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Abstract

In this paper we propose a new finite element realization of the Perfectly Matched
Layer method (PML-method). Our approach allows to deal with arbitrary shaped
polygonal domains and with certain types of inhomogeneous exterior domains.
Among the covered inhomogeneities are open waveguide structures playing an es-
sential role in integrated optics. We give a detailed insight into implementation
aspects. Numerical examples show exponential convergence behavior to the exact
solution with the thickness of the PML sponge layer.

Key words: transparent boundary conditions, perfectly matched layer, pole
condition

1 Introduction

Scattering problems arising from integrated optics are modeled by Maxwell’s
equations on unbounded domains. Typically waveguide structures connect var-
ious sub-components over a distance of a large number of wavelengths. A cen-
tral task in the numerical solution of such problems is the implementation of
transparent boundary conditions, which is often realized by Berenger’s Per-
fectly Matched Layer method (PML-method) [1,3,4,2]. Monk and Collino [5]
introduce the PML-method in a homogeneous medium for separable coordi-
nate systems as a complex continuation in one distance variable by exploiting
the analyticity of the solution. For this case Lassas et al. prove the exponential
convergence of the PML-method [10]. By introducing a normal tangential co-
ordinate system they extend these results to general convex domains [11]. This
coordinate system is defined by a parametrization of the boundary (τ variable)
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and the Euclidian distance ν from the boundary, cf. Fig. 1. Their proof for
the convergence of the PML-method in a homogeneous medium is based on a
complex continuation in ν-direction. However in typical applications from in-
tegrated optics, see Figs. 1, 3, the solution may only be analytic in a direction
different from ν. In Fig. 1 the scatched waveguide cuts the τ -isolines. Hence
the solution is not analytic in ν-direction.

In this paper we propose a new realization of the PML-method by introducing
coordinate systems which we call prismatoidal. This yields a clear concept
on a semi-discrete level. Our approach allows a flexible adaption to many
geometries, even with inhomogeneous exterior domains, cf. Fig. 2. In contrast
to [9] the definition of a complex Riemann metric on a continuous level is
avoided. We restrict ourselves to the two dimensional case for the sake of a
clear presentation of the underlying concept. The ideas carry over to the three
dimensional case and to the vectorial Maxwell equations [13] as we will present
in a future paper.

ν = const 

τ = const 

τ direction

ν direction

Fig. 1. Normal-tangential coordinate
system used by Lassas et. al. The
waveguide structure yields solutions
not analytic in ν-direction.

η direction

ξ direction 

Fig. 2. Prismatoidal coordinate sys-
tem. The waveguide strucure yiels so-
lutions analytic in ξ-direction.

Maxwell’s time harmonic equations for a source and current free medium lead
to the photonic wave equations. We consider the two dimensional case. For
TE-polarization the H-field takes the form (0, 0, Hz), and the first photonic
wave equation reads

∇ ·

(

1

ε(x, y)
∇Hz(x, y)

)

+
ω2

c2
Hz(x, y) = 0. (1)

For TM-polarization the E-field takes the form (0, 0, Ez), and the second pho-
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tonic wave equation reads

∆Ez(x, y) +
ω2

c2
ε(x, y)Ez(x, y) = 0. (2)

In the sequel we deal with the case of TM-polarization. The unbounded domain
is divided into an inner domain Ω and an exterior domain Ωext. On the common
boundary of the interior and the exterior domain, the field u separates into
a given incoming field ui and a scattered field us. The scattering problem is
determined by

∆u(x) + k2(x)u(x) = 0 in Ω, (3)

∆us(x) + k2(x)us(x) = 0 in Ωext, (4)

u(x) = ui(x) + us(x) on ∂Ω, (5)

∂ξu(x) = ∂ξui(x) + ∂ξus(x) on ∂Ω. (6)

Here ξ denotes the non-tangential coordinate of the prismatoidal coordinate
system described in Section 2. The scattered field has to satisfy a radiation
condition at infinity. For homogeneous exterior domains this is the Sommerfeld
radiation condition [8],

lim
r→∞

r
d−1

2

(

∂u

∂r
− iku

)

= 0. (7)

