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Abstract

The paper presents a particle method framework for resolving mol-
ecular dynamics. Error estimators for both the temporal and spatial
discretization are advocated and facilitate a fully adaptive propagation.

For time integration, the implicit trapezoidal rule is employed,
where an explicit predictor enables large time steps.

The framework is developed and exemplified in the context of the
classical Liouville equation, where Gaussian phase-space packets are
used as particles. Simplified variants are discussed shortly, which should
prove to be easily implementable in common molecular dynamics codes.
The concept is illustrated by numerical examples for one-dimensional
dynamics in double well potential.
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1 Introduction

The remarkable development of computer technology in recent time has led
to a considerable progress in both theoretical studies and numerical simula-
tions of molecular dynamics. The foundation of mathematical descriptions
of molecular dynamics is provided by quantum theory in form of the time
dependent Schrödinger equation. This partial differential equation, however,
is defined on function spaces with a dimension proportional to the number
of atoms. Already for medium size molecules, not to mention biomolecules,
the curse of dimensionality leads to exponentially growing computational
cost of traditional grid discretization techniques based on finite differences,
finite elements, or the Fourier transform.

As a remedy for the curse of dimensionality, two alternatives to tradi-
tional grid discretization techniques are available: sparse grids (cf. [6]) and
particle methods (cf. [14]), which all scale reasonably well to high dimen-
sional problems.

Particle methods for solving the time dependent Schrödinger equation
are often based on approximations to the equivalent Liouville-von-Neumann
equation derived by means of the Wigner transformation, which casts the
evolution into the phase space built of positions and momenta. The classical
limit

�
→ 0 of the Liouville-von-Neumann equation is called the classical

Liouville equation (CLE), describing the dynamical behavior of a classical
(quasi-)distribution function at constant energy in phase space.

The CLE can be discretized the by particle methods with different parti-
cle shape functions. A common approach is to approximate the phase space
distributions by collections of Dirac functionals (cf. [17]). In this case, the
dynamics is reduced to Newton’s equations of motion, which are routinely
solved in classical molecular dynamics simulations. The attractive simplic-
ity of such a local particle base has, however, two major drawbacks. First of
all, Dirac-functions representation is hardly applyable for problems where
quantum effects and hence non-local effects in continuous distributions play
an important role. In theses situations, which include non-adiabatic popu-
lation exchanges [9], multi-dimensional potential energy surfaces with high
barriers [13], and non-classical forces occurring in the ”Bohmian” formula-
tion of quantum mechanics [5], approximating the continuous Wigner dis-
tributions by collections of smooth particle shape functions is far more ap-
propriate.Second, singular representation of continious quantum-mechanical
distribution functions makes tedeous the on-fly error estimation and so far
construction of time and space adaptive simulation algorithms. Typically
the answer on this question is given in statistical Monte-Carlo sence requir-
ing so far N 2 more particles in order to decrease error N times as it follows
from the law of Large Numbers [16, 13, 1]. Strategy suggested in this paper
is differnet in a way that combination of both singular and continious par-
ticles allows to control the local propagation error and so far generate new
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basis functions only there where it is needed.
For the numerical realization of a particle method for the CLE, two ma-

jor tasks have to be performed: (i) the approximation of the initial Wigner
distribution obtained from the initial quantum wave function by a collection
of particle shape functions, and (ii) the propagation of the Wigner distri-
bution in terms of the particle collection. Recently, Horenko, Schmidt,
and Schütte [10] have proposed a particle method using Gaussian phase
space packets (GPPs) introduced by Heller [7, 8, 3]. The initial Wigner
distribution is constructed by a Monte Carlo sampling up to specified ac-
curacy, whereas the propagation was performed by an explicit, symplectic
integrator. Under the assumption of a locally quadratic potential, it has been
shown that the propagation of a GPP yields again a GPP. For GPPs with
sufficiently small diameter, the assumption of the potential being locally
quadratic holds approximately. However, no error control for the propaga-
tion has been employed.

