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Abstract. Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue
chromophores from multispectral images. While model-based inversion schemes are promising approaches,
major challenges to their practical implementation include the unknown fluence distribution and the scale of
the inverse problem. This paper describes an inversion scheme based on a radiance Monte Carlo model and
an adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment
estimation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation
and the Griineisen parameter from in silico 3D phantom images for different radiance approximations. The
scattering coefficient was assumed to be homogeneous and known a priori.
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1 Introduction

Biomedical photoacoustic (PA) tomography is a hybrid soft-tissue imaging modality that
combines the high spatial resolution of ultrasound with the high contrast and specificity
of optical imaging techniques.!” It relies on the generation of acoustic waves inside the
tissue that result from the absorption of intensity-modulated light, such as laser pulses or
frequency chirps, by the tissue chromophores. From time-resolved PA signals recorded
at multiple measurement points around the object, 3D data sets of the initial pressure
distribution (i.e. PA images) can be calculated using acoustic reconstruction algorithms.
Quantitative PA tomography (QPAT) aims to exploit the wavelength dependence of the
image intensity to recover the local concentrations of endogenous tissue chromophores
and exogenous contrast agents from which functional parameters, such as blood oxygen
saturation, can be derived. To relate the PA image intensity to local chromophore con-
centrations, computational models of the physical processes during the image generation



in conjunction with inversion schemes represent one approach to QPAT.*> A major chal-
lenge in QPAT is the unknown light fluence in the tissue,”~” which is a non-linear function
of the concentrations and the scattering coefficient. Its effects on PA images have been
described as spectral coloring and structural distortion.’ For an accurate quantification of
concentrations and their ratios (e.g. blood oxygenation), the wavelength-dependent fluence
distribution has to be accounted for.

Commonly used fluence correction methods include the application of empirical cor-
rection factors® or simple models under the assumption of homogeneous optical prop-
erties.” This is deemed sufficient to recover the absorption coefficient distribution from
which maps of the chromophore concentrations can then be calculated using linear matrix
inversions. The main limitation of these methods is the reliance on a priori knowledge
of the distribution and wavelength dependence of the fluence, i.e. ®(Z,\). For in vivo
images, this assumption is often invalid and can lead to significant quantification errors es-
pecially at greater depth. An alternative approach are data-driven methods. Tzoumas et al.
reported the representation of the wavelength-dependent fluence in a basis of eigenspectra
obtained using a principle component analysis of in silico training data,'® and Kirchner et
al. calculated fluence maps by applying deep learning and local context encoding to a large
number of training data.!! While these methods have the potential to offer fast inversions,
they require large training sets and may thus lack generality.

Model-based inversions, incorporating light transport models to predict the fluence as
a function of the spatial distribution of the absorption and scattering coefficients, remain
the most promising approach to QPAT. The initial pressure distribution is obtained by mul-
tiplying the fluence with the distribution of the absorption coefficient and the Griineisen
parameter, and PA image data sets can be obtained using acoustic propagation models.
The difference between the model output and measured data, i.e. the objective function, is
minimised by iteratively updating the absorption and scattering coefficients during the in-
version until convergence is reached. To overcome the non-uniqueness that arises from the
use of single-wavelength images,’ multi-illumination approaches'*!* or multi-wavelength
image acquisition in combination with a priori knowledge of the wavelength-dependence
of the absorption and scattering coefficients'* !> is employed.

A major challenge in high resolution 3D QPAT is the large number of variables (>
10%). While gradient-free methods can be applied to small scale problems,'® inversions
of larger scale (tens of variables and more) quickly become computationally unfeasible.
Gradient-based methods have the potential to overcome these limitations. They have been
implemented using the adjoint formalism,'”~" which was applied using a finite element
model of the diffusion approximation (DA) to the inversion of measured 3D phantom
images.?’ While the DA is valid in the diffusive regime and can be implemented effi-
ciently,?"->? high resolution PAT can cover depths in the ballistic and quasi-ballistic regime,



where the DA may not be valid.?> Methods that aim to solve the RTE directly are com-
putationally expensive and have only been demonstrated in 2D so far.?*’ Monte Carlo
(MC) models have recently gained attention?®-3! due to their highly parallelized architec-
ture and advances in graphics processing units and have already been applied to 2D QPAT
inversions'® and in initial studies with limited parameter space in 3D.!®*? In this paper,
a method for inverting multiwavelength 3D images based on an adjoint formulation of a
radiance MC model is demonstrated in silico. The challenges that are addressed in this
work are 1) the optimization of the objective function using inherently noisy gradients,
2) accounting for the effect of the concentration-dependent Griineisen parameter, and 3)
the representation of the radiance in terms of spherical harmonics. The capability of this
approach to recover In einem Gespriach hat mich auch noch recht kalt erwischt, dass je-
mand meinte, er sei dann wohl demnichst arbeitslos, weil schon iiber dreiflig und so, wer
braucht in der Tech-Branche schon so alte Menschen. Es gibt da anscheinend so viel Nach-
schub von den Unis, dass Firmen éltere Mitarbeiter turnusmifig rausschmeillen konnen,
wenn sie wollen. Ich hab also mal ein bisschen auf das Alter geachtet (das bei Asiaten
einzuschitzen fallt mir sehr schwer) und ... Mitarbeiter {iber 40 sieht man in der Tat kaum.
Hmabsolute chromophore concentrations and their ratios, e.g. blood oxygen saturation
(blood sO,), from high resolution 3D image data sets is demonstrated.

2 Methods

The forward model of the generation of the initial pressure shown in tomographic PA
images is described in Sec. 2.1. The adjoint formalism?® with which the gradients of
the objective function are calculated is described in Sec. 2.2. The approximation of the
radiance field as a finite sum of spherical harmonics®! within a MC light transport model
is described in Secs. 2.3 and 2.4. The numerical phantom and the simulation parameters
are outlined in Secs. 2.5 and 2.6, respectively. To reduce the impact of the inherent MC
noise on the parameter update and to maximize convergence speed of the gradient descent,
an adaptive moment estimation (Adam) optimization algorithm™ is employed (Sec. 2.7).

