constantM is chosen sufficiently large such that each terminal is forced
into a different cluster. We will specify M later in the proof.

These weights are scaled in order to construct a stochastic matrix P ∈
Rn×n. Denote the row-sum for one state u by ‖Du·‖1 =

∑
u′∈V d(u, u′). Let

the entries of P be defined as

pu,v =
du,v
‖Du·‖1

for all u, v ∈ V.

This transition matrix P has a stationary distribution π ∈ Rn given by

πu =
‖Du·‖1∑

u′∈V ‖Du′·‖1
for all u ∈ V.

P is stochastic and the sum over all entries of π is one, since∑
v∈V

pu,v =
∑
v∈V

du,v
‖Du·‖1

= 1,

∑
v∈V

πv =
∑
v∈V

‖Dv·‖1∑
u′∈V ‖Du′·‖1

= 1.

2.2. Complexity of Cycle Clustering 9

To prove that π is a stationary distribution, we need to show πTP = πT .
Denote the v-th column of P by Pv, then

πTPv =
∑
u∈V

πupu,v =
∑
u∈V

‖Du·‖1∑
u′∈V ‖Du′·‖1

du,v
‖Du·‖1

=
∑
u∈V

du,v∑
u′∈V ‖Du′·‖1

=
∑
u∈V

dv,u∑
u′∈V ‖Du′·‖1

= πv.

In the last equation, we exploited the fact that
∑

u∈V dv,u =
∑

u∈V du,v. For
all v /∈ T , this holds because du,v = dv,u for all (u, v) ∈ (V × V) \ (T × T).

If v = ti ∈ T , then

dti,tj =

{
M, if j = φ(i),

0, else.

Therefore, it holds that∑
u∈V

dti,u =
∑
u∈V \T

dti,u +
∑
tj∈T

dti,tj =
∑
u∈V \T

du,ti + dti,tφ(i)

=
∑
u∈V \T

du,ti + dtφ−1(i),ti
=
∑
u∈V \T

du,ti +
∑
tj∈T

dtj ,ti =
∑
u∈V

du,ti .

For u, v ∈ V , the corresponding matrix Q of unconditional transition prob-
abilities has entries

qu,v = πupu,v =
‖Du·‖1∑

u′∈V ‖Du′·‖1
du,v
‖Du·‖1

=
du,v∑

u′∈V ‖Du′·‖1
.

Thus, only the terminals contribute to the net flow, since

qu,v − qv,u =


M∑

u∈v ‖D(u)‖1 , for u = ti, v = tφ(i),

− M∑
u∈v ‖D(u)‖1 , for v = tφ(i), u = ti,

0, otherwise.

We set

M >
α
∑

a∈A c(a)

1− α
,

and prove that any optimal solution to the cycle clustering problem cannot
have two terminals in the same cluster. Any solution to the cycle clustering
problem with ti ∈ Ci for all i = 1, . . . ,m has an objective value obj1 of at
least

obj1 ≥
mM∑

u∈v ‖D(u)‖1
.

10 Chapter 2. Cycle Clustering

Assume that two terminals are in the same cluster in a clustering. Then
we can formulate an upper bound on the objective value obj2 as

obj2 ≤
1∑

u∈v ‖D(u)‖1

(
(m− 1)M + α(

∑
a∈A

c(a) +M)

)
.

Due to the choice of M , it holds that obj1 > obj2, so the terminals have to
be arranged in a cycle in any optimal solution.

Let (C1, . . . , Cm) be an optimal solution of the cycle clustering problem
w.r.t. the constructed matrix Q.

The assignment of non-terminal nodes does not affect the net flow, as
they always have the same forward and backward probability. Therefore,
they are assigned in order to maximize coherence. The following calcula-
tion shows that maximizing this remaining part of the objective function
is equivalent to minimizing the weight of the edges in the corresponding
multiway cut.

α
m∑
t=1

g(Kt) = α
m∑
t=1

∑
u,v∈Kt

qu,v = α
m∑
t=1

∑
u,v∈Kt

du,v∑
u′∈V ‖Du·‖1

=
α∑

u′∈V ‖Du·‖1

m∑
t=1

∑
u,v∈Kt

du,v =
α∑

u′∈V ‖Du·‖1

m∑
t=1

∑
a∈A∩(Kt2)

c(a)

=
α∑

u′∈V ‖Du·‖1︸ ︷︷ ︸
constant >0

(∑
a∈A

c(a)︸ ︷︷ ︸
constant

−
∑

a∈A\
⋃m
t=1 (Kt2)

c(e)

︸ ︷︷ ︸
multiway cut weight

)

To summarize, we gave a polynomial reduction of the multiway cut
problem to cycle clustering, proving that cycle clustering is NP-hard.

2.3 MIP-Formulation
We formulate an integer programn in order to solve the cycle clustering
problem. First, we present an intuitive formulation as a quadratic binary
program and then linearize it.

We denote the index-set of the clusters by K := {1, . . . ,m}. For each
state i ∈ S = {1, . . . , n}, and each cluster Ct, t ∈ K, we introduce a binary
variable xit ∈ {0, 1} such that

xit = 1⇐⇒ State i belongs to cluster Ct.

We also introduce continuous variables ft for the net flow from Ct to
the next cluster Cφ(t), as well as variables gt for the coherence in cluster Ct.

A straightforward non-linear formulation of the cycle clustering problem
is given by

2.3. MIP-Formulation 11

(Bilin) max
∑
t∈K

ft+α ·
∑
t∈K

gt

s.t.
∑
t∈K

xit = 1 ∀i ∈ S (2.3)∑
i∈S

xit ≥ 1 ∀t ∈ K (2.4)

gt =
∑
i,j∈S
i<j

(qij + qji)xitxjt ∀t ∈ K (2.5)

ft =
∑
i,j∈S,
i 6=j

(qij − qji)xitxjφ(t) ∀t ∈ K (2.6)

xit ∈ {0, 1} ∀t ∈ K, i ∈ S
ft, gt ∈ R≥0 ∀t ∈ K.

Constraints (2.3) ensure that each state i is assigned to exactly one cluster,
while constraints (2.4) ensure that no cluster is empty.

Constraints (2.5) and (2.6) correspond to the coherence and net flow,
respectively.

There are numerous possible ways to linearize the above non-linear pro-
gram. Following [31], we could introduce a binary variable and linearization
constraints for each occurring bilinear term.

A more sophisticated and compact method, which exploits the set-
partitioning constraints (2.3) is proposed in [27]. This method introduces
binary variables for each product xitxjt′ and solves a MIP to find the formu-
lation with the least amount of necessary constraints. However, the number
of linearization variables is still unnecessarily large with O(n2m2).

Since we know the underlying problem, only three cases need to be
distinguished for each pair of states. Either i and j are in the same cluster
or they are in consecutive clusters or they are more than one cluster apart.
All of these cases can be covered with a fixed number of variables.

In fact, if there exist pairs of states i, j ∈ S with transition probability
equal to zero, then we do not need extra variables for this pair. Therefore,
we define the set of relevant transitions

E = {(i, j) ∈ S × S | i 6= j, qij + qji > 0}. (2.7)

The linearization that is used for our specific problem is to introduce
binary variables yij and zij with the following meaning.

yij = 1 ⇔ i and j are in the same cluster ∀(i, j) ∈ E, i < j

zij = 1 ⇔ i is one cluster before j along the cycle ∀(i, j) ∈ E

12 Chapter 2. Cycle Clustering

If i > j, we will use yij as a notation to donate yji in order to keep our
formulation as short as possible. A linear reformulation of the non-linear
program (Bilin) is given by

(CC-MIP) max
∑

(i,j)∈E

zij(qij − qji) + α ·
(∑

(i,j)∈E
i<j

yij(qij + qji)
)

s.t.
∑
t∈K

xit = 1 ∀i ∈ S (2.8)∑
i∈S

xit ≥ 1 ∀t ∈ K (2.9)

xit + xjt − yij + zij − xjφ(t) − xiφ−1(t) ≤ 1 ∀t ∈ K, (i, j) ∈ E
(2.10)

xit + xjφ(t) − zij + yij − xjt − xiφ(t) ≤ 1 ∀t ∈ K, (i, j) ∈ E
(2.11)

yij + zij + zji ≤ 1 ∀(i, j) ∈ E, i < j
(2.12)

xit ∈ {0, 1} ∀i ∈ S, ∀t ∈ K
yij, zij, zji ∈ {0, 1} ∀(i, j) ∈ E, i < j.

The first sum in the objective function represents the net flow between
consecutive clusters, while the second sum is the coherence within all
clusters.

Constraints (2.10) are best explained by examining several weaker con-
straints. Let (i, j) ∈ E, t ∈ K, and consider the constraints

xit + xjt − yij ≤ 1, (2.13)
xit + zij − xjφ(t) ≤ 1, (2.14)

xjt + zij − xiφ−1(t) ≤ 1. (2.15)

The reasoning behind (2.13) is that if i and j are in the same cluster, then
yij has to be equal to one. If i is in some cluster t and zij = 1, then (2.14)
forces j to be in the next cluster φ(t). In the same way, if j is in cluster t
and zij = 1, then (2.15) ensures that i is in the cluster preceeding t. All of
these three cases are covered by (2.10) since yij, zij are binary and at most
one of the two can be non-zero at the same time.

In the same way, constraints (2.11) cover the functionality of the weaker
constraints

xit + xjφ(t) − zij ≤ 1,

xit + yij − xjt ≤ 1,

xjφ(t) + yij − xiφ(t) ≤ 1.

Since (2.10) and (2.11) are all defined for all t ∈ K and all (i, j) ∈ E,
the following holds.

• If i and j are in the same cluster, then yij = 1. (2.10)

2.4. Polytopal Aspects 13

• If i and j are in consecutive clusters, then zij = 1. (2.11)

• If yij = 1, then there has to exist some t ∈ {1, . . . ,m} such that
xit = xjt = 1. (2.11)

• If zij = 1, then there has to exist some t ∈ {1, . . . ,m} such that
xit = xjφ(t) = 1. (2.10)

Constraints (2.12) ensure that two states cannot be in the same cluster
and in consecutive clusters at the same time. All of this taken together en-
sures that the linear formulation is equivalent to the non-linear one. Given
n ∈ N states and m ∈ N clusters, this formulation uses 3

2
|E|+nm variables

and (2m+ 0.5)|E|+ n+m constraints.
In the special case that m = 3, we can simplify this model significantly

as the y-variables become obsolete. If m = 3, then yij + zij + zji = 1 for all
(i, j) ∈ E. So we can express yij = 1 − zij − zji. It is also possible to use
less constraints for the model if m = 3. The following MIP is a simplified
version that is equivalent to CC-MIP if m = 3.

max
∑

(i,j)∈E

zij(qij − qji) + α ·
(∑

(i,j)∈E
i<j

(1− zij − zji) (qij + qji)
)

s.t.
∑
t∈K

xit = 1 ∀i ∈ S∑
i∈S

xit ≥ 1 ∀t ∈ K

xit + xjφ(t) − zij + zji − xjφ−1(t) − xiφ2(t) ≤ 1 ∀t ∈ K, (i, j) ∈ E (2.16)
zij + zji ≤ 1 ∀(i, j) ∈ E, i < j

xit ∈ {0, 1} ∀i ∈ S, ∀t ∈ K
zij ∈ {0, 1} ∀(i, j) ∈ E

As before, we illustrate the reasoning behind constraints (2.16) by point-
ing out weaker constraints. The purpose of constraints

xit + xjφ(t) − zij ≤ 1,

xit + zji − xjφ−1(t) ≤ 1,

xjφ(t) + zji − xiφ2(t) ≤ 1

are all covered by (2.16). In the special case of m = 3, the MIP formulation
uses |E|+ nm variables and (m+ 0.5)|E|+ n+m constraints.

2.4 Polytopal Aspects
In this section, we consider the polytope defined by the CC-MIP presented
in Section 2.3. Throughout the section, let S = {1, . . . , n} be the number
of states, m ∈ N,m ≥ 3 be the number of clusters, and let E ⊂ S × S

14 Chapter 2. Cycle Clustering

be the edge-set of relevant transitions, as defined in (2.7). We define the
cycle clustering polytope (CCP) as the convex hull of all incident vectors of
clusterings.

CCP := conv
(
{(x, y, z) ∈ Rnm+1.5|E| | (x, y, z) is a cycle clustering}

)
First, we introduce some notation to facilitate the discussion of this poly-
tope. We reference the components of a given vector (x, y, z) ∈ Rnm+1.5|E|

as in previous sections with xit, yij, and zij. We introduce characteristic
vectors for these components as

Xit =




0
...
1 ← component it
0
...

.

Analogously, we define characteristic vectors for all the y-and z-variables,
denoted by Y and Z, respectively. For any A ⊆ S, the characteristic vectors
are defined as

Yi,A :=
∑
j∈A

Yij,

Zi,A :=
∑
j∈A

Zij,

ZA,i :=
∑
j∈A

Zji.

2.4.1 Dimension of the Polytope

We recall the dimension of a polytope as defined in [30].

Definition 5. A polytope P is of dimension k, denoted by dim(P) = k, if
the maximum number of affinely independant points in P is k + 1.

A different formulation uses the affine hull of a polyope.

Definition 6. Let x1, . . . , xn ∈ Rd. An affine combination of x1, . . . , xn
is defined as a linear combination

∑n
i=1 λixi such that

∑n
i=1 λi = 1. The

affine hull of a set is defined the set of all affine combinations of points
within that set.

Lemma 7. The dimension of a polytope P is the dimension of its affine
hull aff(P).

Proof. Since P ⊂ aff(P), it is clear that dim(P) ≤ dim(aff(P)). Assume
that dim(P) < dim(aff(P)). Denote by δ := dim(P). Then there exist
at least δ + 2 affinely independant points in aff(P). Each of those points
can be described as an affine combination of δ + 1 points in P . This is a
contradiction.

2.4. Polytopal Aspects 15

The dimension of the cycle clustering polytope CCP is described in the
following theorem.

Theorem 8. Let G = (V,E) be an undirected graph with V = {1, . . . , n}
and let 3 ≤ m ≤ n − 2 be the number of clusters. Then the dimension of
the corresponding cycle clustering polytope is

(m− 1)n+ 1.5|E|, if m ≥ 4,

(m− 1)n+ |E|, if m = 3.

Proof. We assume that m ≥ 4 and discuss the special case m = 3 later. A
brief outline of the proof can be described as follows.

We construct a finite set M ⊂ Rnm+1.5|E| such that for every p ∈ CCP
it holds that span(M) + p ⊆ aff(CCP). It immediately follows that
dim(CCP) ≥ dim(span(M)).

Then we show that CCP ⊆ span(M)+p for any p ∈ CCP and therefore
dim(CCP) ≤ dim(span(M)).

Construction of M : We construct M in such a way that for every m ∈
M there exist points p1, . . . , pk ∈ CCP and p′1, . . . , p

′
k ∈ CCP such that

m =
∑k

i=1 λi(pi−p′i). In other words, every m ∈M is a linear combination
of differences of points in CCP . That means that for every p ∈ CCP ,
p+m is an affine combination of elements in CCP .

Let i ∈ S, t ∈ {2, . . . ,m}. First, we set (Xi1 −Xit) ∈M and show that
the difference condition for M is fulfilled. W.l.o.g. we assume that t = 2.