This work extends [10] by advocating an adaptive propagation using an
implicit integrator with adaptively chosen step sizes, and an adaptive refine-
ment of the GPP collection in case of non-quadratic potentials. The remain-
der of the paper is organized as follows. Section 2 is devoted to the time
integration of the CLE dynamics by both implicit and explicit integrators,
together with error control by adapting the time step size. In Section 3, the
discretization of Wigner distributions by GPP collections is described, and
the adaptive refinement of the approximation is presented. Finally, Section 4
contains numerical examples.

2 Time Integration of the CLE Dynamics

We consider the integration of linear time-dependent PDEs of the form

∂tρ = Lρ, (1)

where ρ : X × R → RM , X = RN , is a function to be propagated and
the differential operator L has a purely imaginary spectrum. The frame-
work we are presenting here is applicable to various situations, such as the
Schrödinger equation or quantum-classical molecular dynamics. For the time
being, however, we will concentrate on the classical Liouville equation

∂tρ(R,P, t) = −M−1P T∇R ρ(R,P, t)

+ (∇R V (R, t))T∇P ρ(R,P, t),

∂tρ(R,P, 0) = ρ0, ∀R,P (2)

where the phase space consists of location R and impulse P , M is a diagonal
matrix of masses, V (R) is the potential energy function, and ρ : Rndim ×
Rndim ×R → R is the Wigner quasi density.
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As it has been already mentioned a number of approaches can be applied
in order to integrate the partial differential equation (2). But all of the exist-
ing particle methods for the CLE, both with Dirac and Gauss functions as
a basis share the lack of adaptivity in time and space. In order to construct
such an adaptive method we employ the Rothe method [2] of semidiscretiza-
tion in time, which leaves us with a stationary PDE to be solved in each
time step. Spatial adaptivity can then be exploited for robust and efficient
solution of these stationary problems.

Since the spectrum of the differential operator L is purely imaginary,
Gauss methods seem to be suited best for time discretization. We choose
the most simple scheme, the well-known trapezoidal rule

(

I −
τ

2
L

)

ρ̄(t+ τ) =
(

I +
τ

2
L

)

ρ(t), (3)

which conserves first integrals. For the CLE this implies conservation of
density and energy.

For adaptivity in time, we need three essential ingredients: an error esti-
mator, a step size selection scheme, and an desired tolerance. In the follow-
ing, we briefly recollect the standard methodology from integration of ODEs
(cf. [4]).

Error estimator. Denoting the exact evolution by Φ, we estimate the
unknown error

ε := ‖ρ̄(t+ τ)−Φτρ(t)‖ (4)

by the difference between the trapezoidal rule and some comparison propa-
gator ψ to be specified later:

[ε] := ‖ρ̄(t+ τ)−Ψτρ(t)‖. (5)

In case [ε] ≤ TOL the step is accepted, otherwise we reduce the step size
and repeat the step.

Step size selection scheme. Since the trapezoidal rule is of second order,
we assume the error propagation model

ε ≈ Cτ3 (6)

to hold locally for some slowly varying constant C. Substituting [ε] for ε and
aiming at an error of σTOLt with some safety factor σ < 1, we obtain an
optimal step size

τopt = 3

√

σTOLt

[ε]
τ, (7)

that is used for the next step or recomputing the current time step, respec-
tively.
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Tolerance. The tolerance TOL is usually assumed to be an accuracy re-
quirement provided by the user. As will be worked out in Section 2, the
spatial discretization by a particle method leads to an additional tolerance
requirement.

3 Adaptive Phase Space Discretization

For approximating the distributions to be propagated, we use a linear com-
bination

ρ(t) =

N∑

n=1

Bn(t)g(xn(t), Gn(t)) (8)

of particles g positioned at points xn(t) in space. Additionally, the shape of
the particles is allowed to depend on a set of shape parameters Gn(t).

For the CLE, we use Gaussian phase space packets (GPP’s) defined as

g(R̄, P̄ , Ḡ)(R,P ) := exp

[

−

(
R− R̄
P − P̄

)T

Ḡ

(
R− R̄
P − P̄

)]

, (9)

where the shape matrix Ḡ ∈ R4n2

dim is symmetric positive definite.
In order to propagate an initial Wigner density by means of the particle

discretization given above, two tasks have to be tackled. First an initial GPP
approximation of a given Wigner density has to be computed, and second,
in every time step a new GPP approximation to the exact propagation of
the current GPP approximation must be found.