For d > 1 this implies that the field decays uniformly for all directions
x̂ = x/‖x‖. Further the field is an outgoing monochromatic wave. For inhomo-
geneous exterior domains the Sommerfeld radiation condition does not hold
true. For example regard an exterior domain such as depicted in Fig. 3. Two
straight waveguides with local wavenumbers kwg1 and kwg2 range from the inte-
rior domain to infinity. Such structures guide eigenmodes without damping in
the direction of the waveguides. These types of solutions do not exist for homo-
geneous equations, since the Sommerfeld radiation condition implies the decay
of the fields. Furthermore a waveguide may support a couple of eigenmodes
with different propagation constants. Therefore the field is asymptotically not
monochromatic. F. Schmidt proposes a general concept called pole condition
to define radiation conditions for scattering problems [12]. In [6] it is shown
that the pole condition is equivalent to the Sommerfeld radiation condition for
homogeneous exterior domains. The pole condition leads to new algorithms to
construct transparent boundary conditions [12]. Further it gives a new insight
to PML. In [7] Hohage et al. prove the convergence of the PML-method for
separable but inhomogeneous exterior domains. The aim of this paper is to
propose a new finite element realization of the PML-method which is based
on the theoretical concepts given in [12]. We do not aim to prove existence
and uniqueness of the sought solutions. However various numerical examples
indicate experimental convergence of the method.
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2 Local prismatoidal coordinate systems in two dimensions

This section summarizes geometrical aspects of the pole condition approach
[12], which are the basis for the proposed realization of the PML method.
The central idea is to decompose the exterior domain into a finite number
of segments and to associate with each segment a local coordinate system,
such that a global distance variable ξ can be introduced. We realize the PML-
method as a complex continuation along the ξ- direction. This is analogue to
the approach by Collino and Monk [5] for global separable coordinate systems.
Our approach resembles the definition of a global normal-tangential coordinate
system in [11]. We stress the flexibility and the easy way of implementation of
the method in the finite element context. The decomposition of the exterior

Q
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Fig. 4. Prismatoidal coordinate system. Each segment Qj is the image of a reference
element under a bilinear mapping B loc

j . These local mappings are combined to a
global mapping B which is continuous in η.

domain into a finite number of segments is based on straight non-intersecting
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rays gj, which connect each vertex pj (j = 1, ..., N) of the polygonal boundary
∂Ω with infinity. The set of rays together with the boundary ∂Ω generate a
decomposition L = {Q1, ..., QN} of Ωext. The constructed segments Qj must
be convex semi-infinite quadrilaterals.

We define a relation between the ξη-coordinate system of a reference rectangle
and the xy-coordinate system of each rectangle Qj (e.g. Fig. 4). For each Qj

we construct a bilinear transformation

Bloc
j : Q

(ξ,η)
j → Q

(x,y)
j (8)

from the semi-infinite reference rectangle Qref := [0,∞]× [0, 1] onto Qj, such
that the images of two lines ξ1 × [0, 1] ∈ Qref and ξ2 × [0, 1] ∈ Qref remain

parallel under Bloc
j . This is possible due to the convexity of Q

(x,y)
j . In the

following we define a prismatoidal coordinate system, whereas the name is
chosen in accordance with a future definition in three dimensions.

Definition 1 (Prismatoidal coordinate system) Let Ω be a convex do-
main with polygonal boundary. Each vertex pj of ∂Ω is connected with a
straight ray gj, such that the set of rays is non-intersecting and a decom-
position of Ωext into a finite number of convex semi-infinite segments Qj is
generated. The local bilinear mappings B loc

j (8) associated with the segments
Qj are combined to a global transformation

B : Ω
(ξ,η)
ext → Ω

(x,y)
ext , (9)

such that B is continuous and periodic in η. The Jacobian of B is denoted by
J .

Note that B is linear in ξ for fixed η. We give two different ways to construct
prismatoidal coordinate systems [12].

Example 2 (Radial Rays) Let a nonempty convex domain be given. Con-
nect a fixed arbitrary interior point by line segments with each of the vertices
of the boundary. Extend these line segments to linear rays, cf. Fig. 5. For a
star-shaped non-convex domain there exists an interior point such that any
line segment which connects this point with a vertex of the boundary hits the
boundary only at this vertex. The line segments defined this way lead to a
prismatoidal coordinate system, cf. Fig. 6.