Choose any clustering (A1, . . . , Am) of S \ {i}. Let s ∈ K be arbitrary
and define As as the first cluster of the cycle, i.e., consider the incidence
vectors of the two clusterings

Ps =
(
As ∪ {i}, Aφ(s), . . . Aφ−1(s)

)
,

P ′s =
(
As, Aφ(s) ∪ {i}, . . . Aφ−1(s)

)
.

The only difference between Ps and P ′s is in the assignment of i.
We denote the incidence vectors of Ps and P ′s by (x, y, z)Ps and (x, y, z)P

′
s ,

respectively. Subtracting one from the other yields

(x, y, z)Ps − (x, y, z)P
′
s = Xi1 −Xi2 (2.17)

+ Yi,As − Yi,Aφ(s) (2.18)

+ Zi,Aφ(s) + ZAφ−1(s),i
− ZAs,i − Zi,Aφ(φ(s)) . (2.19)

Both incidence vectors have the same x-part, except in xi1 and xi2, so
(2.17) is clear. In the y-parts, Ps and P ′s differ in the interaction with As
and Aφ(s), which yields (2.18). For the z-parts, both the previous as well
as the successive cluster is relevant, resulting in the term (2.19).

As s is arbitrary, we can take the sum over all s = 1, . . . ,m. Then the
Y and the Z parts each sum up to zero and we have shown that

1

m

m∑
s=1

(x, y, z)Ps − (x, y, z)P
′
s = Xi1 −Xit.

16 Chapter 2. Cycle Clustering

These (m−1)n vectors are linearly independent as Xi1−Xit has a non-zero
entry in the component xit. Therefore

dim (span ({Xi1 −Xit | 2 ≤ t ≤ m})) = (m− 1)n. (2.20)

Let (i, j) ∈ E be any transition. We now set Yij, Zij, Zji ∈ M and show
that these vectors fulfill the difference condition for M .

Take any k 6= l ∈ S \ {i, j} and consider the clusterings

P1 = ({i, j}, {k}, A1, . . . , Am−2),

P ′1 = ({i}, {j, k}, A1, . . . , Am−2),

P2 = ({i, j, l}, {k}, B1, . . . , Bm−2),

P ′2 = ({i, l}, {j, k}, B1, . . . , Bm−2),

where (A1, . . . , Am−2) is an arbitrary partition of S \ {i, j, k} into m − 2
clusters and (B1, . . . , Bm−2) is an arbitrary partition of S \ {i, j, k, l} into
m− 2 clusters. An illustration of this idea is Figure 2.3.

Am−2

. . .

A1

i

k

j
move j

Bm−2

. . .

B1

i

k

jl
move j

Figure 2.3: Illustration of the idea behind the proof. On
the left side is the change from P1 to P ′1 and on the right

P2 to P ′2.

In both P1, P
′
1 as well as P2, P

′
2 we move j from the first to the second

cluster. The only difference is that the first cluster contains one more
element in the case of P2.

2.4. Polytopal Aspects 17

Similar as before, we consider the difference between their incidence
vectors.

(x, y, z)P1 − (x, y, z)P
′
1 = Xj1 −Xj2

+ Yij − Yjk
+ ZAm−2,j + Zjk − Zj,A1 − Zij

(x, y, z)P2 − (x, y, z)P
′
2 = Xj1 −Xj2

+ Yij + Yjl − Yjk
+ ZBm−2,j

+ Zjk − Zj,B1 − Zij − Zlj

A1, . . . , Am−2 and B1, . . . , Bm−2 were arbitrary up to this point. Now,
we choose Am−2 = Bm−2, l ∈ A1, B1 = A1 \ {l} and get(

(x, y, z)P2 − (x, y, z)P
′
2

)
−
(

(x, y, z)P1 − (x, y, z)P
′
1

)
= Yjl + Zjl − Zlj.

Exploiting the symmetry in the y-Variables, we switch the role of j and
l. This yields the vector

Yjl + Zlj − Zjl.

If we add both of them, we have shown that Yjl can be constructed as a
linear combination of differences of points in CCP .

Conversely, if we set l ∈ Am−2, Bm−2 = Am−2 \ {l}, A1 = B1 and do the
same we get the vector

Yjl − 2Zlj.

Since we have already proven that Yjl can be put in M , it immediately
follows that Zlj and Zjl can also be constructed as a linear combination of
differences of points in CCP .

To summarize, we have constructed M such that the condition p +
span(M) ⊆ aff(CCP) is satisfied and M consists of the vectors

Xi1 −Xit ∀i ∈ S, t ∈ {2, . . . ,m},
Yij ∀(i, j) ∈ E, i < j,

Zij ∀(i, j) ∈ E.

The dimension of the linear space spanned by these vectors is

dim(span(M)) = (m− 1)n+ 1.5|E|.

As explained at the beginning of this proof, it follows that

dim(CCP) ≥ (m− 1)n+ 1.5|E|.

CCP ⊂ span(M) + P : Take any two clusterings P1, P2 of S. Then we can
express P2 as a linear combination of P1, Xi1 −Xit, Yij, and Zij. These are
1 + (m− 1)n+ 1.5|E| affinely independent vectors.

18 Chapter 2. Cycle Clustering

This proves that dim(CCP) ≤ (m − 1)n + 1.5|E| and we have shown
that dim(CCP) = (m− 1)n+ 1.5|E|.

In the case of m = 3, we can omit the y-variables, since

yij = 1− zij − zji.

Other than that, we can do the same proof as form ≥ 4, with the difference
that A1, . . . , Am−2 consists of only one set A′1, and therefore B′1 = A′1 \ {l}.
Subtracting the incidence vectors as before yields(

(x, y, z)P2 − (x, y, z)P
′
2

)
−
(

(x, y, z)P1 − (x, y, z)P
′
1

)
= 2Zlj − Zjl.

We switch the roles of j, l and get

2Zjl − Zlj

as a linear combination of elements in CCP . By combining these, it follows
that

2 (2Zlj − Zjl) + 2Zjl − Zlj = 3Zlj.

So with the same argumentation as before we have shown that the dimen-
sion of CCP is (m− 1)n+ |E|, in case m = 3.

2.4.2 Facets of the Problem Formulation

We recall the definition of a facet, as defined in [30]. Let ax+by+cz ≤ δ be
a valid inequality for CCP , i.e., the inequality is satisfied by all (x, y, z) ∈
CCP . Then a face of CCP is the set

F = {(x, y, z) ∈ CCP | ax+ by + cz = δ}.

We call F proper, if F 6= ∅ and F 6= CCP .
A facet is defined as a face with dim(F) = dim(CCP)− 1. Therefore a

facet is a maximal proper face.
Similar to the notation in the previous section, we use the notation ait

for the component of the a-vector belonging to xit and the same for b, c.
Additionally, for A ⊆ S we define

bi,A :=
∑
j∈A

bij,

ci,A :=
∑
j∈A

cij,

cA,i :=
∑
j∈A

cji.

The following theorem addresses which variable bounds are facet-defining.

Theorem 9. Let i, j ∈ S, t ∈ K. Then the following holds for the variable
bounds.

2.4. Polytopal Aspects 19

• The bounds xit ≤ 1, yij ≤ 1, zij ≤ 1 do not define facets.

• xit ≥ 0 defines a facet.

• yij ≥ 0, zij ≥ 0 defines a facet.

Proof. First we will prove that the upper bounds never define a facet, as

{(x, y, z) | xit = 1} ({(x, y, z) | xiφ(t) = 0},
{(x, y, z) | yij = 1} ({(x, y, z) | zij = 0},
{(x, y, z) | zij = 1} ({(x, y, z) | zji = 0}.

For the lower bounds, consider F := {(x, y, z) | xit = 0}. Using the same
steps as in the proof of Theorem 8, we can prove that the dimension of F
is exactly one less than the dimension of CCP . The vector that is missing
is Xi1 − Xit. This proves that F is a facet of CCP . The same reasoning
can be applied to the lower bounds of the y, z-variables.

For the other model inequalities we need a more sophisticated approach.
First we illustrate the general strategy that is used in the proofs.

Let ax+ by + cz ≤ δ be a valid inequality for CCP . A facet is defined
as a maximal face, i.e., there can exist no other proper face that contains
the facet. Thus, in order to prove that ax + by + cz ≤ δ is facet-defining,
we will assume that there exists a facet-defining inequality âx+ b̂y+ ĉz ≤ δ̂
such that

{(x, y, z) ∈ CCP | ax+by+cz = δ} ⊆ {(x, y, z) ∈ CCP | âx+ b̂y+ ĉz = δ̂}.
(2.21)

If we can prove that the inequalities have to be scalar multiple of each
other, it follows that ax + by + cz ≤ δ is facet-defining. To illustrate the
usefulness of this approach, consider a clustering

P = (A1, . . . , Am) (2.22)

whose incidence vector (x, y, z) fulfills ax+ by+ cz = δ. Then, by (2.21) it
follows that âx+ b̂y + ĉz = δ̂. Let (x′, y′, z′) be a different incidence vector
that also satisfies ax′+ by′+ cz′ = δ. Then we can compare the coefficients
for both of the incidence vectors because

âx+ b̂y + ĉz = âx′ + b̂y′ + ĉz′. (2.23)

If the incidence vectors are similar to each other, most of the coefficients
will cancel each other out and we will be able to make statements about
individual coefficients.

We formulate two lemmas which are used in the proofs of facet-defining
inequalities. We will only prove the first, the second proof follows analog-
ously.

20 Chapter 2. Cycle Clustering

Lemma 10. Let m ≥ 4 and t ∈ C \ {2,m}. Let ax+ by+ cz ≤ δ be a valid
inequality for CCP that is satisfied at equality by the clusterings

P1 = (A1 ∪ {l}, . . . , At, . . . , Am) , P ′1 = (A1, . . . , At ∪ {l}, . . . , Am) ,

P2 = (At ∪ {l}, . . . , A1, . . . , Am) , P ′2 = (At, . . . , A1 ∪ {l}, . . . , Am) .

Then

bl,A1 = bl,At .

Proof. If we put in the incidence vectors for P1, P
′
1, following (2.23) we get

al1 + bl,A1 + cl,A2 + cAm,l = alt + bl,At + cl,Aφ(t) + cAφ−1(t),l
,

and doing the same for P2, P
′
2 yields

al1 + bl,At + cl,A2 + cAm,l = alt + bl,A1 + cl,Aφ(t) + cAφ−1(t),l
.

If we subtract both of these equations, everything except the b-parts is zero
and the claim follows immediately.

The intuition behind this lemma is that l has the same influence on the
net flow for both P1 and P2. In both cases, we move l to a different cluster
and in the new clustering l has the same influence on the net flow in P ′1
and P ′2.

We have done the same exchange two times, both times with the same
net flow. Therefore, the only thing that changes is the part concerning the
coherence for l. The second lemma makes the connection between the net
flow coefficients and the coherence coefficients.

Lemma 11. Let m ≥ 4 and ax + by + cz ≤ δ be a valid inequality that is
satisfied at equality by the clusterings

P1 = (A1 ∪ {l}, A2, A3, . . . , Am) , P ′1 = (A1, A2 ∪ {l}, A3, . . . , Am) ,

P2 = (A1 ∪ {l}, A3, A2, . . . , Am) , P ′2 = (A1, A3 ∪ {l}, A2, . . . , Am) .

Then
2cl,A2 + bl,A3 = 2cl,A3 + bl,A2 . (2.24)

Using these lemmas, we can prove that the other model-inequalities
define facets. The lemmas are also used later in Chapter 3 and in Appendix
A.

Theorem 12. Let (i, j) ∈ E, t ∈ C, and m ≥ 4. Then the model inequal-
ities (2.10) and (2.11), i.e.,

xit + xjt − yij + zij − xjφ(t) − xiφ−1(t) ≤ 1, (2.25)
xit + xjφ(t) − zij + yij − xjt − xiφ(t) ≤ 1

define facets of CCP .

2.4. Polytopal Aspects 21

Proof. We will only prove that the first of the inequalities defines a facet,
the proof for the second can be done analogously. W.l.o.g. we assume that
t = 1 and define

F := {(x, y, z) ∈ CCP | (x, y, z) satisfies (2.25) at equality }. (2.26)

First off, we have already explained why the inequality is valid for CCP
when we formulated the MIP. Furthermore, it is easy to see that it is indeed
a proper face. The incidence vector of any clustering with i, j in the cluster
t fulfills the inequality at equality, so F 6= ∅. The incidence of any clustering
with i and j in cluster φ(t) is not in F , so F 6= CCP .
Step 0: Strategy

Assume there exists a valid inequality ax + by + cz ≤ α that defines a
proper face of CCP such that

F ⊆ {(x, y, z) ∈ CCP | ax+ by + cz = α}. (2.27)

Following the strategy outlined at the start of this section, we will consider
all coefficients of this inequality and prove that

F = {(x, y, z) ∈ CCP | ax+ by + cz = α}.

Step 1: y-variables
First, we will prove that blu = 0, for all l, u ∈ S \ {i, j}.

Let l ∈ S \ {i, j} and (A1, . . . , Am) be any clustering of S \ {l} with
states i ∈ A1, j, u ∈ A3. We set the clusterings as in Lemma 10:

P1 = (A1 ∪ {l}, A2, A3, . . . , Am) , P ′1 = (A1, A2, A3 ∪ {l}, . . . , Am) ,

P2 = (A3 ∪ {l}, A2, A1, . . . , Am) , P ′2 = (A3, A2, A1 ∪ {l}, . . . , Am) .

All of these clusterings satisfy (2.25) at equality since i ∈ A1 and therefore

bl,A1 = bl,A3 .

We can do the same thing again with u in A2 instead of A3, i.e., we apply
Lemma 10 to

P1 = (A1 ∪ {l}, A2 ∪ {u}, A3 \ {u}, . . . , Am) ,

P2 = (A3 \ {u} ∪ {l}, A2 ∪ {u}, A1, . . . , Am) ,

and P ′1, P ′2 accordingly. It follows that

bl,A1 = bl,A3\{u}.

Thus, as both equalities have the same left hand side

bl,A3\{u} = bl,A3 ⇒ blu = 0 ∀l, u /∈ {i, j}.

We will use this trick often i.e., applying the same lemma twice and just
switching one state into a cluster that does not appear in the lemma, and

22 Chapter 2. Cycle Clustering

therefore call it switch-trick.
Next, we prove that blj = 0 for l ∈ S \ {i}. We consider the clusterings

P1 = ({i, j, l}, A2, A3, . . . , Am) , P ′1 = ({i, j}, A2, A3 ∪ {l}, . . . , Am) ,

P2 = ({i, l}, A2, A3 ∪ {j}, . . . , Am) , P ′2 = ({i}, A2, A3 ∪ {j, l}, . . . , Am) .

If we compare the incidence vectors of these, applied to ax + by + cz = δ,
then we get from P1, P

′
1

al1 + bil + bjl + cl,A2 + cAm,l = al3 + cl,A4 + cA2,l,

and from P2, P
′
2

al1 + bil + cl,A2 + cAm,l = al3 + bjl + cl,A4 + cA2,l.