3.1 Initial GPP approximation

A method to approximate a given Wigner density ρ0 by a small set of GPP’s
has been recently proposed by Horenko, Schmidt, and Schütte [10].
Since similar techniques are developed in Section 3.2 for spatial adaptivity,
we sketch the method here for convenience.

The aim is to achieve a sufficiently small spatial approximation error
∥
∥
∥ρ0 − ρ(0)

∥
∥
∥
L1

≤ TOLx

subject to Gn symmetric positive definite with some number N of GPP’s
to be determined as small as possible. In order to make the task computa-
tionally tractable, we substitute the L1-norm by a discrete sampling at KN

points and simplify the positive definiteness constraint to fixing Gn = λI
with some λ > 0, obtaining the requirement

‖ρ0 − ρ(0)‖{Rk ,Pk} :=

KN∑

k=1

ωk

∣
∣
∣ρ0(Rk, Pk)− ρ(Rk, Pk, 0)

∣
∣
∣

2

≤ TOLx. (10)

4



For (10) to be sufficiently accurate we have to select at least as many
sample points as the representation (8) has degrees of freedom, and hence
require KN ≥ N(1 + 2ndim). For fixed N , the approximation error can be
minimized by a Gauss-Newton method. Initial centers (R̄n, P̄n) of the GPP’s
and sampling points (Rk, Pk) are obtained by a Monte-Carlo sampling of
the regions of phase-space where the absolute value of the quasi–probability
density ρ0 exceeds a certain threshold. For simplicity, we include the GPP’s
centers into the set of sampling points by setting (Rk, Pk) = (R̄n, P̄n) for
1 ≤ k ≤ N and generate at least 2Nndim more sampling points by the same
Monte-Carlo process. In concordance with the probabilistic density of the
sampling points, the weights have to be chosen as

ωk :=
‖ρ0‖L1

KNρ0(Rk, Pk)
.

If the local optimum computed by the Gauss-Newton method does not
satisfy (10), N is increased and additional GPP’s are created by Monte-
Carlo sampling. The process is then repeated until the accuracy requirement
is fulfilled.

Simplifications. Several computational simplifications are possible and
will be convered in more detail in a subsequent paper [11]. First we may fix
the GPP’s’ centers (R̄n, P̄n) and perform the minimization with respect to
the amplitudes Bn only, which reduces the nonlinear approximation problem
to a linear least squares problem:

‖SB −W‖2 = min, (11)

where Skn = g(R̄n, P̄n, Ḡn)(Rk, Pk) and Wk = ρ(Rk, Pk, 0). In this case, we
require only KN ≥ N sample points. It can be expected, however, that a
larger number N of GPP’s is necessary to satisfy (10).

In general, the system matrix S is dense due to the global support of
the GPP’s. Nevertheless, most of the entries will be very small due to the
GPP’s exponential decay. Dynamically sparsing the system matrix therefore
enables the application of efficient sparse matrix algorithms to solve the least
squares problem.

It is noted that the linear problem (11) may become numerically ill–
conditioned for a large number of wide GPP’s, whenever the function to
be approximated significantly oscillates on length scales comparable to the
width of the GPP’s. However, this does not pose a severe problem since (a)
it can be monitored by computing the condition number of matrix S, and
(b) we can avoid the problem by reducing the widths of the GPP’s.

ChoosingKN = N and the sample points (Ri, Pi) identical to the centers
(R̄i, P̄i), the least squares problem is simplified to a system of equations. The
approximation quality, however, may be less robust.
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3.2 Propagation of GPP approximations

Inexact propagation. The propagation of the Wigner density ρ by the
implicit trapezoidal rule (3) poses an approximation problem similar to that
encountered in Section 3.1, namely to find a new density ρ(t + τ) repre-
sentable by GPP’s such that

∥
∥
∥

(

I −
τ

2
Lc

)

ρ(t+ τ)−
(

I +
τ

2
Lc

)

ρ(t)
∥
∥
∥
L1

≤ TOLxτ
3. (12)

The factor τ 3 is necessary in order not to destroy the second order conver-
gence of the trapezoidal rule.