Example 3 (Generalized normal rays) Let a nonempty convex domain be
given. Construct the rays successively corresponding to all but the last marked
vertex such that the rays gj have a representation gj(τ) = pj + τ(ciei + ckek)
with τ ∈ R+ and both ci, ck strictly negative. The unit vectors ei and ek are
given by ei = (pi−pj)/|pi−pj| and ek = (pk−pj)/|pk−pj|, in which pi and
pk are the neighboring nodes to pj on the boundary. The last ray is constructed
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Fig. 5. Radial ray construction for convex domains

Fig. 6. Radial ray construction for star-shaped concave domain

according to the following scheme:

(1) Fix an arbitrary point on the ray through the first marked vertex.
(2) Construct the two lines which go through this point, and which are parallel

to their corresponding boundary segments.
(3) Move in positive direction and continue the following procedure: Deter-

mine the intersection point between the parallel line to the boundary and
the next ray. Then construct a line through this point, parallel to the next
boundary segment.

(4) The last ray must be constructed such that it goes through the last marked
vertex and the intersection of the first and the last line constructed this
way.
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Fig. 7. Generalized normal ray construction for convex domains.

3 PML-method based on local prismatoidal coordinate systems

In this section we introduce a new realization of the PML-method, based on
the local prismatoidal coordinate systems from Section 2. Our approach relies
on a finite element solution of the scattering problem (3)-(6).

The discrete form of the weak interior problem reads: Seek uh ∈ Vh ⊂ H1(Ω)
such that for all vh ∈ Vh

∫

Ω
∇uh(x) · ∇vh(x)dx−

∫

Ω
k2(x)uh(x)vh(x)dx =

∫

∂Ω
∂nu

h(x)vh(x)ds. (10)

The exterior problem can be formulated in the ξ, η-coordinate-system. The
transformed Helmholtz-equation is given by

∇ξ,η · (J
−1J−T |J |∇ξ,η)us + |J |k2us = 0. (11)

We assume a segment-wise constant wave number k. This ensures analyticity
of the scattered field us in ξ-direction which is a necessary condition for an
application of the PML-method [10]. Nevertheless enough flexibility is left for
the configuration of the exterior domain by a proper choice of the segments.
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With F := J−1J−T |J | and

a2(v, ∂ξξus) =
∫

Γη

vF11∂ξξusdη,

a1(v, ∂ξus) =
∫

∂η

v∂ξF11∂ξusdη −
∫

Γη

(∂η(vF12) + (∂ηv)F21)∂ξusdη,

a0(v, us) =
∫

Γη

v∂ξF12∂ηusdη −
∫

Γη

∂ηvF22∂ηusdη +
∫

Γη

v|J |k2usdη,

the variational form of the exterior problem reads: Find us ∈ W
2(Ω

(ξ,η)
ext ) such

that for all v ∈ H1
π(ηmin, ηmax) and all ξ ∈ R+

a0(v, us) + a1(v, ∂ξus) + a2(v, ∂
2
ξus) = 0, (12)

us(0, η) = uD(η), (13)

∂ξus(0, η) = uN(η). (14)

Here H1
π(ηmin, ηmax) is the space H1([ηmin, ηmax]) with periodic functions. The

function space W 2(Ω
(ξ,η)
ext ) is defined as

W 2(Ω
(ξ,η)
ext ) =







w(ξ0, η) ∈ H
1
π(ηmin, ηmax) : ξ0 ∈ R, fixed ,

w(ξ, η0) ∈ C
2(R+) : η0 ∈ [ηmin, ηmax], fixed.

The coupling between interior and exterior problem is determined by (13)
and (14). Instead of introducing the PML-layer in the continuous variational
formulation (12), we perform a discretization in η and realize the PML-method
as a complex continuation on a semi-discrete level.

The field component us is approximated by

uh
s(ξ, η) =

NB∑

j=1

uh
s,j(ξ)ψj(η), (15)

where {ψ1, ..., ψNB
} is a basis of Sh ⊂ H1

π(ηmin, ηmax). The space Sh is the trace
space of the finite element space Vh of the interior problem. The coefficient-
vector of uh

s(ξ, η) is denoted by uh
s (ξ). Inserting (15) in (12) for us yields the

system

A0(ξ)u
h
s (ξ) + A1(ξ)∂ξu

h
s(ξ) + A2(ξ)∂

2
ξ u

h
s (ξ) = 0. (16)

The matrices A0(z), A1(z), A2(z), z ∈ C, are analytic for <(z) > 0, as we
show in Section 4. Therefore a solution of (16) has a complex continuation
[14]. Motivated by the case of a homogeneous exterior domain we expect an
exponential damping of the solution for =(z) → +∞. The PML-method is
realized by replacing the variable ξ in (16) with the complex extension ξ = γξ
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and by replacing the unbounded domain Ωext with the bounded domain ΩPML.
With

γ = 1 + iσ and uPML(ξ) := us(γξ), (17)

the PML system is determined by

A0(γξ)uPML(ξ) + A1(γξ)
1

γ
∂ξuPML(ξ) + A2(γξ)

1

γ2
∂2

ξ uPML(ξ) = 0. (18)

Remark 4 The formulation of the exterior problem in local prismatoidal co-
ordinate systems also builds up the basis for other realizations of transparent
boundary conditions. In [12] (16) is the starting point for the implementation
of the pole condition.