Substracting both equalities yields bjl = 0. Denote β = bij, then we have
proven so far that the inequality ax+ by + cz ≤ α is of the form

ax+ βyij + cz ≤ α.

Step 2: x, z-variables:
In the same way as for the y-variables, we can use Lemma 11 and the

switch-trick to prove that

clu = 0 for all l, u ∈ S \ {i, j}.

Let l ∈ S \ {i, j}. Consider the clusterings

P1 = ({i, j, l}, A2, A3, . . . , Am) ,

P2 = ({i, j}, A2 ∪ {l}, A3, . . . , Am) ,

...

Pm = ({i, j}, A2, A3, . . . , Am ∪ {l}) .

In each of these, i, j are both in the first cluster and l is rotated through
all other clusters. Because i and j are in the first cluster, (2.25) is satisfied
at equality and from the incidence vectors we can derive the equalities

al1 = al2 + cil + cjl = al3 = ... = alm + cli + clj.

If we do the same thing, i.e., rotating l through all the clusters but this
time with i in the first and j in the second cluster, we get

al1 + clj = al2 + cil = al3 + cjl = ... = alm + cli.

If we subtract these two equality-chains, we get

−clj = cjl = −cjl = clj = 0.

Switching the role of i and j, it follows that cli = cil = 0.

2.4. Polytopal Aspects 23

Furthermore, it follows that alt := al is constant for all t ∈ K. Since
any incidence vector of a clustering in CPP has to fulfill (2.3), i.e.,

m∑
t=1

xit = 1,

we can assume alt = 0. To prove this, consider any incidence vector (x, y, z)
applied to the inequality, i.e.,

ax+ βyij + cz =
n∑
l=1

m∑
t=1

altxlt + βyij + cz

=
n∑

l=1,l 6=i,j

al +
m∑
t=1

(aitxit + ajtxjt) + βyij + cz ≤ δ

We can include the constant
∑n

l=1,l 6=i,j al in the right hand side.
To summarize, we have proven so far that the inequality ax+by+cz ≤ δ

has to be of the form
m∑
t=1

(aitxit + ajtxjt) + bijyij + cijzij + cjizji ≤ δ.

In order to prove that the remaining coefficients are as claimed, we examine
all of the different clusterings that satisfy (2.25) at equality. We denote by
(A1, . . . , Am) a clustering of S. Then all of the following clusterings satisfy
(2.25) at equality:

a) i ∈ A1, j ∈ At, t = 1, . . . ,m,

b) i ∈ At, j ∈ A1, t = 1, . . . ,m,

c) i ∈ At, j ∈ Aφ(t), t = 1, . . . ,m.

As before, we can assume that
∑m

t=1 ait = 0, due to (2.3). If we compare
the incidence vectors for all of the above cases a)-c), we get the system of
3m− 1 equations

ai1 + aj2 = ai2 + aj3 = ... = aim + aj1,

ai1 + bij = ai2 + cji = ai3 = ... = aim + cij,

aj1 + bij = aj2 + cij = aj3 = ... = ajm + cji,

ai1 + aj1 + bij = ai2 + aj3 + cij = ... = aim−1 + ajm, +cij,
m∑
t=1

ait =
m∑
t=1

ajt = 0.

We can reduce this to the case of m = 4, as ai3 = . . . = aim−1 and the same
holds for j.

Using Gaussian elimination, it can be checked that any solution to this
system is of the form β = bij = −cij = ai1 = aj1 = −aim = −aj2 and the

24 Chapter 2. Cycle Clustering

rest of the coefficients zero. Therefore the inequality is of the form

β
(
xit + xjt − yij + zij − xjφ(t) − xiφ−1(t)

)
≤ δ.

It is clear that in order to fulfill (2.27), it has to hold that β = δ. If β < 0,
then the inequality is not valid for CCP . If β = 0, then F = CCP and
therefore not a proper face. This concludes the proof.

In the case of m = 3 we use slightly different inequalities. The proof
that these define facets follows the same strategy as before.

Theorem 13. In the case m = 3, the reduced model constraints

xit + xjφ(t) − zij + zji − xjφ−1(t) − xiφ2(t) ≤ 1 (2.28)

are facet-defining.

Proof. Let F := {(x, y, z) ∈ CCP | (x, y, z) satisfies (2.28)} and w.l.o.g.
let t = 1. As in the proof of Therom 12, assume there exists a valid
inequality ax+ by + cz ≤ α that defines a proper face of CCP such that

F ⊆ {(x, y, z) ∈ CCP | ax+ by + cz = α}. (2.29)

Step 1: x-variables
Let l ∈ S \ {i, j} and let (A1, A2, A3) be a clustering with i, j ∈ A1.

Then the clusterings

P1 = (A1 ∪ {l}, A2, A3), P ′1 = (A1, A2 ∪ {l}, A3),

P2 = (A3, A1 ∪ {l}, A2), P ′2 = (A3, A1, A2 ∪ {l})

satisfy (2.28) at equality. Comparing the coefficients for P1, P
′
1 and P2, P

′
2

yields

al1 + cl,A2 + cA3,l = al2 + cl,A3 + cA1,l,

al2 + cl,A2 + cA3,l = al3 + cl,A3 + cA1,l.

It follows that 2al2 = al1 + al3. In the same way, by starting with l in
A2 it can be proven that 2al3 = al1 + al2. Therefore, we have shown that
al1 = al2 = al3 and can assume that alt = 0 for all l 6= {i, j}, t = 1, 2, 3.
Step 2: z-variables:

Let v ∈ S, l, u ∈ S \ {i, j, v} and let (A1, {l, u}, A3) be a clustering of S
with i, j, v ∈ A1. Then the clusterings

P1 = (A1, {l, u}, A2), P ′1 = (A1, {u}, A2 ∪ {l}),
P2 = (A1 \ {v}, {l, u, v}, A2), P ′2 = (A1 \ {v}, {u, v}, A2 ∪ {l})

satisfy (2.28) at equality. It follows that

cA1,l + cl,A2 = cul + cl,A1 ,

cA1\{v},l + cl,A2 = cul + cvl + cl,A1\{v}.

2.5. Semidefinite Relaxation of Quadratic Programs 25

Subtracting the second from the first inequality yields

cvl = clv − cvl ⇒ 2cvl = clv.

Doing the same thing again, but moving l to A1 instead of A2, i.e., setting

P ′1 = (A1 ∪ {l}, {u}, A2), P ′2 = ((A1 ∪ {l}) \ {v}, {u, v}, A2)

yields
cvl = 2lv.

This proves that clv = cvl = 0 for all v ∈ S, l ∈ S \ {i, j, v}.
Step 3: i, j

If (A1, A2, A3) is a clustering, then it fulfills (2.28) at equality if i ∈ A1

or j ∈ A2 or both. By comparing coefficients, we get the following set of
equations.

i ∈ A1 move j from A2 to A3 ⇒ aj2 + cij = aj3 + cji

i ∈ A1 move j from A1 to A2 ⇒ aj1 = aj2 + cij

i ∈ A1 move j from A1 to A3 ⇒ aj1 = aj3 + cji

j ∈ A2 move i from A1 to A2 ⇒ ai1 + cij = ai2

j ∈ A2 move i from A1 to A3 ⇒ ai1 + cij = ai3 + cji

j ∈ A2 move i from A2 to A3 ⇒ ai2 = ai3 + cji

j ∈ A1 move i from A1 to A2 ⇒ ai1 = ai2 + cji

As in the proof of Theorem 12, we can assume

ai1 + ai2 + ai3 = 0,

aj1 + aj2 + aj3 = 0.

This system of linear equations has solutions of the kind

β = cji = ai1 = aj2 = −ai3 = −aj3 = −cij,

with 0 = ai2 = aj1. Therefore, we have proven that ax + by + cz ≤ δ is of
the form

β
(
xit + xjφ(t) − zij + zji − xjφ−1(t) − xiφ2(t)

)
≤ δ.

With the same argument as in the proof of Theorem 12, the only choice of β
and δ that produces a valid inequality and a proper face F is β = δ > 0.

2.5 Semidefinite Relaxation of Quadratic Pro-
grams

A different approach for graph partitioning problems with the aim of ob-
taining tighter relaxations is to formulate a semidefinite integer program.

26 Chapter 2. Cycle Clustering

We describe such a formulation for the minimum k-partitioning problem
(MkP) and then modify it in order to describe the cycle clustering prob-
lem.

In the minimum k-partitioning problem, the task is to partition a graph
into k disjoint subsets, such that the total weight of edges inside the same
set is minimized. A semidefinte programming formulation for this problem
is given in [14] as

(MkP) min
∑

1≤i 6=j≤n

cij
(k − 1)Yij + 1

k

s.t. Y � 0 (2.30)
Yii = 1 ∀i ∈ S (2.31)

Yij ∈
{
−1

k − 1
, 1

}
∀i, j ∈ S.

Here, cij are the edge weights, constraints (2.30) and (2.31) ensure that
Y is positive semidefinite and has diagonal one, respectively. If Yij is set
to one, then i and j are in the same partition and if it is set to −1

k−1 then
they are in different partitions. In other words, Yij has the same function
as the variables yij from Section 2.3.

Cycle clustering can bee seen as an extension of MkP. Instead of just
considering the edges inside each cluster, we also have to take into account
the edges that lie between consecutive clusters along the cycle. We do this
by adding new variables to the problem that model the net flow.

Let S = {1, . . . , n} be the set of states, m ≥ 3 the amount of clusters.
Then the cycle clustering problem is modeled by the semidefinite integer
program

(CC-SDP) min
∑

1≤i 6=j≤n

(−αqij)
(m− 1)Yij + 1

m
+

∑
1≤i 6=j≤n

(qij − qji)Zij

s.t. Y � 0

Yii = 1 ∀i ∈ S
m

m− 1
Zij + Yij ≤ 1 ∀i, j ∈ S (2.32)

Yij + Zik − Zjk ≤ 1 ∀i, j, k ∈ S (2.33)

Zij + Zik − Yjk ≤ 1 +
1

m− 1
∀i, j, k ∈ S (2.34)

Yij ∈
{
−1

m− 1
, 1

}
∀i, j ∈ S

Zij ∈ {0, 1} ∀i, j ∈ S.

The matrix Y has the same function as in (MkP), while the matrix
Z describes which edges are in consecutive clusters. Constraints (2.32),
(2.33), and (2.34) couple the variables Y and Z and ensure that a clustering

2.5. Semidefinite Relaxation of Quadratic Programs 27

is created. Constraints (2.33) ensure that if state i and j are in the same
cluster and state k is in the successor of the cluster of i then k is also in
the successor of the cluster of j. Similarly, constraints (2.34) ensures that
if state i is in predecessor of the cluster of j and k, then j and k have to
be in the same cluster.

The issue with this formulation is that a semidefinite integer program
with 3n3 constraints has to be solved. A framework that allows the separ-
ation of violated model constraints as well as the generation of additional
cutting planes is necessary to tackle this kind of problem. With frameworks
for solving integer semidefinite programs such as SCIP-SDP [18] this is not
yet possible.

To gain insight if this formulation provides a stronger relaxation for our
specific problem, we will compare the strength of the LP-relaxation for the
CC-MIP presented in Section 2.3 to the relaxation obtained by omitting
the integrality requirements in the above integer semidefinite program.

28 Chapter 2. Cycle Clustering

29

Chapter 3

Solving Methods for Cycle
Clustering

Modeling an optimization problem as a mixed integer program makes it
possible to use one of the powerful generic MIP solvers. In addition, the
underlying structure of the specific problem can be exploited to extend a
generic solver and improve it for this class of problem.

In this chapter, we introduce three problem-specific primal heuristics
and three types of valid inequalities that are used for the cycle clustering
MIP (CC-MIP), presented in Section 2.3. Throughout the whole chapter,
we consider a set of states S = {1, . . . , n}, a set of clusters K = {1, . . . ,m},
and a matrix of transition probabilities Q ∈ Rn×n. Denote by E ⊂ S × S
the set of relevant transitions according to (2.7).

3.1 Primal Heuristics
As explained in Section 1.4.2, good incumbent solutions can greatly re-
duce the overall tree-size in LP-based branch-and-bound. These solutions
originate either from feasible LP-solutions or from primal heuristics.

Primal heuristics are methods without any success or quality guarantee
that aim at constructing solutions for an optimization problem. They can
be grouped into the categories start heuristics and improvement heuristics.
Start heuristics attempt to find feasible solutions without requiring a solu-
tion as input. Improvement heuristics require a feasible solution as input
and attempt to construct solutions with a better objective value.

The heuristics presented in this section all exploit the fact that an in-
teger solution (x, y, z) ∈ Rnm+3|E| for the CC-MIP is completely defined by
the x-variables. If the x-variables are known and define a clustering, then
the rest of the variables can be inferred by

yij :=

{
1, if maxk=1,...,m(xikxjk) = 1 and (i, j) ∈ E,
0, else

(3.1)

and

zij :=

{
1, if maxk=1,...,m(xikxjφ(k)) = 1 and (i, j) ∈ E,
0, else.

(3.2)

30 Chapter 3. Solving Methods for Cycle Clustering

Thus, a primal heuristic that attempts to construct a feasible solution
for the CC-MIP only has to find a valid assignment for the x-variables.

3.1.1 Greedy Heuristic

This start heuristic constructs a feasible solution by iteratively assigning
states to clusters in a greedy fashion. It consists of two stages.

In the first stage, each empty cluster gets assigned one state, as con-
straints (2.4) require all clusters to be non-empty. In the second stage, the
remaining unassigned states are assigned iteratively.

Stage 1: Let X = (X1, . . . , Xm) be an empty clustering, i.e., Xt = ∅ for
all t ∈ K and set U = S as the set of unassigned states. Select i1, i2 ∈ S
such that

(i1, i2) = arg max
(i,j)∈E

(max{qij − qji, α(qij + qji)}) . (3.3)

Assign i1 to X1, i2 to X2 and remove them from U . To finish stage 1, states
i3, . . . , im are selected iteratively such that

it+1 = arg max
j∈U

(max{qitj − qjit , α(qitj + qjit)}) .

Then they are assigned to clusters X3, . . . , Xm and removed from U .
Stage 2: The new objective value vnew that results from assigning i ∈ U

to one of the sets Xt, t ∈ K can be computed using the old objective value
vold in O(n) operations. The coherence in cluster t has to be updated, as
well as the net flow from i to Xφ(t) and from Xφ−1(t) to i, respectively. It
holds that

vnew = vold + η(X , i, t),

with

η(X , i, t) = α

(∑
j∈Xt

qij + qji

)
+

∑
j∈Xφ−1(t)

cji − cij +
∑

j∈Xφ(t)

cij − cji.

This value η(X , i, t) is computed for all i ∈ U and all t = 1, . . . ,m. Then
the best state j and cluster u are selected as

(j, u) = arg max
(i,t)∈U×K

η(X , i, t).

The state j is removed from U and added to cluster u. This process is re-
peated until U = ∅. The heuristic in pseudo code is described in Algorithm
1.

The algorithm ensures that each cluster contains at least one state and
that all states are assigned. Therefore it is clear that the method always
produces a clustering.

As it always holds that |U | < n, and η(X , i, t) can be computed in O(n)
operations, the run-time for this algorithm is in O(mn3).