By sampling at K points (Ri, Pi), we again reduce (12) to a computa-
tionally tractable nonlinear least squares problem

∥
∥
∥

(

I −
τ

2
Lc

)

ρ(t+ τ)−
(

I +
τ

2
Lc

)

ρ(t)
∥
∥
∥
{Rk,Pk}

≤ TOLxτ
3 (13)

with KN non-linear equations and N(1 + 2ndim) unknowns Bn, R̄n, and P̄n

defining ρ(t+ τ).
Fortunately, the costly Monte-Carlo generation of the centers (R̄n, P̄n)

can be omitted here due to the continuity of the evolution: Since for suffi-
ciently small time steps τ the new density ρ(t+ τ) is close to the old one, we
can expect that the Gauss-Newton method starting at the old density ρ(t)
converges quickly towards the closest local minimum of the approximation
error (13).

For larger stepsizes τ , the Gauss-Newton method may converge slowly
and possibly towards a different local minimum. For efficiency and robust-
ness reasons, we therefore suggest to limit the stepsize τ such that the Gauss-
Newton method satisfies the accuracy requirement (13) after the first step.

Another question which has to be addressed is the choice of sample
points (Ri, Pi), i = 1, . . . ,KN . For the least squares problem (13) not to be
underdetermined, we require at least KN ≥ N(1 + 2ndim) sample points,
preferably distributed in accordance with the quasi-probability density ρ(t).
Since performing a Monte-Carlo sampling at every time step is prohibitively
expensive, we suggest to select the sampling points from the initial GPP
approximation outlined in Section 3.1 for the first time step at t = 0. For
subsequent steps, we suggest to take again the centers of the GPP’s, i.e.
(Ri(t+ τ), Pi(t+ τ)) = (R̄i(t+ τ), P̄i(t+ τ)), i = 1, . . . , N , and additionally
the remaining sampling points from the previous step propagated in time as
Dirac pulses by the CLE, i.e. (Ri(t+τ), Pi(t+τ)) = Φτ (Ri(t), Pi(t)), i = N+
1, . . . ,KN . Due to their nonoverlapping support, such Dirac pulses can be
propagated efficiently and independently of each other by the Hamiltonian
dynamics (16)–(17) below (see [10]).

Spatial adaptivity. It may happen that the number N of GPP’s is too
small, such that the accuracy requirement (13) cannot be satisfied. In this
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case, as few as possible additionall GPP’s have to be created in order to
reduce the approximation error sufficiently. Fortunately, the local residuals

εk =
∣
∣
∣

(

I −
τ

2
L

)

ρ(Rk, Pk, t+ τ)−
(

I +
τ

2
L

)

ρ(Rk, Pk, t)
∣
∣
∣ (14)

provide a useful local error indicator suitable for extending the particle set.
The following scheme is intended to insert the new particles at positions in
phase-space, where the approximation error is largest, and hence to improve
the approximation at a small cost.

Assume the sample points k = N + 1, . . . ,KN are sorted ascendingly by
their local residual ωiεk. Let j > N be maximal such that

j
∑

k=1

ωiεi ≤ TOLxτ
3 (15)

holds, or j = N if (15) cannot be satisfied. We then suggest to substitute (or
”upgrade”) the sample points j + 1, . . . ,KN by newly created GPP’s with
centers (Rk, Pk), k = j + 1, . . . ,KN , amplitude zero, and shape matrix λI,
and create at least 2ndim(KN − j) new sample points in the vicinity of the
newly created GPP’s by some Monte-Carlo method. N and KN should be
increased accordingly, and the sampling points should be sorted such that
again the first N correspond to the centers of the GPP’s.

With the enlarged particle set at hand, the Gauss-Newton step is per-
formed again in order to meet the requirement (13). If necessary, the adap-
tive refinement is repeated until finally (13) is met.

Asymptotic conservation properties. The adaptive refinement scheme
described above recovers the conservation of energy and volume featured by
the exact trapezoidal rule (3) asymptotically for TOLx → 0. Assuming the
potential V to be bounded, differences of the energy

〈E, ρ〉 =

∫
(
V (R) +

1

2
PM−1P T

)
ρ dPdR

is a continious linear functional due to the exponential decay of the GPP’s
representing ρ.