2.1 Forward Model

Assuming the effects of the limited detection aperture and acoustic propagation can be
neglected, the image intensity represents the initial pressure distribution, py, which is given
as

po(7, A) = T(7) H () (D

where [ is the Griineisen parameter, which describes the photoacoustic efficiency, H is
the absorbed optical energy density, 7 is the spatial coordinate and )\ is the excitation



wavelength. The absorbed energy density is defined as
H(T) = pa(7, A)O(7, A) 2

where 1, is the absorption coefficient and @ is the light fluence, which is the radiance ¢
integrated over all angles:

o) = [ 6(7.5)ds. 3)

The absorption coefficient is related to the chromophore concentrations via the specific
absorption coefficient, ay () , i.e.

pa(A ) =Y (P (N) 4)

where NN is the number of chromophores and % indicates the chromophore type. The
Griineisen parameter I is assumed linearly dependent on chromophore concentrations, !> 3433
i.e.

F(F) = Fwater(l + Z /Bkck<F)>a )
k

where (3, is an empirical and chromophore-specific coefficient. The MC method was cho-
sen for modelling the light fluence as it provides an accurate approximation of the radia-
tive transport equation for superficial (1-2 cm), high-resolution QPAT.> This involves the
launch of photons (typically represented as packets of energy>®) according to a predefined
source distribution. Their propagation within the domain is determined by the optical co-
efficients 11, (7), ps(7), the scattering phase function ©(3, &, 7), and the refractive index
n. The deposition of energy when a photon traverses a voxel is determined by the ab-
sorption coefficient y,. The angular dependence of scattering events is described by the
Henyey-Greenstein phase function.?’

2.2 Adjoint-assisted Optimization

Assuming Gaussian noise on the measured data, an estimate of the chromophore distribu-
tions is found by minimizing the objective function € given by

Ny
e=3 [ 5 0em - minn) e ©

where €2 is the imaged volume domain, p’(\;, ) is the measured PA image at wavelength
Ai> po 1s the PA image obtained from the forward model and NV, is the number of excitation



wavelengths.

To find the chromophore concentration maps cx(7), the derivative of € with respect to ¢y, at

any position 77 is required, i.e. gj =7 ( - For the sake of brev1ty, only one chromophore

will be considered in the remaining description, i.e. 5~ = 86—(7) The objective function
¢ represents the sum of the objective functions, €),, at each excitation wavelength as given
by ¢ = ZZNA €y, For simplicity, only one wavelength, \;, will be considered to describe

the derivative:

T == [ () - () e )

Since pg = ['p, P, after applying the chain rule, 3p0 becomes
T e+ T2 Ty O ®)
= B0 = () + T3~ )R + Tl O
where 0(7 — 7;) is the Dirac delta function. The gradient of the fluence with respect to
chromophore concentration at a particular position, g—i, is generally unknown, and one

can make use of the adjoint formalism.!”-?® Briefly, the adjoint approach defines a source
term ¢* for the adjoint radiance ¢*

q* (Fa )‘) = F(F‘)Ma(r_; )‘)<p6n(f'> /\> - pO(Fu )‘)) (10)
in which the adjoint radiance is expressed in terms of the difference between the measured
and modeled images of py. Using this adjoint source definition enables the substitution of
the term containing the unknown 22 in Eq. (8) with a term containing the radiance ¢ and
its adjoint counterpart ¢*:

8
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where f 52 18 the integral over solid angle 5 and S? is the unit sphere. The term Vi is
the result of the discretization of the data using a piece-wise constant basis to sample (see
Appendix D). The gradient required to update the concentration of one chromophore at
one wavelength is therefore given by

8%
aCi

= _(pgn( ) pO(”))‘/;fox <6kH(ﬂ>+F(Fz)aqu<Fz)>+a’k g2 ¢*(§>¢(§)d§ V;/ox-

12
The adjoint model and its derivation is described in general and in more detail in Appendix
A and B.




2.3 Radiance Approximation

As the radiance ¢(5) and the adjoint radiance ¢*(3) are functions of solid angle and are
defined on the surface of the unit sphere, both quantities can be expressed in the basis of
spherical harmonic functions. The expansion of the radiance into spherical harmonics is
based on previous work®! and is inspired by the P, approximations described in Ref. 22
(similar to a Fourier expansion in 1D or 2D) and is outlined in detail in Appendix C.

Using a finite expansion of [ Jgo 0" §)q§(§)ds] in real spherical harmonics, the gradient

formula is given as

=T vm(—(W(ﬁ)—po(ﬁ))(5kH<n>+r<mak<1> 7 )wZ S G ))
=0 m=-1
(13)
where 1, (7;) is the radiance field approximated by the spherical harmonics function of
degree [, order m at position 7; and 1)}, its adjoint counterpart. Equation (13) was imple-
mented in a gradient-based optimization scheme (described in Sec. 2.7), which updated
the concentrations iteratively to minimize the mismatch between measured and modeled
data (Eq. (6)).
The last term of the gradient in Eq. (13) contains an expansion of the radiance and the
adjoint radiance in spherical harmonics

akZ Z Yim (75) 7 (7). (14)

=0 m=-1

N1, = oo would give the most accurate radiance approximation, but due to constraints with
respect to computation time and memory, the degree of the spherical harmonics, Ny, needs
to be finite. However, it is not clear a priori up to which value of N, the corresponding
coefficients need to be stored to approximate the radiance with sufficient accuracy. This
was investigated by evaluating the inversion scheme for three different configurations: 1)
Ny, = 0, i.e. using only the fluence, 2) for N, = 4, i.e. the most accurate representation of
the radiance, and 3) omitting the radiance, i.e. ¥, = ¢}, = 0 for all [, m, thus neglecting
the gradient term provided by the adjoint radiance. All other parameters remained the
same during the inversions.