3.1. Primal Heuristics 31

Algorithm 1 Greedy Heuristic
1: Input: Weight matrix Q
2: Output: Complete clustering X = (X1, . . . , Xm)
3: Initialize X = (X1, . . . , Xm) with Xt = ∅ for all t ∈ K. U = S
4: Select i1, i2 according to (3.3).
5: X1 ← {i1}, X2 ← {i2}, U ← U \ {i1, i2}
6: for t = 3, . . . ,m do
7: Xt ← j, with j = arg max i∈U η(X , i, t)
8: U ← U \ {j}
9: end for

10: while U 6= ∅ do
11: Compute (j, u) = arg max (i,t)∈U×K η(X , i, t)
12: Xu ← Xu ∪ {j}
13: U ← U \ {j}
14: end while
15: return X

3.1.2 Exchange Heuristic

This improvement heuristic starts with a clustering X = (X1, . . . , Xm).
Then a series of exchanges is computed, where states are transferred to dif-
ferent clusters. The heuristic is inspired by the famous graph-partitioning
heuristic [26].

If a clustering X = (X1, . . . , Xm) with objective value vold is known, the
objective value vnew that results from removing state i from cluster Xt and
adding it to a different cluster Xt′ can be computed in O(n) by

vnew = vold + ψ(X , i, t, t′),

with

ψ(X , i, t, t′) := −

α∑
j∈Xt

(cij + cji) +
∑

j∈Xφ−1(t)

(qji − qij) +
∑

j∈Xφ(t)

(qij − qji)


+

α ∑
j∈Xt′

(cij + cji) +
∑

j∈Xφ−1(t′)

(qji − qij) +
∑

j∈Xφ(t′)

(qij − qji)

 .

Let X = (X1, . . . , Xm) be a clustering, and denote the set of states that
were not exchanged yet by U ⊂ S. For each i ∈ U , let t(i) be the cluster
that i is currently in. At each iteration of the heuristic, the best possible
exchange of any state i ∈ U to any other cluster is computed as

(j, v) = arg max
(i,t)∈U×K

ψ(X , i, t(i), t).

Then that state j is transferred to the new cluster v and removed from U ,
even if ψ(X , j, t(j), v) < 0.

32 Chapter 3. Solving Methods for Cycle Clustering

Repeating this until all states have been exchanged once produces n
clusterings. The clustering with the best objective value is selected as the
solution for the heuristic. The condition that no state can be exchanged
twice is important to prevent the algorithm from cycling after an exchange
that decreases the objective value.

Algorithm 2 describes this heuristic in pseudo code.

Algorithm 2 Exchange Heuristic
1: Input: Feasible starting solution A = (A1, . . . , Am), weight matrix Q
2: Output: Clustering X = (X1, . . . , Xm)
3: Initialize X0 ← A, Set of unmarked states U ← S, initial objective

value v0.
4: for c = 1, . . . , n do
5: Compute (j, v) = arg max (i,t)∈U×K ψ(Xc−1, i, t(i), t)
6: vc ← vc−1 + ψ(Xc−1, j, t(j), v)
7: Xc ← Xc−1, with j removed from t(j) and added to v
8: U ← U \ {j}
9: end for

10: return Xc with c = arg max0,...,n vc

The heuristic can be executed repeatedly, with the solution of the pre-
vious run as the input, until no more improvement is found. If the heuristic
cannot improve upon a starting solution, then that means that the solu-
tion is locally optimal in the sense that it cannot be improved by a series
of single exchanges.

Furthermore, if the found solution is not globally optimal, it might be
useful to start from a significantly different solution. Therefore, a random
subset Ft ⊂ At with |Ft| = b|At|/2c is selected from each cluster in the
original clustering A. Then all the states in Ft are moved to a different
cluster. While this does not guarantee to find the optimal solution either,
it is highly likely that a different solution is found.

3.1.3 Rounding Heuristic

Rounding heuristics aim at recovering an integer-feasible solution from a
given LP-solution. They are part of all state-of-the-art MIP solvers.

We present a rounding heuristic for the CC-MIP that only rounds on
the x-variables and then tries to recover an integer solution according to
(3.1) and (3.2).

Let (xf , yf , zf) ∈ Rnm+3|E| be an LP-solution for the CC-MIP. The x-
variables are rounded to binary values with

xit :=

{
1, if xfit = maxs=1,...,m x

f
is,

0, else.

The rest of the variables are set according to (3.1) and (3.2). If there exists
no empty cluster after rounding the x-variables, i.e.,

∑
i∈S xit ≥ 1 for all

3.2. Valid Inequalities 33

t ∈ K, then the heuristic produces a feasible solution. For each variable, m
cases have to be considered. Therefore, the heuristic runs in O(n2m). It is
described in Algorithm 3.

Algorithm 3 Rounding Heuristic

1: Input: LP-solution (xf , yf , zf), Set of relevant transitions E ⊂ S × S
2: Output: Integer solution (x, y, z)
3: for i = 1, . . . , n do
4: Compute t′ = arg max t∈K x

f
it

5: for t = 1, . . . ,m do
6: if t = t′ then
7: Set xit = 1
8: else
9: Set xit = 0

10: end if
11: end for
12: end for
13: for (i, j) ∈ E do
14: Set yij = maxk=1,...,m(xikxjk)
15: Set zij = maxk=1,...,m(xikxjφ(k))
16: end for
17: return (x, y.z)

3.2 Valid Inequalities
Adding valid inequalities in order to separate solutions that are optimal for
the LP-relaxation but not integer-feasible is an important part of any state-
of-the-art MIP solver. This produces tighter relaxations, and therefore
reduces the overall size of the branch-and-bound tree. We describe three
kinds of problem-specific inequalities that are used as cutting planes for
the cycle clustering problem. For any i ∈ S, we reuse the notation t(i) as
the cluster that i is currently in. For a cluster t, we refer to the cluster
φ(t) that is directly after t as the successor and to the cluster φ−1(t) as the
predecessor of t.

3.2.1 Triangle Inequalities

We call inequalities that involve exactly three states triangle-inequalities.
In Section 2.3, we showed that the MIP can be simplified in case of exactly
three clusters, e.g., the y-variables can be omitted. Therefore, we briefly
consider the case of three clusters and then move to the general case of
m ≥ 4.

Let m = 3. If there exists a transition from state i to state j, as well
as a transition from state j to state k, then i has to be in the successor of

34 Chapter 3. Solving Methods for Cycle Clustering

t(k), since there are exactly three clusters. This yields the inequality

zij + zjk − zki ≤ 1 ∀(i, j), (j, k), (k, i) ∈ E

and is illutrated in Figure 3.1.

i k

j

Figure 3.1: Triangle for three clusters. If both zij and zjk
are set to one (indicated by the non-dashed arrows), then
zki has to be one as well. The three clusters are indicated

by the dashed circles.

For the rest of this section, assume that m ≥ 4. The first kind of
inequality only incorporates y-variables and is also used in several other
graph-partitioning publications, e.g., [8, 22]. The reasoning is that if state
i is in the same cluster as state j and j is in the same cluster as state k,
then i and k have to be in the same cluster. This can be formulated as

yij + yjk − yik ≤ 1 ∀(i, j), (j, k), (k, i) ∈ E (3.4)

and is illustrated in Figure 3.2. Due to symmetry, (3.4) remains valid no
matter where the minus sign is.

i j

k

Figure 3.2: Triangle within one cluster. The y-variables
are indicated by the lines between i, j, and k. The fact that
all three states are in the same cluster is indicated by the

dashed circle.

The following observation yields another kind of triangle inequality. If
i and j are in the same cluster and k is in the successor of t(i), then k also
has to be in the successor of t(j). The corresponding inequality is

yij + zik − zjk ≤ 1 ∀(i, j), (j, k), (k, i) ∈ E. (3.5)

3.2. Valid Inequalities 35

Of course, the same argument is true if we use the predecessor of t(i)
instead, yielding the inequality

yij + zki − zkj ≤ 1 ∀(i, j), (j, k), (k, i) ∈ E. (3.6)

The inequality (3.5) is illustrated in Figure 3.3a and (3.6) is illustrated in
Figure 3.3b.

kj

i

(a) State k is in the successor of t(i).

k j

i

(b) State k is in the predecessor of
t(i).

Figure 3.3: Second kind of triangle.

In order to strengthen these inequalities, we introduce a facet-defining
inequality.

Theorem 14. Let i, j, k ∈ S with (i, j), (j, k), (i, k) ∈ E. Then the triangle
inequality

yij + yjk − yik + 0.5 (zij + zji + zjk + zkj − zik − zki) ≤ 1 (3.7)

defines a facet of the cycle clustering polytope.

Proof. Similar to the argumentation for the model-inequalities of CC-MIP
in Section 2.3, the validity of inequality (3.7) is explained by the observa-
tions of the inequalities (3.4), (3.5), and (3.6).

The proof that this inequality defines a facet is very similar to the proofs
in Section 2.4. Therefore, we skip the proof here and refer to Appendix A,
Theorem 20.

Another kind of triangle-inequality is derived from the following obser-
vation. If state i is in the predecessor of t(j) as well as in the predecessor of
t(k), then j and k must be in the same cluster. This yields the inequality

zij + zik − yjk ≤ 1 ∀(i, j), (i, k), (j, k) ∈ E. (3.8)

Conversely, if i is the successor of t(j) and also in the successor of t(k) then
j and k are in the same cluster. This results in the inequality

zji + zki − yjk ≤ 1 ∀(i, j), (i, k), (j, k) ∈ E. (3.9)

The inequalities (3.8) and (3.9) are illustrated in Figure 3.4a and 3.4b,
respectively.

36 Chapter 3. Solving Methods for Cycle Clustering

In the case that m = 4 we can strengthen the inequality by using

zij + zik − 2yjk − (zjk + zkj + zji + zki) ≤ 0. (3.10)

i j

k

(a) State i is in the predecessor of
t(k) and t(j)

ij

k

(b) State i is in the successor of t(k)
and t(j)

Figure 3.4: Third kind of triangle.

Theorem 15. Let i, j, k ∈ S with (i, j), (j, k), (i, k) ∈ E.

• If m > 4, then (3.8) and (3.9) are facet-defining for the cycle clus-
tering polytope.

• If m = 4, then (3.10) is facet-defining

Proof. We have already explained why the inequality is valid if m > 4. For
the special inequality if m = 4, consider the following.

If m = 4 and j is in the successor of t(i) but k is not in the successor
of t(i), then k has to be in one of the other three clusters. In each of those
three cases, one of the variables zjk, zkj, zki has to be set to one. If k is in
the same cluster as i, then zkj has to be one. If k is in the predecessor of
t(i), then zki has to be one. Finally, if k is in the successor of t(j), then zjk
has to be one. The same argumentation holds if zik is one but zij is not.

For the proof that the inequalities are facet-defining, we refer to Ap-
pendix A, Theorem 21.

3.2.2 Subtour and Path Inequalities

In the cycle clustering model, we consider a fixed number of clusters. This
means that if there is a transition between clusters from a state i to a state
j, there must be exactly m − 1 further transitions along the cycle before
we can reach i again. This observation yields the following inequality.

Let K = {(i1, i2), (i2, i3), . . . , (is−1, is), (is, i1)} ⊂ E be any cycle of
length 1 < |K| < m. Then the subtour-elimination inequality∑

(i,j)∈K

zij ≤ |K| − 1 (3.11)

is valid for any solution of the cycle clustering MIP.

3.2. Valid Inequalities 37

The inequality can be strengthened by adding variables for transitions
inside a cluster. Let U ⊂ K be any subset of the edges in the cycle with
|U | ≤ |K| − 1. Then the extended subtour-elimination inequality∑

(i,j)∈K

zij +
∑

(i,j)∈U

yij ≤ |K| − 1 (3.12)

is valid for any solution of the cycle clustering MIP. The inequality is valid
because there cannot exists a cycle with a number of forward transitions
that is not a multiple of the amount of clusters m. If (3.12) is violated,
then there exists a cycle with a number of forward transitions greater than
zero but smaller than the amount of clusters. The inequality (3.12) is
stronger than (3.11) in the sense that it defines a higer dimensional face of
CCP . It is evident that any (x, y, z) ∈ CCP that satisfies (3.11) at equality
also satisfies (3.12) at equality, since we added a number of non-negative
variables. An example for a clustering that satifies (3.12) but not (3.11) at
equality is (A1, . . . , Am) with it ∈ A1 for all t = 1, . . . , s.

Figure 3.5 illustrates a violated subtour of length 3 for a problem with
5 clusters. Figure 3.6 illustrates a violated extended subtour.

i1

i2

i3

zi1i2

zi2i3
zi3i1

Figure 3.5: Invalid subtour of length 3 in a problem with
5 clusters. State i1 is reached again after three forward

transitions.

These extended subtour-elimination inequalities do not define facets but
proved effective in practice and can be separated effectively.

We give an example of an inequality that defines a higher-dimensional
face than (3.12) for |K| = 4. Let K = {(i1, i2), (i2, i3), (i3, i4), (i4, i1)} ⊂ E
be any cycle of length 4 and let m ≥ 5. Then the inequality∑

(i,j)∈K

zij + yij − yi1,i3 ≤ 3 (3.13)

is satisfied at equality by more points in CCP than (3.12).

38 Chapter 3. Solving Methods for Cycle Clustering

yi1i2

zi2i3 zi3i4

zi4i1

Figure 3.6: Invalid extended subtour of length 4 in a 5-
cluster problem. One y-variable and 3 z-variables are set to
one, resulting in an invalid cycle with 3 forward transitions.

Let P = (A1, . . . , Am) be any clustering of S that satisfies (3.12) at
equality. If i1 and i3 are in the same cluster At in P , then the only possibility
that (3.12) is satisfied at equality is if i2 and i4 are also in At. In that case
(3.13) is tight. If i1 and i3 are in different clusters then yi1,i3 = 0 and it
is obvious that (3.13) is satisfied at equality. Any clustering (A1, . . . , Am)
with i1, i2 ∈ A1 and i3, i4 ∈ A2 satisfies (3.13) at equality but not (3.12).

Theorem 16. The extended subtour inequality (3.12) can be separated in
polynomial time.

Proof. We assume w.l.o.g. that U = K \ {(i1, i2)}, since we can choose any
edge of a cycle as the first edge.

Let (xf , yf , zf) be a given LP-solution. We choose one u ∈ S as the
start node and define a directed graph G = (S, E), with the edge set
E = {(i, j) | zfij + yfij > 0}. We define arc weights aij as

aij =

{
zfij, if i = u,

zfij + yfij, else.
(3.14)

Then a cycle K in E of length s < m that has a weight greater than
|K| − 1 corresponds to a violated extended subtour. Therefore, the in-
equality (3.12) can be separated by computing longest paths with a fixed
number of arcs. As all arc weights in the graph are non-negative, this is
possible in polynomial time. Algorithm 4 detects for all s = 2, ...,m− 1 if
there exists a cycle of length s that violates (3.12).

3.2. Valid Inequalities 39

Algorithm 4 Subtour-Elimination

1: Input: LP-solution (xf , yf , zf), number of clusters m, set of states S
2: Output: Violated extended subtour, if there exists one
3: for all u ∈ S do
4: Initialize a1ij as described in (3.14)
5: for s = 2, . . . ,m− 1 do
6: for (i, j) ∈ S × S do
7: asi,j = maxl∈S\{i,j} a

s−1
i,l + al,j

8: end for
9: if (asi,i > s− 1) then

10: Found violated subtour. The cycle can be found by back-
tracking.