Since the exact trapezoidal rule conserves quadratic first integrals, the
energy error of the approximate solution ρ(t + τ) satisfying (13) can be
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bounded by

εE(t) := |〈E, ρ(t+ τ)− Φτρ(t)〉|

≤ |〈E, ρ(t + τ)− ρ̄(t+ τ)〉|+ |〈E, ρ̄(t+ τ)− Φτρ(t)〉|
︸ ︷︷ ︸

=0≤ ‖E‖ ‖ρ(t + τ)− ρ̄(t+ τ)‖L1

≤ ‖E‖
∥
∥
(
I −

τ

2
L

)−1∥∥
∥
∥
(
I −

τ

2
L

)
(ρ(t+ τ)− ρ̄(t+ τ))

∥
∥
L1

≤ ‖E‖
∥
∥
(
I −

τ

2
L

)
ρ(t+ τ)−

(
I +

τ

2
L

)
ρ(t))

∥
∥
L1

≤ ‖E‖TOLxτ
3.

Here we have used that the differential operator L has an unbounded, purely
imaginary spectrum, which implies ‖(I − τ

2
L)−1‖ = 1.

Analogously, asymptotic conservation of volume can be shown, or, for
different evolutions, conservation of arbitrary quadratic first integrals.

Note that this result does not guarantee long term conservation of energy,
as has been established for the method of lines, i.e. semidiscretization in
space, by Hairer, Lubich, and Wanner et al. [12].

Explicit Predictor. The simplest choice of the starting point for the
Gauss-Newton method is of course the current GPP collection ρ(t). However,
since ρ(t+ τ) − ρ(t) = O(τ), the time step τ is limited by the requirement
that the initial guess should be sufficiently good such that the local Gauss-
Newton iteration converges quickly and reliably to the nearest local solution
— see Figure 4.

The employment of a cheaply computable predictor providing a better
initial guess can be expected to relax this additional restriction considerably,
and hence can lead to larger time steps.

For the CLE considered here we suggest to use an explicit symplectic
modified Leap-Frog propagator Ψ recently proposed by Horenko, Schmidt,
and Schütte [10] as predictor.

In the simple case of a quadratic (or harmonic) potential, the Gauss-
particles in the ensemble can be propagated independently with evolution
equations for the parameters Rn, Pn, and Gn derived from (2):

∂tRn = M−1Pn (16)

∂tPn = −∇R V (Rn) (17)

∂tGn = C(Rn)Gn + GnC
T (Rn), (18)

where

C(Rn) =

(
0 ∇2

R(Rn)
−M−1 0

)

.
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For sufficiently small GPP’s, general potentials are locally almost quadratic,
such that the predictor solution Ψτρ(t) can be expected to provide a good
approximation of the exact solution Φτρ(t).

Having the predictor solution Ψτρ(t) at hand, it can also be used as com-
parison evolution for the error estimator (5) of the time discretization. As
a computational simplification we suggest to use the following modification
of (5):

[ε(t+ τ)] =
∥
∥
∥

(

I −
τ

2
L

)

(ρ̄(t+ τ)−Ψτρ(t))
∥
∥
∥
{Rk ,Pk}

=
∥
∥
∥

(

I −
τ

2
L

)

Ψτρ(t)−
(

I +
τ

2
L

)

ρ(t)
∥
∥
∥
{Rk,Pk}

, (19)

which is just the initial Gauss-Newton residual.

Algorithm 1.