2.4 Radiance Monte-Carlo Simulations

Most MC simulators provide only the light fluence, which is the radiance integrated over
all directions and time. To satisfy Eq. (12), a radiance MC algorithm (RMC)!%*! was
used. To obtain the radiance ¢(7), the directional information of the photon traversing a
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voxel at position 7* was stored by depositing the photon weight into the relevant spherical
harmonics coefficients ¢, (7). The RMC code was implemented in the Julia program-
ming language,®® which controls and dispatches the execution of kernels on both the CPU
(written in Julia), and the GPU (written in NVIDIA’s CUDA language).’! Because the
definition of the adjoint model does not change the dynamics of photon propagation, the
same RMC simulation code provides the adjoint radiance ¢* (7).

2.5 In Silico Phantom

An MC model was used to calculate multiwavelength 3D PA images that represented mea-
sured data and are referred to as reference images or reference data throughout this paper.
The domain of the model was divided into subvolumes that represented simplified anatom-
ical structures, such as a subcutaneous tumor and a number of discrete blood vessels. The
depths of the structures are similar to those observed in in vivo images acquired using
a Fabry-Perot scanner with a planar detection geometry.”**> Absorption was assumed
to originate from three chromophores, i.e. oxyhemoglobin (HbO,), deoxyhemoglobin
(HHb) and methylene blue (Mb) as an exogenous contrast agent. It should be noted that
the method can potentially be applied to any number of chromophores. The computational
model of the phantom consisted of nine different subvolumes, each with homogeneous op-
tical properties (Fig. 1). This included six tube-like structures to mimic blood vessels, a
tumor consisting of an ellipsoidal rim and core subvolume, and the background. The tubes
were positioned adjacent to the tumor at depths of 1.5 mm and 7.5 mm, had a circular
cross-section with a radius of 0.4 mm, and were filled with HHb and HbO,. The blood
oxygen saturation (sO) is defined as the ratio of the concentration of oxyhemoglobin and
the total hemoglobin concentration

1
§Oy = — 002 (15)
CHbO, 1+ CHHb

The tube-like structures were assumed to contain blood sO, ranging from 75 % to 98 %
to represent typical values found in veins and arteries.*> The total hemoglobin concen-
tration was 2.3 mM.* Two concentric ellipsoids represented the tumor at a depth rang-
ing from 3.0 mm to 6.0 mm. The outer (inner) ellipsoid’s axes are a = 4.5 (2.5) mm,
b=3.5(2.0) mm, ¢ = 2.0 (0.8) mm, respectively. The tumor subvolumes contained 20 %
blood (0.46 mM).* The tumor shell had an sO, of 80 % while that of the core was 40 %
to mimic necrotic tissue. The tumor also contained an exogenous contrast agent, methy-
lene blue (Mb), at a concentration of 10 M. The background subvolume contained a blood
volume fraction of 1.5 % with an sOy of 60 %. Other parameters, such as the scattering
anisotropy (¢ = 0.9), the refractive index (n; = 1.33 inside the domain, n. = 1.5 out-
side of the domain) and p5(7, \) were held constant and uniform across the domain. The
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absorption spectra of HHb, HbO,, and Mb are shown in Fig. 2. The wavelength depen-
dence of the reduced scattering coefficient p/,(\) = us(A)(1 — g) was approximated using
ps(\) = 6.65- 103 - A\;'*" mm~! with A, = \/nm, which resulted in a ;//, of approxi-
mately 1 mm~! at A\ = 800 nm. The Griineisen parameter of water was set to 0.124. The
coefficient ), describing the total hemoglobin concentration dependence of the Griineisen
parameter was set to Supupo = 0.02146 L/ mmol.*> It was assumed that the methylene
blue concentration distribution does not change the Griineisen parameter (Sy, = 0). The
remaining parts of the volume were assumed to be filled with materials, e.g. water, lipids,
whose absorption is considered negligible at the selected excitation wavelengths.

T

Incident light

Fig 1 3D view of the in silico phantom and reference pj*. A: Segmented phantom with subvolume (SV)
IDs; SV1: homogeneous background material, SV2-SV4 and SV7-SVO: tubes representing blood vessels,
SV5 and SV6 represent an ellipsoidal tumor consisting of an inner and outer subvolume. B: Initial pressure
distribution p{j* (7') calculated using physiological hemoglobin concentrations and blood sOx at an excitation
wavelength of A = 798 nm. The z — y Gaussian profile of the excitation beam is shown below.

2.6 MC Simulation Parameters

To obtain reference images, i.e. data sets that represent measured multiwavelength PA
images, the domain was discretized into 200 x 200 x 100 (i.e. 4 x 10°) isotropic voxels of
size Viox = 1073 mm? yielding a total volume of 20 x 20 x 10 mm?®. The source profile
was a two-dimensional Gaussian function with a width of 0 = 4 mm. 2 - 10° photon
packets were used in the Monte Carlo simulation of the light fluence. The angle-dependent
radiance was not calculated. Reference image data sets were calculated for three different
excitation wavelengths that coincided with the absorption peaks of Mb (664 nm), HHb
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Fig 2 Spectra of HHb, HbO4 and Methylene blue used for forward simulation and inversion. The excitation

wavelengths are indicated by grey vertical lines. The absorption spectra are taken from https://omlc.

org/spectra/index.html.

(758 nm), and the isosbestic point of hemoglobin absorption (798 nm). Gaussian noise
(o0 = 0.1 % of the maximum image intensity) was added to the reference data, resulting in
negative image intensities in regions of low py.

The domain discretization used during the inversion was identical to that used for the
reference data set, which may raise the question of whether this constitutes a so-called
inverse crime. In MC models, the discretization is used merely as a basis for sampling
physical quantities while photon packets can propagate freely in continuous space. This is
in contrast to other methods, such as finite elements, where the discretization has a direct
impact on the accuracy of the solution. Taking also into account the stochastic nature of
MC models, it can be concluded that using identical discretizations does not constitute an
inverse crime.