11: end if
12: end for
13: end for

The following path inequality stems from a similar observation. Let m
be the number of clusters, i1 6= im ∈ S, P = {(i1, i2,), . . . , (im−1, im)} be a
path from i1 to im of length m− 1, and let U ⊂ P with 0 ≤ |U | ≤ |P | − 1.
Then the path inequality∑

(i,j)∈P

zij +
∑

(i,j)∈U

yij + yi1,im ≤ m− 1 (3.15)

is valid for CCP. If
∑

(i,j)∈P zij+
∑

(i,j)∈U yij = m−1, then there are between
one andm−1 forward transitions from i1 to im. Therefore, i1 and im cannot
be in the same cluster and yi1,im has to be zero.

Figure 3.7 illustrates this type of inequality. These path inequalities
can be separated in the same way as the subtour inequalities. We simply
check in Step 10 of Algorithm 4 whether am−1i1,im

+ yfi1,im > m− 1.

i1

i5zi1i2

zi2i3

yi3i4

zi4i5

yi5i1

has to be zero

Figure 3.7: Invalid path of length 4 in a 5-cluster problem.
The path from i1 to i5 has 3 forward transitions. Therefore

i1 and i5 cannot be in the same cluster.

40 Chapter 3. Solving Methods for Cycle Clustering

3.2.3 Partition Inequalities

We introduce one more kind of valid inequality that is a generalization of a
triangle inequality. It is motivated by the partition inequalities in [22] and
illustrated in Figure 3.8.

Theorem 17. Let A,B ⊂ S, A ∩B = ∅. Then the partition inequality∑
i∈A,j∈B

zij −
∑

i,j∈A,i<j

yij −
∑

i,j∈B,i<j

yij ≤ min{|A|, |B|} (3.16)

is valid for the cycle clustering polytope.

Proof. We show this by induction over |A|+ |B|.
Induction Base: Let A,B ⊂ S, A ∩ B = ∅, |A| = 1, i.e., A = {u}. Then

the inequality is of the form∑
i∈B

zui −
∑

i,j∈B,i<j

yij ≤ 1.

If none of the zui is set to one, then the inequality is obviously satisfied.
Denote by Bo ⊆ B the subset of B such that zui = 1 for all i ∈ Bo. Then
yij = 1 for all i, j ∈ Bo, because they are all one cluster after t(u). So it
holds that ∑

i∈B

zui −
∑

i,j∈B,i<j

yij = |Bo| −
|Bo|−1∑
l=1

l ≤ 1. (3.17)

Analogously, it follows that the inequality is valid for any A,B with |B| = 1.
Inductive Step: Assume validity was proven for A,B with |A|+ |B| ≤ k.

Assume w.l.o.g. that |A| ≤ |B|. We have already proven the claim in the
case of |A| = 1, so assume further that |A| > 1. Select any u ∈ A. Then,
by induction hypothesis the inequality is valid for A \ {u} and B, i.e., it
holds that∑

i∈A\{u},j∈B

zij −
∑

i,j∈A\{u}\,i<j

yij −
∑

i,j∈B,i<j

yij ≤ |A| − 1. (3.18)

Conversely, the same holds if we remove any v ∈ B, i.e.,∑
i∈A,j∈B\{v}

zij −
∑

i,j∈A,i<j

yij −
∑

i,j∈B\{v},i<j

yij ≤ min{|A|, |B| − 1}. (3.19)

We sum up (3.18) for all u ∈ A. It follows

∑
u∈A

 ∑
i∈A\{u},j∈B

zij −
∑

i,j∈A\{u},i<j

yij −
∑

i,j∈B,i<j

yij


= (|A| − 1)

(∑
i∈A,j∈B

zij −
∑

i,j∈A,i<j

yij

)
− |A|

(∑
i,j∈B,i<j

yij

)
.

3.2. Valid Inequalities 41

The same holds if we sum up (3.19) for all v ∈ B. Summing up (3.18) for
all u ∈ A and (3.19) for all v ∈ B yields the inequality

(|A|+ |B| − 2)

(∑
i∈A,j∈B

zij −
∑

i,j∈A,i 6=j

yij −
∑

i,j∈B,i 6=j

yij

)
≤ |A|(|A| − 1) + |B|min{|A|, |B| − 1}.

Since it holds that min{|A|, |B|−1} ≤ |A|, dividing by (|A|+ |B|−2) yields∑
i∈A,j∈B

zij −
∑

i,j∈A,i 6=j

yij −
∑

i,j∈B,i 6=j

yij ≤
⌊
|A|(|A|+ |B| − 1)

(|A|+ |B| − 2)

⌋
= |A|.

Rounding down the right hand side is allowed here, since the left hand side
has an integer value for all points in CCP . This concludes the proof.

Theorem 18. The partition inequalities 3.16 are facet-defining if m > 4
and ||A| − |B|| = 1.

For the proof we refer to Appendix A, Theorem 22.
Separation for these inequalities is done heuristically and only violated

partition inequalities with |A| + |B| ≤ 5 are searched. Let (xf , yf , zf)
be an LP-solution of CC-MIP. We enumerate all triangle-inequalities, and
consider the active ones i.e., A = {i}, B = {j, k} such that

zfij + zfik − y
f
jk = 1.

Then we add one more state l to B with

l = arg max
v∈S

(
zfiv − y

f
vj − y

f
vk

)
. (3.20)

If the corresponding partition inequality is violated, i.e., with A = {i} and
B = {j, k, l}, it is added to the MIP. Otherwise, we add one more state u
to A with

u = arg max
v∈S

(∑
w∈B

zfvw − y
f
vi

)
.

The partition inequality with A = {u, i} and B = {j, k, l} is added to the
MIP, if it is violated by the LP-solution.

Selecting states in this way and only for active triangle inequalities keeps
the computational effort to an acceptable amount for the test set that we
considered. We enumerate O(n3) triangle inequalities and for each of the
active ones, we consider 2n states.

42 Chapter 3. Solving Methods for Cycle Clustering

Figure 3.8: Illustration of a partition inequality with
|A| = 2, |B| = 3. If all the z-variables are one (represented
by the arcs between the clusters) then all the y-variables
also have to be set to one (edges inside clusters) and the

inequality is satisfied at equality.

3.3 Multinode Branching
Our experiments suggest that standard two-node branching is not the best
strategy for our problem instances. Examine the constraints

m∑
t=1

xit = 1.

Setting one of the xit-variables to one implicates that all other xit′ for this
state have to be set to zero. In contrast, fixing xit to zero has no direct
implications on its own. This is the motivation for a branching rule that
only sets x-variables to one.

There exist sophisticated branching rules, specifically for set-partitioning
problems [7], but as the set-partitioning constraints in our problem have
a very simple structure, we use a simple branching rule called multinode
branching, also presented in [7].

Let (xf , yf , zf) be the LP-Solution at a node in the branch-and-bound
tree. One state i and a subset of clusters F ⊂ K is selected, with

0 < xfit < 1 for all t ∈ F.

One child node is created for each t ∈ F , with xit = 1 as the branching
decision, as well as one child node with

∑
t∈F xit = 0.

The branching rule is illustrated in Figure 3.9. In order to keep the tree
from getting very broad, the branching rule is restricted to |F | ≤ 3 so no
more than 4 children can be created at each node.

3.4. Approximation by Reducing Instance Size 43

N

C1 C2 C|F | C0

xit1 = 1 xit2 = 1 xit|F | = 1
∑

t∈F xit = 0

Figure 3.9: Illustration of multinode branching. |F | + 1
child nodes are created. At the first |F | child nodes, one of
the variables is set to one, in the last node all variables in

F are set to zero.

3.4 Approximation by Reducing Instance Size
The adjacency matrixQ determines how many variables and constraints the
formulation has. The denser Q is, the more variables and constraints are
needed. This matrix Q stems from a markov state model. In practice, these
matrices are often dense as the membership functions used when assigning
microstates do not have a local support, see e.g., [16]. This means that
between many of the states i and j, the transition probability qij might be
very small compared to a few transitions with higher probability.

For two states i, j ∈ S, define the impact of the transition ij as

θij = max(α(qij + qji), |qij − qji|).

In order to reduce the size of the MIP, we define a percentile of transitions,
according to their impact. Then that percentile of transitions with the
smallest impact is set to zero. Denote the set of transitions discarded this
way by D ⊂ S × S. We call the MIP resulting from omitting all of these
transitions CC-MIPred. Let xred be the optimal solution of CC-MIPred
with objective value vred. Then we know that the distance to the optimal
objective value vorig of the original CC-MIP can be at most the sum of all
the discarded transitions, i.e.,

δ :=
∑

(i,j)∈D

θij ≥ |vred − vorig|. (3.21)

The reason this holds is that for any transition (i, j) ∈ S × S, the impact
on the objective function is limited by θij. At most one of yij, zij and zji
can be set to one and each has an objective coefficient that is bounded by
θij.

This can be used as a simple approximation algorithm. The reduced
MIP is solved and provides an approximate solution of the original MIP,
with a maximal approximation error of δ. Even if the reduced MIP cannot
be solved to optimality, any dual bound of the reduced MIP can be turned
into a dual bound for the original MIP, by adding δ.

44 Chapter 3. Solving Methods for Cycle Clustering

45

Chapter 4

Computational Experiments

In this chapter, we evaluate the performance of the solving methods presen-
ted in Chapter 3. To do this, we developed a SCIP application for the cycle
clustering problem called CC-SCIP.

SCIP is a framework for solving constrained integer programs and the
fastest non-commercial solver for mixed integer programs. Originally de-
veloped by Achterberg [1, 2], SCIP is continuously improved and extended
by numerous researchers at the Zuse-Institute Berlin [29].

The application CC-SCIP reads a matrix of unconditional transition
probabilities Q and creates from it the model described as CC-MIP in
Section 2.3. In order to extend SCIP for cycle clustering, we implemented
the heuristics (cf. 3.1) and separation routines (cf. 3.2) described in the
previous chapter, as well as the multinode branching rule (cf. 3.3).

The following is a short outline of the structure of this chapter. We first
describe the test set and then evaluate the overall performance of CC-SCIP
by comparing it to the default version of SCIP, as well as to the commercial
solver Gurobi. Furthermore, we evaluate all the presented solving methods
in detail, measuring their individual impact and the benefit of combining
them. In addition, we evaluate the approximation method presented in Sec-
tion 3.4 in terms of speedup and approximation error. Finally, we compare
three different relaxations for the cycle clustering problem.

We will focus strictly on computational performance, for experiments
evaluating the quality of the model see [4].

All experiments were run on 2.7 GHz Intel Xeon E5-2680 0 CPUs with
64 GB main memory. The time limit was set at 3600s, with only one job
running per node at a time.

4.1 Test Set
In our computational experiments, we consider a test set with data from
three different types of simulations. The first type are catalytic cycle in-
stances and they constitute the largest part of the test set with 32 instances.
The second kind are repressilator simulations with 6 instances and the third
kind are Hindmarsh-Rose simulations, also with 6 instances. Moreover, for
each of these 44 instances, we created 3 instances of reduced size by apply-
ing the method described in Section 3.4.

46 Chapter 4. Computational Experiments

The instance sizes range from 20 to 250 states. For detailed information
on the MIP-size of all the instances, we refer to Appendix B.

The following is a brief description of the three different kinds of simu-
lations. We will describe the catalytic cycle in more detail and refer to the
literature for more in-depth descriptions of the rest.

Catalytic cycle
The first part of the test set is comprised of artificial catalytic cycle

instances that were created using a hybrid Monte-Carlo method (HMC)
[6]. A potential Ω : R2 → R with several minima, and a drift d ∈ R2, that
propagates the simulation towards the next minimum is used. When the
system enters a predefined set, the drift is changed so that the propagation
turns toward the next minimum. Figure 4.1 illustrates a potential with
four minima.

Figure 4.1: Heat map of a potential with four minima
that are plotted as the darker areas.

For further details on the creation of the instances, we refer to [4].
Algorithm 5 describes the creation of the trajectory.

Mircostates x1, . . . , xn are created such that the fill distance

h = max
j=1,...,N

min
i=1,...,n

‖uj − xi‖2

is minimized.
It is noteworthy that non-local membership functions were used when

defining the microstates, i.e., each trajectory-point u is assigned fractionally
to the microstates according to

ψi(u) =
exp(−‖u− xi‖22)∑n
j=1 exp(−‖u− xj‖22)

.

4.1. Test Set 47

The transition matrix P is defined by

pij =

∑N
k=0 ψi(uk)ψj(ũk)∑N

k=0 ψi(uk)
,

where ũk is the state uk after one time step. Thus, the resulting transition
matrices are dense.

The test set is comprised of instances with 3, 4, and 6 minima. For
each of those, transition matrices with 20, 30, 50, 100, and 200 states were
created.

Algorithm 5 HMC with drift
1: Input: Start vector u0, inverse temperature β, N , drift d, random

vectors r1, . . . , rN , uniformly distributed numbers v1, . . . , vN ∈ [0, 1]
2: Output: trajectory u0, . . . , uN−1
3: for i = 1, . . . , N − 1 do
4: unew ← ui−1 + ri + d
5: if exp(−β(Ω(unew)− Ω(ui−1))) < vi then
6: ui ← unew
7: d ← update(d)
8: else
9: ui ← ui−1

10: end if
11: end for

Repressilator
The repressilator is a very prominent example of a synthetic genetic

regulatory network [15]. Three genes TetR, λcI, and LacI each produce
a protein that represses the production of the mRNA of one of the other
two genes. Therefore, the whole system expresses a cyclic behavior. This
system can be described by a system of six ordinary differential equations,
one for each gene and each protein.

dmA

d t
= −mA +

v

1 + phC
+ v0

d pA
d t

= −β(pA −mA)

dmB

d t
= −mB +

v

1 + phA
+ v0

d pB
d t

= −β(pB −mB)

dmC

d t
= −mC +

v

1 + phB
+ v0

d pC
d t

= −β(pC −mC)

The constants were set according to [4] with v = 298.2, β = 0.2, v0 = 0.03,
and h = 2. The test set is comprised of instances with 40, 80, and 200
microstates.

48 Chapter 4. Computational Experiments

Figure 4.2: Illustration of the repressilator network. Im-
age from [15]

Hindmarsh-Rose
The Hindmarsh-Rose model is used to study neuronal activity and is

formulated as a system of nonlinear ordinary differential equations [35].
The equations read

dx

d t
= y − ax3 + bx2 − z + I,

d y

d t
= c− dx2 − y,

d z

d t
= ε(s(x− x0)− z).

In our test set, this system was used to simulate the membrane potential
of cells in a human heart. Test instances with 50 and 250 microstates were
created.

4.2 Overall Performance
In order to evaluate the methods presented in this thesis, we compare CC-
SCIP to SCIP 4.0.0, as well as to Gurobi 7.5.1. For all SCIP variants,
we used CPLEX 12.7.1.0 as the LP-solver. We ran Gurobi with default
settings and made two runs for SCIP, one with default settings and one
using the multinode branching rule presented in Section 3.3. The number
of instances that were solved within the time limit is compared, as well as
the average solving time. Furthermore, the primal integral as well as the
dual integral are computed in order to gain insight into the solving process.
Since the instances vary greatly in size, we use the shifted geometric mean
as defined in [1] with a shift of 10 to measure average time, primal integral
and dual integral.