Initial phase-space distribution approximation (GPP decomposition):

N := TOL
−1/2
x

direct Monte-Carlo generation of (R̄n, P̄n), n = 1, . . . , N
KN := 2Nndim

direct Monte-Carlo generation of (Rk, Pk), k = 1, . . . ,KN

solve nonlinear approximation problem (10) for Bn, R̄n, P̄n

while ‖ρ0 −
∑N

n=1Bng(R̄n, P̄n, λI)‖{Rk ,Pk} > TOLx:

N := 1.1N
KN := 2Nndim

direct Monte-Carlo generation of new GPP’s and sample points
solve nonlinear approximation problem (10) for Bn, R̄n, P̄n

Inexact propagation of GPP distribution:
while t < T :

compute predictor Ψτρ(t)
compute error estimator [ε] from (19)
solve nonlinear approximation problem (13) for Bn, R̄n, P̄n

while (13) not satisfied:
N := Kn − j with j from (15)
KN := 2Nndim

local generation of new GPP’s and sample points
solve nonlinear approximation problem (13) for Bn, R̄n, P̄n

t := t+ τ

τ := 3
√

σTOLt/[ε] τ

4 Numerical Example

As an example for the application of the proposed dynamical scheme we
consider a one-dimensional model of the Gauss-shaped density initially cen-
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tered at 0.5 a.u. of length with width parameter 0.5 and momentum 30 a.u.
in a double well potential (Fig. 1). This model can for example describe the
proton-transfer process in proteins or liquids.

Three different approaches to the numerical solution of the CLE (2) are
compared: the explicit GPP approach (16-18), the inexact implicit trape-
zoidal rule (3), and a grid-based method [15] (512 × 512 points) where the
partial derivatives are evaluated by means of the fast Fourier transform and
the time propagation is performed by means of a split operator scheme. The
initial Wigner density is decomposed into an ensemble of GPP’s with global
error of 5%. Fig. 2 shows position representations of the density evolution
on a time-span of 7.5 fs as obtained from the grid-based (solid line), ex-
plicit (dotted line), and implicit (crosses) methods. The visible deviation of
the explicit propagator on one hand from the grid and implicit integrators
on the other hand is attributed to the violation of the locally quadratic
approximation in the course of propagation.

Fig. 3 illustrates the influence of particle width on the predictor result
quality in the adaptive algorithm. The difference between the two curves can
again be explained by the violation of the locally quadratic approximation.
The deterioration of the locally quadratic approximation is caused by both
the GPPs getting wider and being propagated into spatial regions with a
higher nonlinearity of the potential’s gradient.

Another numerical example shows the efficiency of the space-adaptive
algorithm (Fig. 4). Difference between predictor-corrector propagation with-
out space-adaptivity (dotted line) and adaptive predictor-corrector propa-
gation illustrates the fact that growing inefficiency of modified Leap-Frog
predictor (explained with spreading of GPP’s during the propagation) can
be compensated by local upgrading of Dirac points to GPPs as explained in
Section 3.2.

Fig. 5 displays the total energy conservation for explicit (10 GPP’s
dashed and 100 GPP’s dotted line) and implicit propagation (10 GPP’s
circles and 100 GPP’s dash-dotted line). Deviations from a constant level
in both cases are due to an insufficient number of particles in the ensemble
when the exact trapezoidal equation (3) is substituted by its approximate
analog (13).

Acknowledgement. The authors would like to thank Ch. Schütte for
helpful suggestions, and W. Huisinga and B. Schmidt for careful reading of
the manuscript.
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Figure 1: Potential energy surface V (R) and initial Wigner density in posi-
tion representation.
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Figure 2: Snapshots of position space representation of the Wigner density
evolution at times 0, 1.875, 3.75, 5.625, 7.5 fs as obtained from the grid-
based (solid line), modified Leap-Frog (dotted line), and adaptive (crosses)
methods.
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Figure 3: Optimal time step of the predictor-corrector scheme without spa-
tial adaptivity as function of time for a decomposition of the initial density
into 10 wide GPP’s (dashed) and 100 narrow GPP’s (dotted).
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Figure 4: Optimal time-step for a propagation without predictor (solid),
with modified Leap-Frog second order predictor (dotted) without phase-
space adaptivity, and fully adaptive predictor-corrector scheme (dashed) for
100 initial GPP’s.
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Figure 5: Total energy conservation by a global allowed energy error
εE = nsteps sup{εE(t)} = 0.18 in the case of modified Leap-Frog for 10
(dashed) and 100 (dotted) initial GPP’s compared with the proposed adap-
tive predictor-corrector scheme for 10 (circles) and 100 (dash-dotted line)
initial GPP’s.
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