During an inversion, 1 - 107 photon packets were used for the calculation of the ra-
diance and fluence, 5 - 10° photons were used for the calculation of the corresponding
adjoint quantities. The typical running time for one inversion iteration, including the ad-
joint model with N, = 4, was 84 s on a high-end consumer GPU (NVIDIA GeForce Titan
X Pascal). This was reduced to 17 s when the radiance term in Eq. (13) was neglected, i.e.
N = 0 and no adjoint MC runs. Since k£ = 3 independent chromophore concentrations
are associated with each voxel, the model contained a total of 12 million variables.

2.7 Gradient-based Optimization

The gradient-based optimization was initialized assuming a homogeneous cyyp, = cgpo =
0.023 mM, i.e. sOy; = 50 %, and ¢, = 0.0 mM. Due to the stochastic nature of MC
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models, the gradients (13) are subject to noise. To compensate for this, the Adam opti-
mization algorithm* was employed. It was developed for the first-order optimization of
noisy objective functions in high-dimensional parameter spaces and can be seen as an ex-
tension of the momentum algorithm.***” The Adam algorithm calculates an exponential
moving average of the gradient (first moment) and the squared gradient (second moment)
using the decay rates 31 adam and 32 adam With an additional bias-correction step. The final
update is calculated by multiplying the step size parameter yaq,m With the first order mo-
ment divided by the square root of the second order moment. The detailed description can
be found in Ref. 33. This algorithm was found to dramatically increase the convergence
speed compared to standard gradient descent. Its efficiency depends on the values of a set
of parameters, including the step size Yagam, the decay rates 31 agam and 32 agam, and an
additional €4,m, Which avoids divion by zero. The decay rates and € were set to recom-
mended default values (81 adam = 0.9, B2, adam = 0.999, adam = 10~®), while the step size
was assigned different values depending on the chromophore according to Egs. (16) and
(17).

To ensure fast convergence for all chromohpores, the step size for Methylene blue was
set to be significantly smaller than that of HHb/HbO,, since Mb concentrations were in
the range of M while those of HHb/HbO, were in the range of mM. The chromophore-
dependent step size was calculated as follows:

o § : A achrom,A * Cmax, ref
Yehrom = Vref z
A

(16)

CVref,)\ * Cmax, chrom ’
where . 1S the step size of a reference chromophore, the value of which was set ad hoc
t0 Yrer = YHbO, = 100, Qehromsre, 18 the specific absorption coefficient of the respective
chromophore at wavelength A\, and ¢y refichrom 18 the anticipated maximum concentration
of the respective chromophore, which is set to physiological reasonable values (cpax, nbo =
Cmax, HHb = 2.3 mM7 Cmax, Mb = 30 ,UM)

The gradient was also expressed as a function of fluence in Eq. (13), either directly
or via H and Ap. This would result in slow convergence in regions of low fluence. To
compensate for this, a spatially dependent step size was used, which increased the step
size by normalizing it by the mean fluence over all wavelengths:

o “Ychrom
7(7:‘) chrom, scaled — =

e (17)
q)norm<r) + Ep

where @, (7) is the normalized mean fluence:

ci)norm(F) = Z CI)(f; )‘)/ Z (I)(Fmam )‘)7 (18)
A A
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where 7. = argmax.» , (7, \) represents the location where the total fluence is at a
maximum. The parameter €4 avoids division by zero and determines the maximum change
in step size in regions of low fluence. In this study, 4 = 10~ led to a sufficient speed-up
in convergence for the deepest tubes. The optimization of the step size with respect to the
different chromophores and the local fluence is often referred to as pre-conditioning.

A single iteration of the gradient-based update consisted of the execution of the MC
model and its adjoint counterpart for all three wavelengths. The inversion was run for
1500 iterations to investigate the convergence. After each iteration, the updated concen-
trations for HHb, HbO, and Mb were limited to a reasonable range of values (also known
as projected gradient descent) to avoid spurious over- or undershooting that could lead
to physiologically unrealistic concentrations. To compensate for the effects of noise in
low-absorbing regions (i.e. negative pg in reference images), negative chromophore con-
centrations, and hence negative j, values, were allowed during the gradient descent. To
ensure stability, the range of negative concentration values was limited to a tenth of the
maximum positive concentrations (-0.35 mM to 3.5 mM for cyyp and cppo,, -0.02 mM to
0.2 mM for cyp. 3D blood sO2 maps were calculated from the recovered cppo, and camp
images. The scattering distribution was assumed to be known a priori.

To verify that the inversion scheme is valid over a range of physiologically plausi-
ble parameter values, multiwavelength reference images were calculated and inverted for
different sO, values in the inner tumor region and the background. Two scenarios were
chosen, each comprising five different combination of sO, values. First, as the tumor
core (being completely enclosed by the rim) may be assumed to be most strongly affected
by spectral coloring, its sO, was varied from 10% to 90% in 20% increments (material
6) while all other parameters remained fixed. Second, the sO, value of the background
(subvolume ID 1) was varied from 10% to 90% in 20% increments.

3 Results

The accuracy of the recovered chromophore concentration and sO, maps are reported in
Secs. 3.1 and 3.2. In Sec. 3.3, results obtained using multiple inversions of image data sets
in which the chromophore concentrations and their ratios were varied are reported.