4.2. Overall Performance 49

The primal integral is defined according to [5]. Let x̃ be any solution
of a MIP, x̃opt be an optimal solution and cT x̃ be the the objective value.
The primal gap γ ∈ [0, 1] of x̃ is defined as

γ(x̃) :=


0, if |cT x̃opt| = |cT x̃| = 0,

1, if cT x̃opt · cT x̃ < 0,
|cT x̃opt−cT x̃|

max{|cT x̃opt|,|cT x̃|} , else.

The primal gap function p : [0, tmax] −→ [0, 1] is then defined as the primal
gap over time

p(t) :=

{
1, if no incumbent solution until point t,
γ(x̃(t)), with x̃(t) incumbent solution at point t.

Since the primal gap function is piecewise constant, the primal integral
P (T) with T ∈ [0, tmax] is given by

P (T) :=

∫ T

t=0

p(t)dt =
l∑

i=1

p(ti−1) · (ti − ti−1).

The primal integral is useful to measure the impact of primal heuristics
and can be used to indicate how early good solutions are found during the
solving process [5].

The dual integral is defined in the same way, the gap is computed as
the difference between the current dual bound and the best known primal
solution. This introduces a constant offset if the optimal solution is un-
known. The dual integral is useful to measure the impact of separation
routines and gives insight how quickly good bounds for the optimization
problem can be proven.

Table 4.1 shows a comparison between the different solvers. CC-SCIP
solves 11 more instances than Multinode-SCIP, 12 more than Gurobi and
17 more than SCIP within the given time limit. On average, CC-SCIP
performs best in all three categories. Multinode-SCIP produces the second
best results in terms of solving time and dual integral, while Gurobi pro-
duces the second smallest primal integral. Compared to the second best in
each category, CC-SCIP has less than half the solving time, with a primal
integral that is a factor of ×14.9 and a dual integral that is a factor of ×3.7
smaller than for the other solvers.

It is interesting to note that Multinode-SCIP has a smaller dual integral
than Gurobi and is actually able to solve one more instance to optimality.

50 Chapter 4. Computational Experiments

Solver solved time [s] primal int dual int

CC-SCIP 130 64.7 82.9 327.1
Multinode-SCIP 119 130.6 2160.9 1213.3
SCIP 113 182.4 3274.8 1794.0
Gurobi 118 153.1 1236.6 1524.9

Table 4.1: Overview of the performance of the cycle
clustering application CC-SCIP in comparison to SCIP,
Multinode-SCIP, and Gurobi. Column ’solved’ gives the
number of instances solved to optimality out of the total
176 instances. All other columns are geometric means with

a shift of 10.

The very small primal integral of CC-SCIP can be explained by the
fact that the best known reference value for the unsolved instances is the
best solution found by the heuristics in CC-SCIP. For this reason, Table 4.2
shows the performance on the 112 instances that can be solved to optimality
within the given time limit by all four solvers. The general performance
is similar. CC-SCIP shows the best performance in all three categories,
with Multinode-SCIP being second in time and dual integral, while Gurobi
comes in second in terms of the primal integral. We discuss the average
improvement that CC-SCIP presents, compared to the second best solver in
the different categories. The speedup in solving time is of a factor ×4.1, the
improvement in the primal integral is of a factor ×6.4 and the improvement
in the dual integral is of a factor ×4.8.

This indicates that overall, the methods developed in this thesis are
effective, with a speedup of at least ×4, compared to the second fastest
solver. Comparing the different values for SCIP and Multinode-SCIP, the
non-standard branching rule seems to be a good choice for this type of
problem.

Solver time [s] primal int dual int

CC-SCIP 3.3 15.8 19.1
Multinode-SCIP 13.6 206.9 91.9
Default-SCIP 26.6 324.9 167.3
Gurobi 19.3 101.7 138.2

Table 4.2: Comparison on the 112 instances that were
solved to optimality by all four solvers.

Figures 4.3 and 4.4 show the average primal and dual gap function over
time, respectively.

4.3. Evaluation of Primal Heuristics 51

Figure 4.3: Average primal gap function over time for
instances that could be solved to optimality by all solvers.

Figure 4.4: Average dual gap function over time for in-
stances that could be solved to optimality by all solvers.

4.3 Evaluation of Primal Heuristics
In order to evaluate the impact of the three heuristics presented in Chapter
3, we tested each heuristic on its own, all other problem specific heuristics
and problem specific separation routines were turned off. In addition, we

52 Chapter 4. Computational Experiments

ran all heuristics together, all problem specific separation was turned off.
This is compared to Multinode-SCIP as a baseline.

We run the greedy heuristic only at the start of the solving process.
The exchange heuristic is run every 10 nodes, and only when a new primal
feasible solution is found. The rounding heuristic is run after every node.

The average solving time, number of nodes in the branch-and-bound
tree, and primal integral are compared, using the geometric mean with
a shift of 10 for all averages. Table 4.3 shows the results of this exper-
iment. Each individual heuristic shows a slight improvement compared
to Multinode-SCIP. The exchange heuristic has the highest individual im-
pact, which leads to a reduction of 7% in solving time, 33% in the number of
nodes, and 53% in the primal integral. All heuristics run together provide
a higher impact than each heuristic on its own, with a reduction in the
primal integral of 96%.

The decrease in the average solving time is relatively small at 11%,
compared to the decrease in the primal integral. One reason for this is that
without the problem specific separation, the LP-relaxation does not provide
tight bounds and the proof of optimality takes a long time. Another reason
is that some hard instances cannot be solved within the time limit by any
variant and therefore contribute the same to the average solving time for
all tests.

Heuristic time[s] nodes primal integral

default 130.6 - 256.6 - 2160.9 -
greedy 128.4 0.98 260.2 1.01 1478.8 0.68
exchange 120.9 0.93 171.4 0.67 1009.6 0.47
rounding 125.8 0.96 188.9 0.74 1475.1 0.68

all 116.4 0.89 140.2 0.55 86.5 0.04

Table 4.3: Comparison of solving time, number of nodes,
and primal integral for the different heuristics. In each cat-
egory, the value as well as the ratio compared to the default

(Multinode-SCIP) is displayed.

Table 4.4 shows the same experiment on the part of the test set that
could be solved optimally within the time limit by the default. As expected,
the decrease in solving time and number of nodes is larger than on the whole
test set, while the decrease in terms of primal integral is smaller.

Figure 4.5 shows the course of the average primal gap function over
time for the different heuristics and illustrates the point that the heuristics
run together have a higher impact than each heuristic on its own.

4.4. Evaluation of Valid Inequalities 53

Heuristic time[s] nodes primal integral

default 19.7 - 211.9 - 255.9
greedy 19.0 0.96 190.9 0.90 182.3 0.71
exchange 16.8 0.85 117.9 0.56 115.3 0.45
rounding 18.2 0.92 144.8 0.68 166.9 0.65

all 15.5 0.79 82.7 0.39 21.1 0.08

Table 4.4: Comparison of heuristics on the part of the
test set that could be solved optimally by the default

(Multinode-SCIP).

Figure 4.5: Average primal gap function over time for
different heuristics.

4.4 Evaluation of Valid Inequalities
To evaluate the valid inequalities presented in Section 3.2, we ran the same
test setup as for the heuristics. Each type of inequality is tested on its
own, all problem-specific heuristics and other problem-specific separation
routines turned off. Additionally, all separation routines are run together,
all problem-specific heuristics turned off. We limited the number of separ-
ated inequalities per call to 500 for all three types of inequalities.

The results are compared to the Multinode-SCIP as default in Table
4.5. All averages are calculated using the geometric mean with a shift of
10. Each type of inequality shows a decrease in average time, nodes and
the dual integral compared to the default. The highest individual impact
comes from the triangle inequalities presented in Section 3.2.1 with a 40%

54 Chapter 4. Computational Experiments

decrease in solving time and a 89% decrease in the number of nodes. As
with the primal heuristics, the strongest results are achieved when running
all separation routines together.

Separator time[s] nodes dual integral

default 130.6 - 256.6 - 1213.3 -
triangle 77.6 0.59 28.8 0.11 474.1 0.39
subtour 122.6 0.94 174.3 0.68 1036.4 0.85
partition 122.6 0.94 121.6 0.47 933.1 0.77

all 68.3 0.52 15.4 0.06 396.6 0.33

Table 4.5: Comparison of solving time, number of nodes,
and dual integral for the different separators. In each cat-
egory, the value as well as the ratio compared to the default

(Multinode-SCIP) is displayed.

Table 4.6 shows the same comparison on the part of the test set that was
solved to optimality within the timelimit by the default. The general beha-
vior is the same, all separation routines present an improvement compared
to the default, with the highest impact achieved by the triangle-inequalities.

Separator time[s] nodes dual integral

default 19.7 - 211.9 - 126.4 -
triangle 9.3 0.47 20.7 0.10 40.6 0.32
subtour 17.2 0.87 136.3 0.64 102.1 0.81
partition 18.2 0.92 87.2 0.41 90.4 0.72

all 6.2 0.31 10.2 0.05 31.4 0.25

Table 4.6: Comparison of separators on the part of the
test set that was solved optimally by the default (Multinode-

SCIP).

Figure 4.6 shows the course of the average dual gap function over time
for the different separation routines.

4.5. Evaluation of Approximation Method 55

Figure 4.6: Average dual gap function over time for dif-
ferent separation routines.

4.5 Evaluation of Approximation Method
In this section, we evaluate the impact of the approximation method presen-
ted in Section 3.4. For each of the original instances in the test set, we
have created three reduced instances with 25%, 50%, and 75% of trans-
itions omitted, respectively.

Table 4.7 presents an overview of the results. The approximation gap is
defined as δ

vapp
, where δ is the total approximation error defined as in equa-

tion (3.21) and vapp is the best known objective value for the approximate
problem. The average solving time decreases with reducing the amount
of transitions, however the average worst-case approximation gap also be-
comes substantial if 75% of the transitions are omitted.

Instances solved time[s] approx gap

normal 30 96.2 - -
reduced25 31 81.8 0.85 5.6%
reduced50 33 57.0 0.59 22.9%
reduced75 36 37.6 0.39 75.3%

Table 4.7: Evaluation of the approximation method.
Column ’solved’ shows how many of the 44 instances were
solved within the time limit. Column ’time’ sows the av-
erage solving time, as well as the ratio to the non-reduced
case. The column labeled ’approx gap’ displays the average

approximation gap using Equation (3.21).

56 Chapter 4. Computational Experiments

Better insight into the effectiveness of the method can be given, if we
consider instances that can be solved optimally within the given timelimit
but are not easy. On the smallest instances, omitting part of the transitions
does not provide a large benefit as these instances are already solved very
quickly. Restricting the test on the instances that can be solved optimally
makes it possible to evaluate the actual reduction in solving time, without
the constant offset provided by the instances that ran into the timelimit.
Since the optimal value vopt of the non-reduced problem is known for this
part of the test set, we can compare the actual gap g between the approx-
imate objective value vapp and vopt as

g =
|vopt − vapp|

max{|vopt|, |vapp|}
. (4.1)

Table 4.8 shows results for instances that can be solved to optimality
without reductions, but have a solving time greater than five seconds.
When comparing the actual gap and the worst case approximation gap,
we see that on this test set the actual gap is roughly one third of the size
of the approximation gap in all three reduction cases.

Instances time[s] approx gap actual gap

normal 41.9 - - -
reduced25 23.6 0.56 7.1% 2.1%
reduced50 7.8 0.19 28.2% 10.5%
reduced75 2.2 0.05 91.4% 30.4%

Table 4.8: Evaluation of the approximation methods on
instances that were solved optimally with solving time of
more than five seconds. Column ’actual gap’ shows is the
relative gap between reduced and non-reduced instances ac-

cording to (4.1).

The approximate method can also be used to achieve better solutions
of the original problem. Evaluating the best known approximate solution
with respect to the objective function of the original non-reduced problem
can be used as a primal heuristic.

We illustrate this at the example of a Hindmarsh-Rose instance with
250 states and 5 clusters. The best known solution after 3600s obtained by
normal solving has an objective value of 0.195. If we use the best known
solution after 3600s obtained by the 75% reduced instance as a heuristic,
we get a feasible solution with objective value of 0.199. Furthermore, we
can use the dual bound of the approximate solution together with the
approximation error δ from Equation (3.21) to produce a dual bound for
the original problem. In this instance, the best known dual bound for the
original instance is 0.338. If we add the approximation error to the dual
bound of the reduced instance, we get a dual bound of 0.235. The primal-
dual gap using the original best solution and dual bound is 73.7%. If the
solution obtained with the reduced instance and the new dual bound is

4.6. Comparing different Relaxations 57

used, the gap is 18%. We chose to illustrate this method on an example
since it is beneficial only if

• the problem cannot be solved optimally,

• the approximation error is small compared to the approximate solu-
tion,

• the dual bound for the reduced instance is tighter than for the original
instance.

4.6 Comparing different Relaxations
In this last section, we compare three different relaxations for the cycle
clustering problem. The first is the linear relaxation of the CC-MIP from
Section 2.3. The second is the semidefinite programming relaxation (SDP),
obtained by omitting the integrality requirements of the semidefinite in-
teger program presented in Section 2.5. For the third relaxation, we use
the automatic linearization generated by SCIP for the nonlinear program
(Bilin) formulated in Section 2.3.

We used CVX, a package for solving convex programs [20, 21], to solve
the SDP. Because no cutting plane framework for semidefinite programs
was available and the semidefinite formulation has O(n3) constraints, we
only compare the relaxations on smaller instances with a number of states
n = 20, 30.

Table 4.9 shows the dual gap for the three different relaxations. On
average, the dual gap for the LP-relaxation of CC-SCIP is 2.5 times larger
than for the semidefinite formulation. On the other hand, the average gap
for the automatic linearization is roughly 2 times larger than the gap for
CC-SCIP.

This suggests that the semidefinite formulation results in tighter relax-
ations than the linear formulation, at the cost of harder subproblems. We
also conclude that the chosen problem-specific linearization for CC-SCIP
seems effective for this type of problem.

58 Chapter 4. Computational Experiments

Instance Dual Gap
CC-SCIP SDP Bilinear

Pot3_30 35.7% 15.0% 77.5%
Pot_30 33.4% 15.3% 76.5%
Pot3NonCycle_20 34.8% 19.0% 77.4%
Pot3_20 26.5% 9.8% 72.6%
Pot4f_20 37.8% 13.0% 82.5%
Pot4s_20 39.4% 17.1% 83.3%
Pot4f_30 38.4% 13.7% 83.4%
Pot4s_30 39.5% 16.3% 83.8%
Pot4NonCycle_20 38.0% 17.9% 82.8%
Pot4NonCycle_30 39.5% 19.5% 83.9%
Pot4_20 32.4% 6.9% 32.1%
Pot4asym_20 34.4% 12.3% 33.7%
Pot4asym_30 35.5% 12.8% 82.5%
Pot6_20 30.7% 10.9% 30.3%

average 35.4% 14.3% 70.2%

Table 4.9: Comparison of the dual gap for different relax-
ations. Column ’CC-SCIP’ is the gap for the LP-relaxation
of CC-SCIP, ’SDP’ for the relaxation from Section 2.5 and
’Bilinear’ for the LP-relaxation of the nonlinear formulation

from Section 2.3

59

Chapter 5

Conclusion and Outlook

In this thesis, we have introduced and studied cycle clustering, a graph
partitioning problem which is an extension of the minimum k-partitioning
problem. We have proven that this problem is NP-hard, introduced a
mixed integer programming formulation, and discussed the corresponding
polytope.

We have introduced solving techniques for this problem and implemen-
ted them as a SCIP application called CC-SCIP. When comparing CC-SCIP
to generic MIP solvers, we measured a speedup of factor ×4 compared to
the second fastest variant.

Three primal heuristics were presented that proved effective at obtain-
ing feasible solutions for the clustering problem. Each individual heuristic
improved the performance, reducing the average solving time and the aver-
age primal integral. Especially when run together these heuristics quickly
found solutions close to the optimum or provided the best known solution
in hard problem instances. When running these heuristics, the average
primal integral decreased by over 90% compared to the default. We in-
troduced three different types of valid inequalities. In practice, separating
these inequalities reduced the average solving time by 68.5% compared to
the default.

Furthermore, we discussed an approximation algorithm that reduces the
instance size of the MIP by discarding entries in the transition matrix with
small probabilities. Our tests have shown that this approximation method
can greatly reduce solving time, with an average 80% reduction if half
of the transitions are omitted. Since the approximation gap can only be
computed after the test is run, it is best to do multiple tests with different
reduction percentages. Usefulness of this approximation technique varies
greatly among different types of instances.

Finally, we compared three relaxations on a test set of small instances.
We have observed that the LP-relaxation of the problem-specific lineariz-
ation gives a tighter dual bound than the automatic linearization. On the
other hand, the SDP-relaxation provided a much tighter dual bound than
the LP-relaxation, however at a higher computational cost.

In conclusion, the methods and algorithms presented in this thesis
provided a significant improvement in the ability to solve the cycle cluster-
ing problem. However, large instances with 200 or more states could not
be solved to optimality within the given time limit. Using parallelization
in the branch-and-bound tree, e.g., with Para-SCIP [36], would be one way

60 Chapter 5. Conclusion and Outlook

to tackle larger instances. A different possibility is to use a branch-and-cut
approach that uses semidefinte programming relaxations instead of linear
relaxations. We have shown that this might lead to tighter relaxations and
therefore a smaller branch-and-bound tree. More sophisticated inequalities
with a richer structure and more advanced separation routines could lead to
even tighter bounds and might be useful to improve the SCIP application
further.

In order to tackle transition matrices with thousands of microstates, it
is not realistic to expect a globally optimal MIP-solution. However, the
presented heuristics can still generate locally optimal solutions and the
LP-solution can provide a dual bound. A useful future extension of CC-
SCIP in this direction might be to adapt other heuristic or approximate
graph partitioning methods, such as coarsening or more general local search
methods.

61

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, 2007.

[2] T. Achterberg. Scip: solving constraint integer programs. Mathemat-
ical Programming Computation, 1(1):1–41, Jul 2009.

[3] M. F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele. Solv-
ing k-Way Graph Partitioning Problems to Optimality: The Impact
of Semidefinite Relaxations and the Bundle Method, pages 355–386.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[4] I. Beckenbach, L. Eifler, K. Fackeldey, A. Gleixner, A. Grever,
M. Weber, and J. Witzig. Mixed-integer programming for cycle de-
tection in non-reversible markov processes. Multiscale Modeling and
Simulation, 2016. under review.

[5] T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis,
2014.

[6] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov
Chain Monte Carlo. CRC press, 2011.

[7] N. Cho and J. Linderoth. Row-partition branching for set partitioning
problems. 2014.

[8] S. Chopra and M. R. Rao. The partition problem. Mathematical
Programming, 59(1):87–115, 1993.

[9] N. D. Conrad, M. Weber, and C. Schütte. Finding dominant structures
of nonreversible markov processes. Multiscale Modeling and Simula-
tion, 14(4):1319 – 1340, 2016.

[10] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The complexity of multiway cuts. In Proceedings of
the twenty-fourth annual ACM symposium on Theory of computing,
pages 241–251. ACM, 1992.

[11] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. Identification
of almost invariant aggregates in reversible nearly uncoupled markov
chains. Linear Algebra and its Applications, 315(1):39 – 59, 2000.

[12] P. Deuflhard and M. Weber. Robust perron cluster analysis in con-
formation dynamics. Linear Algebra and its Applications, 398:161 –
184, 2005. Special Issue on Matrices and Mathematical Biology.

62 BIBLIOGRAPHY

[13] R. Durrett. Essentials of Stochastic Processes. Springer Texts in Stat-
istics. Springer New York, 2012.

[14] A. Eisenblätter. The semidefinite relaxation of the k-partition polytope
is strong. In W. J. Cook and A. S. Schulz, editors, Proceedings of the
9th Conference on Integer Programming and Combinatorial Optimiz-
ation (IPCO’02), volume 2337 of Lecture Notes in Computer Science,
pages 273–290, Berlin Heidelberg, 2002. Springer-Verlag.

[15] Elowitz Michael B. and Leibler Stanislas. A synthetic oscillatory net-
work of transcriptional regulators. Nature, 403(6767):335–338, jan
2000. 10.1038/35002125.

[16] K. Fackeldey, A. Bujotzek, and M. Weber. A meshless discretization
method for markov state models applied to explicit water peptide fold-
ing simulations. InMeshfree Methods for Partial Differential Equations
VI, volume 89, pages 141 – 154, 2012.

[17] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A.
Wolsey. The node capacitated graph partitioning problem: A compu-
tational study. Mathematical Programming, 81(2):229–256, Apr 1998.

[18] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving
mixed-integer semidefinite programs. Optimization Methods and Soft-
ware, 0(0):1–39, 0.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

[20] M. Grant and S. Boyd. Graph implementations for nonsmooth con-
vex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Re-
cent Advances in Learning and Control, Lecture Notes in Control and
Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/~boyd/graph_dcp.html.

[21] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, Mar. 2014.

[22] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning
polytope. Mathematical Programming, 47(1):367–387, 1990.

[23] W. W. Hager, D. T. Phan, and H. Zhang. An exact algorithm for
graph partitioning. Mathematical Programming, 137(1):531–556, Feb
2013.

[24] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI Physical
Design: From Graph Partitioning to Timing Closure. Springer Pub-
lishing Company, Incorporated, 1st edition, 2011.

[25] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–
103. Springer US, Boston, MA, 1972.

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

BIBLIOGRAPHY 63

[26] B. W. Kernighan and S. Lin. An efficient heuristic procedure for par-
titioning graphs. Bell System Technical Journal, 49(2):291–307, 1970.

[27] L. Liberti. Compact linearization for binary quadratic problems. 4OR,
5(3):231–245, 2007.

[28] A. Lisser and F. Rendl. Graph partitioning using linear and semi-
definite programming. Mathematical Programming, 95(1):91–101, Jan
2003.

[29] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L.
Gottwald, G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger,
B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker,
R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt, and
J. Witzig. The scip optimization suite 4.0. Technical Report 17-12,
ZIB, Takustr.7, 14195 Berlin, 2017.

[30] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Op-
timization. Wiley-Interscience, New York, NY, USA, 1988.

[31] M. Padberg. The boolean quadric polytope: Some characteristics,
facets and relatives. Mathematical Programming, 45(1):139–172, Aug
1989.

[32] V. S. Pande, K. Beauchamp, and G. R. Bowman. Everything you
wanted to know about Markov State Models but were afraid to ask.
Methods, 52:99–105, 2010.

[33] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D.
Chodera, C. Schütte, and F. Noe. Markov models of molecular kin-
etics: Generation and validation. The Journal of Chemical Physics,
134(17):174105, 2011.

[34] M. Sarich and C. Schütte. Markov model theory. In G. R. Bowman
and V. S. P. and, editors, An Introduction to Markov State Models and
Their Application to Long Timescale Molecular Simulation, volume
797, pages 23 – 44. 2014.

[35] A. Shilnikov and M. Kolomiets. Methods of the qualitative theory for
the hindmarsh-rose model: a case study - a tutorial. 18:2141–2168, 08
2008.

[36] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. Paras-
cip: a parallel extension of scip. In C. Bischof, H.-G. Hegering, W. Na-
gel, and G. Wittum, editors, Competence in High Performance Com-
puting 2010, pages 135 – 148, 2012.

[37] M. Weber. A subspace approach to molecular markov state models
via a new infinitesimal generator, 2011.

64 BIBLIOGRAPHY

65

Appendix A

Auxiliary Proofs

The following Lemma is used in the proofs in this Appendix. It is symmet-
rical to Lemma 11, so we will state it without proof.

Lemma 19. Let m ≥ 4 and ax + by + cz ≤ δ be a valid inequality that is
satisfied at equality by the clusterings

P1 = (A1, A2, A3 ∪ {l}, . . . , Am) , P ′1 = (A1, A2 ∪ {l}, A3, . . . , Am) ,

P2 = (A2, A1, A3 ∪ {l}, . . . , Am) , P ′2 = (A2, A1 ∪ {l}, A3, . . . , Am) .

Then
2cA2,l + bl,A1 = 2cA1,l + bl,A2 .

Theorem 20. The inequality

yij + yjk − yik + 0.5 (zij + zji + zjk + zkj − zik − zki) ≤ 1 (A.1)

defines a facet for CCP .

Proof. Assume there exists an inequality ax+ by + cz ≤ α such that

{(x, y, z) ∈ CCP | (x, y, z) satisfies (A.1) at equality }
⊆ {(x, y, z) ∈ CCP | ax+ by + cz = α}.

We follow the same strategy as in the proof of Theorem 12 and use the
same switch-trick.
Step 1: y-variables:

Let l ∈ S be any state. Let (A1, . . . , Am) be any clustering of S \ {l}
with

• If l 6= i, we set i, j ∈ A2.

• If l = i, we set j, k ∈ A2.

We set the ordered clusterings as

P1 = (A1 ∪ {l}, A2, A3, . . . , Am) , P ′1 = (A1, A2, A3 ∪ {l}, . . . , Am) ,

P2 = (A3 ∪ {l}, A2, A1, . . . , Am) , P ′2 = (A3, A2, A1 ∪ {l}, . . . , Am) .

All of these clusterings satisfy (A.1) at equality and therefore we can apply
Lemma 10 and it follows that

bl,A1 = bl,A3 .

66 Appendix A. Auxiliary Proofs

Select any u ∈ A3, u /∈ {i, j, k} and move u to A2, i.e., we appyly Lemma
10 to

P1 = (A1 ∪ {l}, A2 ∪ {u}, A3 \ {u}, . . . , Am) ,

and P ′1, P2, P
′
2 accordingly. It follows that

bl,A1 = bl,A3\{u}.

Thus, as both equalities have the same left hand side

bl,A3\{u} = bl,A3 ⇒ bl,u = 0 ∀l ∈ S, u /∈ {i, j, k}.

Set l = j and take any clustering (A1, . . . , Am) of S \ {l} with i ∈ A1

and k ∈ A3. Then we can apply Lemma 10 once more and since we have
already proven that all other coefficients are zero, we get

bij = bjk. (A.2)

We do the same with l = i and j, k ∈ A1 and get

bij + bik = 0. (A.3)

Define β := bij, then we proven so far that the inequality ax+ by + cz ≤ α
has to be of the form

ax+ βyij + βyjk − βyik + cz ≤ α.

Step 2: z-variables
We use the switch-trick once more and use it together with Lemma 11

to prove that clu = 0 for l ∈ S, u ∈ S \ {i, j, k}. It works the same way as
above, so we will not spell it out in detail again.

Let l = i, A2 = {j, k} and assign the rest of the states so that (A1, . . . , Am)
is a clustering of S \ {i}. Then, using Lemma 11, we get

2(cij + cik) = bik + bij = β − β = 0.

If we do the same for l = k,A2 = {i, j}, we get

ckj + cki = 0.

If we use Lemma 19 in the same way we get

cji + cki = 0,

cjk + cik = 0.

Setting l = j, A1 = {i}A2 = {k} and using Lemma 11 gives us

cjk =
bjk
2

=
β

2
,

Appendix A. Auxiliary Proofs 67

and with l = j, A1 = {k}, A2 = {i} we get

cji =
bji
2

=
β

2
.

So we now know that the inequality has to be of the form

ax+ βyij + βyjk − βyij +
β

2
(zij + zjk + zji + zkj − zki − zik) ≤ α. (A.4)

Step 3: x-variables
Let l ∈ S \{i, j, k}. Let (A1∪{l}, . . . , Am) be a clustering with i, j, k ∈ A1.
The corresponding incidence-vector fulfills (A.1) at equality and if we switch
l to a different cluster the inequality remains active. We know that all b, c-
coefficients that contain l are zero. Thus, by comparing the coefficients for
the incidence vectors of

P1 = (A1 ∪ {l}, . . . , Am), P2 = (A1, . . . , At ∪ {l}, . . . , Am),

we immediately get
al1 = alt ∀t = 1, . . . ,m. (A.5)

Let l = i, let j, k be in A1 and set P1 and P2 as before. We compare the
incidence vectors and get

ai1 + bij + bik = ai2 + cji + cki = ai3 = . . . = aim−1 = aim + cij + cik.

We know that bij + bik = cji + cki = cij + cik = 0. As i and k have the same
role in the inequality, we get ak1 = akt for all t = 1, . . . ,m. If l = j, we put
i ∈ A1, k ∈ At and do the same as before. Once more, all the coefficients
cancel each other and thus we have proven that for each l ∈ S there exists
a constant αl such that

alt = αl ∀t = 1, . . . ,m.

Analogously to the proof of Theorem 12, we can assume that alt = 0
for all l ∈ S, t ∈ K. The only choice of δ that produces a valid inequality
for CCP that defines a face is δ = β > 0. This concludes the proof.

Theorem 21. Let i, j, k ∈ S with (i, j), (j, k), (i, k) ∈ E.
• If m > 4, then the inequalities

zij + zik − yjk ≤ 1 ∀(i, j), (i, k), (j, k) ∈ E,
zji + zki − yjk ≤ 1 ∀(i, j), (i, k), (j, k) ∈ E

are facet-defining for the cycle clustering polytope.

• If m = 4, then

zij + zik − 2yjk − (zjk + zkj + zji + zki) ≤ 0 ∀(i, j), (i, k), (j, k) ∈ E

define facets.

68 Appendix A. Auxiliary Proofs

Proof. We prove the first point, i.e., let m > 4. Large parts of the proof are
done similar to Theorem 20 and we will only explain the parts that differ
in detail. Again we assume ax+ by + cz ≤ δ is a valid inequality for CCP
such that

{(x, y, z) ∈ CCP | zij+zik−yjk = 1} ⊆ {(x, y, z) ∈ CCP |ax+by+cz = δ}.

As in Theorem 20, using the switch-trick we prove that

clu = cul = blu = 0 for all u ∈ S, l ∈ S \ {i, j, k}, u 6= l.