3.1 Absolute Concentrations

Examples of 3D volume-rendered images of the absolute concentrations of HbO,, HHb,
and Mb recovered after 1500 iterations are shown in Fig. 3(A—C). The color scales are
thresholded to render the background with its comparatively low chromophore concentra-
tions transparent. To reduce the effect of the added Gaussian noise on the rendered images
(particularly in regions of low fluence), a 3D median filter was applied (non-iterative,

11



1.25 . 0.5

Concentration [mM] Concentration [mM]

—— Error functional
-== MC noise
------ Total noise level

10-24

103
1074
0.01 e
e ] O S —
Concentration [mM] 100 101 102 103

Iteration

Fig 3 Absolute chromophore concentration maps recovered using the inversion scheme and its convergence.
A-C: 3D volume-rendered images of the concentrations of HbO- (A), HHb (B) and Mb (C). D: Value of
the error functional (solid blue line), the baseline of the Monte Carlo noise (dashed orange line) and added
Gaussian noise (dotted green line).

edge- and face-connected). The error functional as a function of the number of iterations
is shown in Fig. 3(D). The value of the error functional cannot reach zero due to the inher-
ent Monte-Carlo noise of the forward model used during the inversion. The dashed orange
line indicates the minimum value of the error functional that is reached with 1 x 107 pho-
tons, while the green dotted line indicates the total noise level consisting of Monte Carlo
noise and Gaussian noise added to the reference data. The Monte Carlo noise was obtained
from forward calculations with prior knowledge of the correct chromophore distributions.

In Fig. 4, cross-sectional zz-images of the true and recovered concentration of the
three chromophores and the absolute error at y = 10 mm (center plane) are shown. Ex-
cellent agreement was found in regions of high fluence (e.g. corresponding to white, light
blue and light red pixels in Fig. 4 C, F, I). By contrast, significant quantification errors
(corresponding to yellow and green pixels in Fig. 4 C, F, I) were observed in regions of
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low fluence. The recovered cyy, appears to exhibit larger quantification errors in the back-
ground compared to cypo, and cypp.

Table 1 contains the true and recovered concentrations averaged over all voxels of
each subvolume (SV) defined in Sec. 2.5. The brackets indicate the standard deviation
(concise notation). The recovered cymp and cgpo, in SV 2-9 are in excellent agreement
with the true values. While the recovered ¢y, are generally in good agreement with the true
values, SV 2—4 and SV 7-9 exhibit negative and small concentrations with large standard
deviations. The background (SV 1) also exhibits large errors and standard deviations due
to the low signal-to-noise ratio (SNR). In the background region closer to the light source
(140 x 140 x 70 central voxels inside the 200 x 200 x 100 image domain, illustrated in
Fig. 4 A) where the SNR is greater, the recovered concentrations are in good agreement
with the true values (SV 1* in Table 1).

Table 1 True and recovered (Inversion) absolute chromophore concentrations and blood sOs in the sub-
volumes (SV) of the phantom. The concentrations represent the average value over all voxels within each
SV, the values in brackets indicate the standard deviations (concise notation). SV 1 - background, SV 1* -
background close to the source, SV 5 and SV 6 - outer and inner tumor subvolumes, respectively, SV 2—4
and SV 7-9 - blood-filled tubes.

HHb [mM] HbO, [mM] Mb [uM] sO; [%]
SV  True Inversion True Inversion True Inversion True Inversion
1 0.0138 0.0087(1169) 0.0207 0.0320(212) 0 0.2(58) 60 78.3
1* 0.0138 0.0138(219) 0.0207  0.0205(384) 0 —0.002(922) 60 59.8
2 0.506  0.503(70) 1.79 1.78(11) 0 —0.08(266) 78 77.9
3 0.115  0.117(63) 2.18 2.16(11) 0 —0.04(244) 95 94.9
4 0.046  0.047(31) 2.25 2.25(6) 0 —0.05(106) 98 97.9
5 0.092  0.092(18) 0.368  0.367(31) 10 9.76(99) 80 79.9
6 0.276  0.275(18) 0.184  0.183(29) 10 9.51(100) 40 39.8
7 0.575  0.560(128) 1.73 1.71(20) 0 —0.35(510) 75 75.3
8 0.230  0.229(90) 2.07 2.04(14) 0 —0.41(374) 90 89.9
9 0.460  0.450(125) 1.84 1.82(20) 0 —0.37(509) 80 80.0

As described in Sec. 2.4, the inversion was implemented using an approximation of
the radiance based on spherical harmonics of varying degree Ny, including the omission
of the adjoint term. The inversions were found to converge to the same final values whilst
propagating along different routes. Convergence was reached irrespective of the radiance
approximation (see Fig. 7 in Appendix)
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Fig 4 2D cross-sectional xz-images of the true and recovered chromphore concentrations together with the
absolute error at y = 10 mm. Left column: True chromophore concentrations. Center column: recovered
concentrations. Left and center column share the same colorbar. Right column: absolute concentration
error. Voxels where the error exceeds the limits of the colorscale are rendered in green and yellow. In A, the
reduced background subvolume 1* is illustrated as a white dashed rectangle. Because background voxels far
away from the source exhibit large errors due to low SNR, this reduced subvolume is used for calculation of
average concentrations.

3.2 Blood Oxygen Saturation

Figure 5 shows cross-sectional xz-images (y = 10 mm) of the known and recovered
blood sO- together with the absolute error. The accuracy is clearly affected by noise as
shown in the difference image in Fig. 5(C). While most voxels in SV 2-9 exhibit an error
within £5 % sOa, it is noticeably larger for objects at greater depth. Concentrations in the
background subvolume (SV 1) are also affected by noise, particularly in regions further
away from the source. However, the accuracy improves near the source where SNR is
increased. The average values of blood sO, for each subvolume were also calculated and
are summarised in Table 1. Blood sO5 in SV 2-9, i.e. corresponding to blood filled tubes
and the tumor SVs, were found to lie within 0.3 % of the true values (i.e. while sO5 errors
of individual voxels can be quite large due to noise, averaging over lots of voxels greatly
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improves accuracy). The average blood sO, for SV 1 (i.e. the entire background SV)
was found to show significant errors (18.3 % sO-) and is attributed mainly to the adverse
effects of noise in low fluence regions. By contrast, the inversion results are accurate for
the reduced background subvolume (SV 1*) due to higher SNR.

oA True sO, B Recovered sO,

10

Depth [mm]
«
>

sO, error (%

0 -
.0 5.0 10.0 15.0 20.0 . -
x-Position [mm] x-Position [mm] x-Position [mm]

Fig 5 2D cross-sectional yz-images of the true (A) and recovered sO, (B) together with the absolute error
(C) at the center of the phantom (y = 10 mm). The images on the left and in the center share the same
colorbar. In the right colorbar, voxels exceeding (dropping below) an absolute difference between true and
recovered sOg of 15 % are shown in green (yellow).