Setting i ∈ A1, k ∈ A2, l = j and using Lemma 10 yields

bij = 0,

and switching the roles of j, k yields

bik = 0.

Let l = i, t ∈ {1, . . . ,m}. Take any clustering (A1, . . . , Am) with j ∈ A2 and
k ∈ Aφ(t). Then both (A1∪{i}, . . . , Am) as well as (A1, . . . , At∪{i}, . . . , Am)
fulfill the inequality at equality and we get

ai1 + cij = ait + cik.

Switching the roles of j, k immediately yields

ai1 + cik = ait + cij.

If we add both these inequalities, it follows that ait is constant for all t
and we can assume it to be zero. From the above equations it immediately
follows that cij = cik. In the same way, it can be proven that alt = 0 for all
l ∈ S, t ∈ K.

Consider the Clusterings

P1 = (A1 ∪ {i}, A2 ∪ {j}, A3 ∪ {k}, . . . , Am),

P2 = (A1 ∪ {i}, A2 ∪ {j}, A3, A4 ∪ {k}, . . . , Am).

The incidence vectors of both satisfy (3.8) at equality and if we compare
the coefficients we get

cjk = 0.

Analogously, it can be proven that

ckj = cji = cki = 0.

From

P1 = (A1 ∪ {i}, A2 ∪ {k, j}, A3, . . . , Am),

P2 = (A1 ∪ {i}, A2 ∪ {k}, A3 ∪ {j}, . . . , Am)

Appendix A. Auxiliary Proofs 69

follows
bjk + cik = 0.

We define β = cij and have now proven that the inequality has the form

−βyjk + β(zij + zik) ≤ δ.

The only choice of β and δ that results in a valid inequality which defines
a proper face is β = δ > 0. The proof for the case that m = 4 can be done
analogously.

Theorem 22. Let A,B ⊂ S, A ∩ B = ∅,m > 4 and let ||A| − |B|| = 1.
Then the partition inequality∑

i∈A,j∈B

zij −
∑

i,j∈A,i<j

yij −
∑

i,j∈B,i<j

yij ≤ min{|A|, |B|} (A.6)

is facet-defining.

Proof. The proof that the inequalities are not-facet defining if m = 4 is
given by the triangle inequality (3.8). It is a partition inequality with
|A| = 1, |B| = 2. If m = 4, we have proven that (3.10) is of higher dimen-
sion. W.l.o.g. let |A| = h, |B| = h + 1, h > 1 and let A = {f1, . . . , fh},
B = {g1, . . . , gh+1}. We follow the same strategy as in all the proofs. Let
ax+ by + cz ≤ δ be a valid inequality for CCP such that

{(x, y, z) ∈ CCP |(x, y, z) satisfy (3.16) at equality}
⊆ {(x, y, z) ∈ CCP | ax+ by + cz = δ}.

The partition inequality is satisfied at equality by the clustering (P1, . . . , Pm)
if

a) A ⊆ P1, B ⊆ P2,

b) A ⊆ P1, B \ {gk} ⊆ P2,

c) A \ {fj} ⊆ P1, B \ {gk} ⊆ P2, fj ∈ P3, gk ∈ P4,

d) A \ {fj} ⊆ P1, B \ {gk, gu} ⊆ P2, fj ∈ P3, gk, gu ∈ P4.

Using case a) and b), the switch-trick and Lemmas 10 and 11, it is
straightforward to prove that blu = clu = 0 for all l ∈ S, u ∈ S \ (A∪B). In
the same way as in the previous facet-defining proofs, it holds that ait = 0
for all i ∈ S, t ∈ K.

We explicitly state the rest of the proof. To shorten notation, we always
take case a) as the first clustering and then simply state what changes for
the second clustering. For example, case c) is described as: move fj to
P3, gk to P4.

Moving gk to P3, P4 and Pm, respectively, we derive the equations

h∑
i=1

cfi,gk +
∑
i 6=k

bgi,gk =
∑
i 6=k

cgi,gk = 0 =
h∑
i=1

cgk,fi . (A.7)

70 Appendix A. Auxiliary Proofs

Moving fj to P3, gk to P4 and fj to Pm−1, gk to Pm yields the equations∑
i 6=j

bfi,fj +
∑
i 6=k

bgi,gk +
∑
i 6=j

cfi,gk +
∑
i 6=k

cfj ,gi =
∑
i 6=k

cgi,fj =
∑
i 6=j

cgk,fi . (A.8)

We move fj to A3, gk, gu to A4 as well as fj to Am−1, gk, gu to Am and get∑
i 6=j

bfi,fj +
∑
i 6=k,u

(bgi,gk + bgi,gu) +
∑
i 6=j

(cfi,gk + cfi,gu) +
∑
i 6=u,k

cfj ,gi

=
∑
i 6=k,u

cgi,fj =
∑
i 6=j

(cgk,fi + cgu,fi). (A.9)

Moving fj, gu to A3, gk to A4 and fj, gu to Am−1, gk to Am yields∑
i 6=k,u

cgi,fj + cgi,gu =
∑
i 6=j

cgk,fi . (A.10)

Subtracting (A.9) from (A.10) proves that

−cgu,fj +
∑
i 6=k,u

cgi,gu = 0⇒ cgu,fj =
∑
i 6=k,u

cgi,gu .

This holds for all j = 1, . . . , h. Therefore cgu,fj is constant for all j and
since

∑h
i=1 cgk,fi = 0 it follows that

cgi,fj = 0 for all gi ∈ B, fj ∈ A.

We now look at the left-side equations. The equations (A.9) and (A.8)
simplify to ∑

i 6=j

bfi,fj +
∑
i 6=k

bgi,gk +
∑
i 6=j

cfi,gk +
∑
i 6=k

cfj ,gi = 0,

(A.11)∑
i 6=j

bfi,fj +
∑
i 6=u,k

(bgi,gu + bgi,gk) +
∑
i 6=j

(cfi,gk + cfi,gu) +
∑
i 6=u,k

cfj ,gi = 0.

(A.12)

Subtracting (A.11) from (A.12) yields

− bgu,gk +
∑
i 6=u,k

bgi,gu +
∑
i 6=j

cfi,gu − cfj ,gu = 0. (A.13)

We examine (A.7) once more.

h∑
i=1

cfi,gu +
∑
i 6=k

bgi,gu = 0⇒
∑
i 6=u,k

bgi,gu +
∑
i 6=j

cfi,gu = −bgu,gk − cfj ,gu

Appendix A. Auxiliary Proofs 71

Putting this into (A.13) proves that

−2bg1,g2 − 2cf1,g2 = 0⇒ bgi,gj = −cfk,gj .

Since this holds for all i, j, and k, it follows that cfj ,gu = −bgu,gk = β is a
constant for al k, j, and u.

If |A| = 2, then we can directly infer from (A.8) that bf1,f2 = −bg1,g2 . If
|A| ≥ 3, we move fj, fv to A4, gk, gu to A5. This yields the equation∑
i 6=j,v

(bfi,fj+bfi,fv)+
∑
i 6=k,u

(bgi,gk+bgi,gu)+
∑
i 6=u,k

(cfj ,gi+cfv ,gi)+
∑
i 6=j,v

(cfi,gk+cfi,gu) = 0.

We subtract from this the equation (A.12). This yields

−bfj ,fv +
∑
i 6=j,v

bfi,fv︸ ︷︷ ︸
−bfj ,fv−(h−1)β

+
∑
i 6=u,k

cfv ,gi︸ ︷︷ ︸
(h−1)β

−cfv ,gk − cfv ,gu︸ ︷︷ ︸
−2β

= 0.

It follows that
bfj ,fv = −β for all fj, fv ∈ A.

The only thing that remains to be proven is that bfj ,gk = cgk,gu = 0. Moving
fj, gk to P3, gu to P4 yields

bfj ,gk + cgk,gu = 0.

Moving fj to P3, gk to P4 and gu to P5 yields

cgk,gu = 0.

To summarize, we have proven that ax+ by + cz ≤ δ is of the form

β

(∑
i∈A,j∈B

zij −
∑

i,j∈A,i 6=j

yij −
∑

i,j∈B,i 6=j

yij ≤ min{|A|, |B|}

)
≤ δ.

This concludes the proof, as the only choice for δ, β that results in a valid
inequality which defines a proper face is β = δ > 0.

72 Appendix A. Auxiliary Proofs

73

Appendix B

Test set

Instance Vars Cons Instance Vars Cons

HindRose_250_13cl 21427 321390 Pot4Cycle_20_sym_4cl 650 3254
HindRose_250_5cl 19427 127494 Pot4Cycle_30_f_4cl 1425 7429
HindRose_250_7cl 19927 175968 Pot4Cycle_30_s_4cl 1425 7429
HindRose_50_13cl 1352 12465 Pot4Cycle_30_sym_4cl 1425 7429
HindRose_50_5cl 952 4969 Pot4NonCycle_20_4cl 650 3254
HindRose_50_7cl 1052 6843 Pot4NonCycle_30_4cl 1425 7429
Pot3Cycle_20_f_3cl 630 1923 Pot4_T_100_4cl 15250 84254
Pot3Cycle_20_s_3cl 630 1923 Pot4_T_20_4cl 650 3254
Pot3Cycle_20_sym_3cl 630 1923 Pot4_T_200_4cl 60440 338164
Pot3Cycle_30_f_3cl 1395 4383 Pot4_T_50_4cl 3875 20879
Pot3Cycle_30_s_3cl 1395 4383 Pot4asym_20_4cl 650 3254
Pot3Cycle_30_sym_3cl 1395 4383 Pot4asym_30_4cl 1425 7429
Pot3NonCycle_20_3cl 630 1923 Pot6_T_100_6cl 14850 118856
Pot3NonCycle_T_20_1t_3cl 630 1923 Pot6_T_20_6cl 684 4726
Pot3NonCycle_T_30_1t_3cl 1395 4383 Pot6_T_200_6cl 56619 462031
Pot3NonCycle_T_40_1t_3cl 2457 7833 Pot6_T_50_6cl 3891 29981
Pot3_T_100_3cl 15144 49583 rep_40_P_3cl 2460 7843
Pot3_T_20_3cl 630 1923 rep_40_P_6cl 2580 19546
Pot3_T_200_3cl 60216 198923 rep_200_P_3cl 60297 199193
Pot3_T_50_3cl 3825 12303 rep_200_P_6cl 60897 497681
Pot4Cycle_20_f_4cl 650 3254 rep_80_P_3cl 9714 31663
Pot4Cycle_20_s_4cl 650 3254 rep_80_P_6cl 9954 79036

Table B.1: Test set of all original instances with number
of variables and number of constraints before presolving.
The first number in the instance name is the number of
states, the second number is the number of clusters for that

instance.

74 Appendix B. Test set

25 50 75
instance vars cons vars cons vars cons

HindRose_250_13cl 17032 243707 12532 164207 8098 85873
HindRose_250_5cl 15032 96691 10532 65191 6098 34153
HindRose_250_7cl 15532 133445 11032 89945 6598 47083
HindRose_50_13cl 1193 9651 1037 6895 866 3874
HindRose_50_5cl 793 3851 637 2759 466 1562
HindRose_50_7cl 893 5301 737 3793 566 2140
Pot3Cycle_20_f_3cl 516 1543 399 1153 258 683
Pot3Cycle_20_s_3cl 498 1483 384 1103 258 683
Pot3Cycle_20_sym_3cl 489 1882 351 1284 228 751
Pot3Cycle_30_f_3cl 1113 3443 822 2473 504 1413
Pot3Cycle_30_s_3cl 1089 3363 804 2413 492 1373
Pot3Cycle_30_sym_3cl 1065 4258 765 2958 450 1593
Pot3NonCycle_20_3cl 486 1443 345 973 207 513
Pot3NonCycle_T_20_1t_3cl 486 1443 360 1023 237 613
Pot3NonCycle_T_30_1t_3cl 1068 3293 765 2283 465 1283
Pot3NonCycle_T_40_1t_3cl 1872 5883 1314 4023 771 2213
Pot3_T_100_3cl 11736 38223 8025 25853 4311 13473
Pot3_T_20_3cl 537 1613 405 1173 261 693
Pot3_T_200_3cl 45975 151453 31050 101703 16125 51953
Pot3_T_50_3cl 3051 9723 2136 6673 1218 3613
Pot4Cycle_20_f_4cl 542 2642 422 1962 281 1163
Pot4Cycle_20_s_4cl 530 2574 419 1945 281 1163
Pot4Cycle_20_sym_4cl 527 2557 407 1877 260 1044
Pot4Cycle_30_f_4cl 1155 5899 861 4233 534 2380
Pot4Cycle_30_s_4cl 1128 5746 861 4233 534 2380
Pot4Cycle_30_sym_4cl 1122 5712 840 4114 501 2193
Pot4NonCycle_20_4cl 515 2489 410 1894 281 1163
Pot4NonCycle_30_4cl 1125 5729 834 4080 525 2329
Pot4_T_100_4cl 11836 64908 8125 43879 4411 22833
Pot4_T_20_4cl 560 2744 425 1979 281 1163
Pot4_T_200_4cl 46175 257329 31250 172754 16325 88179
Pot4_T_50_4cl 3104 16510 2186 11308 1268 6106
Pot4asym_20_4cl 524 2540 416 1928 281 1163
Pot4asym_30_4cl 1131 5763 855 4199 534 2380
Pot6_T_100_6cl 11328 89506 7788 60006 4188 30006
Pot6_T_20_6cl 543 3551 423 2551 312 1626
Pot6_T_200_6cl 43377 351681 28830 230456 14157 108181
Pot6_T_50_6cl 2991 22481 2145 15431 1299 8381
rep_40_P_3cl 1974 6223 1404 4323 825 2393
rep_40_P_6cl 2094 15496 1524 10746 945 5921
rep_200_P_3cl 45975 151453 31050 101703 16125 51953
rep_200_P_6cl 45975 151453 31050 101703 16125 51953
rep_80_P_3cl 7542 24423 5208 16643 2850 8783
rep_80_P_6cl 7782 60936 5448 41486 3090 21836

Table B.2: Test set of all reduced instances before presolv-
ing, using the approximation scheme form Section 3.4.
Columns ’25’, ’50’, and ’75’ denote which percentile of trans-

itions was removed.

	Introduction and Preliminaries
	Introduction
	Motivation
	Outline
	Preliminaries
	Mixed Integer Programming
	Branch-and-Bound
	Introduction to Markov State Models

	Cycle Clustering
	The Cycle Clustering Model
	Complexity of Cycle Clustering
	MIP-Formulation
	Polytopal Aspects
	Dimension of the Polytope
	Facets of the Problem Formulation

	Semidefinite Relaxation of Quadratic Programs

	Solving Methods for Cycle Clustering
	Primal Heuristics
	Greedy Heuristic
	Exchange Heuristic
	Rounding Heuristic

	Valid Inequalities
	Triangle Inequalities
	Subtour and Path Inequalities
	Partition Inequalities

	Multinode Branching
	Approximation by Reducing Instance Size

	Computational Experiments
	Test Set
	Overall Performance
	Evaluation of Primal Heuristics
	Evaluation of Valid Inequalities
	Evaluation of Approximation Method
	Comparing different Relaxations

	Conclusion and Outlook
	Bibliography
	Auxiliary Proofs
	Test set