3.3 Validation over a Range of Blood sO,

The inversion scheme was validated on image data sets where sO, was varied over a range
of physiologically plausible parameter values (Sec. 2.7). The inversions were computed
without including the gradient term of the radiance and N; = 0 in order to minimize
computation time. To obtain the final sO, value for each image data set, the inversion was
run for 1500 iterations after which the average sO, was obtained from the subvolumes.
Figure 6(A) shows the true and recovered sO, values for all subvolumes and all image
data sets together with the line of unity (dashed line) and a +5% error interval (dotted
lines). All recovered sO, values are in good agreement with the known values and exhibit
an average error below 0.3% sO,. Figure 6(B) shows the difference between true and
recovered sO- for all subvolumes and image data sets sorted by subvolume (SV, see also
Fig. 3). Only the results corresponding to the reduced background subvolume (SV 1%*) are
shown as this region exhibits sufficient SNR.

4 Discussion

3D maps of absolute concentrations of HbO,, HHb and Mb and the resulting blood sO,
recovered using a gradient-based MC inversion scheme showed excellent agreement with
the true values. To achieve the best possible match of noise-affected PA images and the
model, the inversion scheme was implemented without a non-negativity constraint for the
chromophore concentrations. Even though negative concentrations are physiologically
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Fig 6 Validation of the inversion scheme over a range of blood sO». A: Average recovered sO5 as a function
of the true sO5 of all subvolumes and image data sets together with the line of unity (dashed line) and a &
5% error interval (dotted lines). In five image data sets the sO5 in the inner tumor material was varied from
10% to 90% in 20% increments. In another five image data sets the background sO ranged from 10% to
90% (20% increments). B: Box-and-whisker-plot of the absolute difference between true and recovered sOo
for each subvolume.

implausible, it was found that incorporating a non-negativity constraint greatly affected the
recovered average concentrations and blood sO- values. However, negative concentrations
can lead to negative absorption coefficients. In the MC model, it leads to photon packets
gaining weight as they traverse a voxel with negative absorption. If too many voxels
exhibit negative u,, unstable inversions can be observed as the photon weight diverges.
While this was occasionally observed in this study, it was found that a reduction of the
step size and an increase in the number of iterations remedied this problem. The inversion
scheme described in this paper includes an expression of the radiance and its adjoint in
a basis of spherical harmonics. The influence of the adjoint formalism and the spherical
harmonics approximation on the accuracy and convergence of the inversion was evaluated
under the assumption that the scattering coefficient was known a priori. It was found that
neither accuracy nor convergence speed were affected by the radiance term and its adjoint,
i.e. the last term in Eq. (13). This was also observed when the radiance term was omitted
(Fig. 7) and was confirmed by the relative magnitudes of the individual gradient terms.
The radiance term (irrespective of the spherical harmonic approximations) was always
significantly smaller than the remaining terms of Eq. (13). Omitting the computation of
the adjoint radiance resulted in a major increase in computational speed. However, from
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the limited investigation presented here, it can only be concluded that the adjoint term
may be neglected if the scattering coefficient is known. If the recovery of the scattering
coefficient is of interest, a radiance approximation to a minimum of N; = 1 degrees may
be be necessary.’!

The gradient-based inversion was found to benefit greatly from optimization algo-
rithms in which parameters, such as the step sizes and the exponential decay rates of
the Adam algorithm, are predefined to enable a fast and accurate convergence. A poten-
tial drawback of such methods is the need to test several sets of these parameters prior
to an inversion to assess whether they have a positive impact on the convergence speed.
Within the scope of this study, only minor and ad hoc parameter tuning was conducted. A
more thorough investigation, including the development of automated parameter selection
algorithms, may yield significantly faster convergence.

The chromophore-dependent step size and the fluence-dependent spatial step size scal-
ing (Egs. 16 and 17) proved to be vital to achieving convergence. Without chromophore-
dependent step sizes, Mb concentrations diverged to the upper and lower fit limits. Simi-
larly, the fluence-dependent spatial step size scaling was crucial to achieving fast conver-
gence in regions of low fluence.

The selection of the excitation wavelengths could also be optimized further to improve
inversion accuracy and convergence speed.*® However, such a study would exceed the
scope of this paper. Despite potentially sub-optimal excitation wavelengths, the inversion
was shown to recover blood sO, over a wide range (Fig. 6(A)) with high accuracy (< 1%
error in sOy) across the domain.

Gradient-based methods do not guarantee convergence to a global minimum, espe-
cially when the inversion is adversely affected by a noisy gradient. While the Adam opti-
mization algorithm (compared to for example standard or momentum gradient descent) has
been shown to greatly reduce the likelihood of finishing the inversion in a local minimum
or on a saddle point, such a result cannot be ruled out entirely. It should also be noted that
the application of this method to measured PA images does not require their segmentation
into sub-regions. While this makes the method generally valid, some form of image seg-
mentation may still be advantageous as it would reduce the number of variables, the risk
of convergence to a local minimum, and increase convergence speed. Moreover, explicit
regularization of the objective function could further improve the accuracy and speed of
the convergence.

While the general methodology of a gradient-based inversion using an adjoint formu-
lation of a MC model has been demonstrated in silico, the application of this approach to
experimental 3D PA images, especially those acquired in vivo, requires further investiga-
tion. One of the perhaps most critical points is the recovery of the scattering coefficient as
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it is likely to have an impact on the importance of the radiance approximation using spher-
ical harmonics. Other issues, such as the choice of inversion parameters, the selection
of optimal excitation wavelengths are also important in the translation of QPAT methods
towards applications in the medical and life sciences.

5 Conclusions

An inversion scheme based for recovering absolute chromophore concentrations and their
ratios, such as blood sO, from 3D multiwavelength PA images was developed and vali-
dated in silico. The scheme was based on an adjoint formulation of an MC light transport
model and allowed an approximation of the radiance using spherical harmonics. It was
found that the adjoint radiance is not required to obtain accurate inversion results provided
the scattering coefficient is constant. The speed of convergence was increased by incorpo-
rating the Adam optimization algorithm, chromophore-dependent step-sizes, and fluence-
dependent step-size scaling. This work represents an important step in the development
of robust and generally applicable methods for quantitative functional and molecular PA
imaging.

Appendix A: Definition of the adjoint model

The idea of the adjoint formalism is to define non-physical quantities, an adjoint source
q*(7, \), adjoint radiance ¢*(7, 5, \), and an adjoint fluence ®*(7",\) = [g, ¢*(7, 5, A)d5,
that help to replace the integral term containing the unknown 22 in the definition of the

dc;
gradient. In our case the gradient equation is

L, 0P
(pgl—po> L(7)a(r) 5 dE2.
(19)
The adjoint approach has been used in the context of PAT earlier, see e.g. Refs. 17-19,26,
217.

As a first step, the adjoint source term is defined as

q (7, A) = (pg' (7, A) = po(7, A))L(F) a7, A). (20)

Since the approach is targeted for multi-spectral QPAT, each wavelength requires its own
definition of an adjoint source based on the difference between modeled py (7, A) and mea-
sured data py'(7, A). We only denote one wavelength here and omit the dependence on A
for the sake of brevity.

The adjoint source is usually defined as the “pre-factor” of the unknown term that is
to be replaced and contains the error between modeled and measured data. By defining

3821 = —<p6n(ﬁ)—po(ﬁ')>%om <ﬁkH(ﬁ)+F(ﬁ)ak@(m> +/

Q
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the behavior of the adjoint radiance ¢* and adjoint fluence ®*, a relationship between
these and the desued ® can be established, which is outlined in the following derivation.
One important aspect of the definition of the adjoint quantity is to leave the equations
underlying the development similar to the ones of their physical counterpart, which is in
this context the time-independent radiative transfer equation (RTE).

The RTE is given by

(5 V A+ pa(F) + p1s(7)0(7, 5) — Ms/ O(5,8')o(r, §')ds" = q(7, 5). 21)

52

Similarly, we define the adjoint RTE (ARTE) as

(=5 V + pa(F) + p1s(7)) 9" (7, 5) — p1s /52@(§, §)¢7(r,§)ds" = ¢"(r,5).  (22)

One advantage of defining the adjoint radiance in that way is that the propagation dynamics
are identical to that of the normal radiance defined by the RTE, since the left hand side
of both the RTE and the ARTE are practically identical, the only difference being the
negative sign in the ARTE indicating a change of direction in light propagation. One
way to interpret the negative sign is to follow the propagation of photons in the opposite
direction which does not affect the photon’s movement and the final results in terms of
energy deposit. Thus, the mechanisms for absorption and scattering remain the same as
in the RTE. Because the light transport is dominated by scattering and absorption and not
whether photons move in the forward or backward direction, light propagation can be seen
as reciprocal and hence the numerical framework implementing the ARTE is unaffected by
the additional negative sign. Thus, the same simulation code as for the RTE can be used for
the ARTE. Only the difference in the source distributions needs to be taken into account,
with the adjoint source being three dimensional, whereas normal source distributions are
usually two dimensional.

It is important to note that the adjoint fluence and adjoint radiance have different phys-
ical units as their physical counterparts. The adjoint radiance has units J/(m?sr) and the
adjoint fluence J/(m?).

Appendix B: Adjoint-assisted derivation of the gradient

Using the above definition of the adjoint source in Eq. (20), the substitution of the un-

known term gg’

[ (o = m) P a0 = —a [ [ & otens
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can be derived.
The derivation follows the ideas presented in previous works, in particular Refs. 27. In

there, agTE is combined with the ARTE

¢" - —— — —— + ARTE. (24)

The term % is

0p(T. 0 2 S 00(18) .,
9 )+ ) D By [ o2y~ 2s)

as % = 0 since the external light source does not depend on chromophore concentrations.
The basic idea underlying the following steps is to rearrange all terms in Eq. (24) so that
all terms on the left-hand side can be set to zero after integrating over space and angles.

First, we insert % = (7 — 7;) and rearrange Eq. (25)

99(r", 5) - 908 (o
aci _us/g 9(573) aci

The combination of the ARTE and the RTE from Eq. (24) is (for brevity we omit the
dependency on 7" and § for the moment)

(5-V 110 (1) +15(7)) —a(r)¢(r, §)d(r—=ri) (26)

0
P* (5 V+Ma+us)a¢ <Z>us/ (5,5 )a—¢
R

¢ / 5 7)o"
8ci< -V + pg + p1s) 0" (5,8)p*ds
_ * - = 8¢ *
=— " po(r —17) aCiq (27)
The left-hand side can be simplified, giving

9¢ | 99 99 ., 09 oy

65 Vg + g S V)0 o | O F)50d8 + 5o | OG5 )
=—ap"Ppo(r—7;) — gzq* (28)

The next steps of the derivation are from now on identical to Eqgs. (4.11 ff) in Ref. 27. The
left-hand side of Eq. (28) equates to zero, which can be seen after integrating first over all
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angles s € S"~! and over the volume 2 with surface 02

/SQ¢>*<§- —ddQ+//S2aCZ~ 450
/”8/52 / (5,225 5o, 45'd5a0
/ /52 ae, /32 (5,8)¢"(5)ds'dsdQ
/a“—n/qﬁmsdg / /S ’

To see that the left-hand side equates to zero the volume integral with the terms involving
V can be transformed into a surface integral using this form of the divergence theorem:

d5dQ. (29)

/ ab - Ved) + / ch - Vadf) = / b - nac dfQ, (30)
Q Q a0

along with the following substitions:

06(5)

802- '
Hence, using the divergence theorem, the first two terms in Eq. (28) are replaced by a
single term

/ ¢*(3-V ‘% / §-V)¢*dsdQ = //§ﬁ a¢(§)ddQ
QJs2 S2 8CZ 60 J 52 C

By definition both ¢* — 0 and 0®/dc; — 0 on the boundary of the volume 0. Thus, the
integrand on the right-hand side and hence the integral equate to zero.
This reduces Eq. (28) to

/”S/SQ 4)/ (5,5 )d4ddQ
/ /Szagj . O(5, §)¢*(5')ds'dsdQ

/a6 ¥ — T / ¢*pdsd) — / —dsdQ (32)
52 G

a = ¢*(3), b=5  and c=

(1)
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Because we can assume that all functions are integrable, the terms on the left-hand side of
Eq. (32) can be rearranged after changing the order of integration, yielding

/ " / / (556" 22 gz a500
S2 .Jg2 aCl

/Ms/ / oz 6 () 22 45dasa0.
S2 .J g2 302

Hence, the left-hand side of Eq. (32) equates to zero, which leaves us with

/ / 99 45d0 = — / as(F—7) | ¢ ¢dsd (33)
52 C; Q S2

The fluence ® is by definition the integral of the time-integrated radiance ¢(3) over all
directions §, that is

() = [ ¢(7,5)ds (34)
82
Applying the derivative with respect to ¢; yields

00(7) _ [ 9679,
8ci B 52 801 %

(35)

which lets us write Eq. (33) as

Vior (36)

=T

00 * )
%M——idé¢®mm

Because we have defined the adjoint source term as ¢* = (pj* — po)I'i, the left-hand side
of Eq. (36) is exactly the last term in Eq. (19):

Vior- (37)

S
="

/(pg‘ - pO)R“a?dQ = —a(7}) [ ¢*(3)p(5)d5
Q Gi 52

Inserting this result into the error-gradient Eq. (19) provides us with the sub-gradient term
obtained using one wavelength

85)\[

de; — (P (7)) — po(7))a(N) D (75) Viow + (7)) [/52 & (3)6(9)d5

Vioz-  (38)

In summary, the adjoint formalism enables the update of the concentration distribution
using only terms obtained from running the forward model implemented by the RMC
algorithm. The following section will focus on the question as to how the term ¢*¢ can be
computed and approximated.
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Appendix C: Radiance approximations

In order to simulate the radiance, some discretization over angle is required. One op-
tion is to use a piecewise constant set of basis functions over angle. However, due to the
importance of ballistic and quasi-ballistic light propagation in PAT, a high number of dis-
cretization orders would be required to capture the directionality of the radiance in regions
near the source. This would result in very large memory demands in finite-element imple-
mentations, see Refs. 29,49, 50 for more details on different approaches for estimating the
radiance, their limitations, and suggested solutions. For a summary thereof, see Ref. 51.
Inspired by the P, approximation®? and continuing the work presented by Refs. 19,51 we
approximate the radiance in 3D using spherical harmonics as basis functions as in Ref. 31.
Instead of discretising the angular domain into segments, the radiance field ¢ at any posi-

tion 7 can be expanded using a series of spherical harmonics>3?
NL o0
T ﬁ) E E 2plm lm T §) (39)
=0 m=-—1

where 1);,,, (") are the coefficients corresponding to the real spherical harmonics Y, (7, §),

expressed as
—|ml)! m : 1
\/5\/ = V EH—ImB!PZ‘ ‘005(9) sin(|m|¢) if m <0,

Yim = {1/ 2L P (cos(6)) if m=0, (40)

2,/ 2L (er),Pm cos () cos(mo) ifm >0,

where [ is the degree of the spherical harmonic, m is the order, P/ are the associated
Legendre polynomials. The coefficient 1/, (7) scales the total weight deposited by all
simulated photons at position (voxel) 7 for the associated spherical harmonic.

The advantage of expressing ¢*¢ in a spherical harmonics expansion lies in the fact
that the Y},,, form an orthonormal basis, i.e.

/ Vi Vi d5 = S Gt @1)
S2

Using this orthonormality condition greatly simplifies the term [ = ¢*(§)¢(§)d§} L

=T;
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from Eq. (38), when the radiance is expressed in spherical harmonics:

/

[ /S 2 ¢*(§>¢<s“>d§]r - / (Z D Ubnl)Yin (7, 5 >(NZ > e (7) Z/m/(rus?))

P, 1=0 m=—1 0m/=—1I'

(42)
Np, l L 4
(3 ) (532 ) ( [ vt i as
=0 m=—1 0m/'=—1 N 5”/g;m
(43)
= Z Z Y (75) 7, (7). (44)

=0 m=—1
Hence, with this approximation the gradient to update the distribution of chromophore

k finally becomes

&‘SM
801'

=0 m=-1

(45)

Appendix D: Discretization

To solve the given equations numerically, the bases in which the data and model output
are represented must be defined. Assuming a sampling of continuous fields in a point-wise
basis U, (7) = §(7 — 7;) as in Ref. 18. Hence, the data projected onto this basis becomes a
vector of coefficients pj’,

hj = (W, p5' (7)) = 06 (75) (46)
Equally, all other continuous fields are discretized. Transforming an integral of any

integrable function f(7’) over the continuous domain €2 into discretized space introduces a
volume element df) = V:

Nvox Nvox

/ff)dﬂ Z\P],ff’) Zf (47)
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Fig 7 Convergence of the true and recovered concentrations for inversions incorporating the gradient term
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Horizontal lines in light color depict perfect convergence, i.e. Ac = 0.
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