4 Computation of local matrices in the semi-discrete exterior sys-
tem

We compute local contributions to the matrices A0, A1, A2 in (16) for the
simple case of linear C0-elements. The generalization to higher order elements
is straightforward.

The system matrices A0, A1 and A2 from (16) are given by

A2,ij∂ξξu
h
s,j := a2(ψi, ψj)∂ξξu

h
s,j =

(
∫

Γη

ψiF11ψjdη

)

∂ξξu
h
s,j,

A1,ij∂ξu
h
s,j :=a1(ψi, ψj∂ξu

h
s,j)

=

(
∫

Γη

ψi(∂ξF11ψj + F12∂ηψj)dη −
∫

Γη

∂ηψiF21ψjdη

)

∂ξu
h
s,j,

A0,iju
h
s,j :=a0(ψi, ψju

h
s,j)

=

(
∫

Γη

(ψi∂ηψj∂ξF12 − ∂ηψi∂ηψjF22 + |J |k2ψiψj)dη

)

uh
s,j.

On the unit segment [0, 1] basis functions are given by

ṽ1(η) = 1− η ṽ2(η) = η. (19)

Local contributions from a segment k are

(A
(k)
2 )ij = h

∫ 1

0
ṽiṽjF11dη,

(A
(k)
1 )ij = h

∫ 1

0
(ṽiṽj∂ξF11 +

1

h
vi∂ηṽjF12 −

1

∂ η
ṽiṽjF21)dη,

(A
(k)
0 )ij = h

∫ 1

0
(
1

h
ṽi∂ηṽj∂ξF12 −

1

h2
∂η ṽi∂η ṽjF22 + ṽiṽj|J |k

2)dη,

(20)
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for i, j ∈ {1, 2}. To compute these matrices it is necessary to derive the trans-

formations Bloc
j : Q

(ξ,η)
j → Q

(x,y)
j .

α

α

1

2
2

τ

γ τ

p

p

q

q

2

1

1

Fig. 8. Segment Q
(x,y)
j .

Segment j (Fig. 8) is bounded by two rays through the points p1q1 respectively
p2q2, with parameter representations

g1(τ) = p1 + τe1

g2(τ) = p2 + γτe2
(21)

where e1, e2 are the unit vectors

e1 = (q1 − p1)/(|q1 − p1|)

e2 = (q2 − p2)/(|q2 − p2|).
(22)

and γ is a scaling factor. Since we require p1p2 ‖ q1q2, it holds

γτ cosα2 = τ cosα1 ⇒ γ =
cosα1

cosα2
. (23)

We define ξ as the distance between the line through p1 and p2 and the line
through q1 and q2, ξ := τ cosα1. This yields a symmetric parameter represen-
tation for the rays,

g1(ξ) = p1 +
ξ

ζ cosα1

e1

g2(ξ) = p2 +
ξ

ζ cosα2
e2.

(24)

with ξ ≥ 0 and a scaling factor ζ that may vary from segment to segment. If
ζ and α1 correspond to an arbitrary segment and ζp and α2,p to the previous
segment,

ζ = (ζp cosα2,p)/ cosα1 (25)

10



ensures that these two segments fit continously. The transformation between
the ξη− and the xy−coordinate-system is






x

y




 = g1(ξ) +

η − η1

η2 − η1
(g2(ξ)− g1(ξ)). (26)

With e1 = (cos β1, sin β1) and e2 = (cos β2, sin β2) the mapping Bloc
j is given

by






x

y




 =: Bloc

j (ξ, η)

=

(

1−
η − η1

η2 − η1

)










x1

y1




+

ξ

ζ cosα1






cos β1

sin β1











+
η − η1

η2 − η1











x2

y2




+

ξ

ζ cosα2






cos β2

sin β2









 .

(27)

This mapping simplifies to

Bloc
j (ξ, η) =

(

1−
η

h

)
ξ

ζ






1

− tanα1




+

η

h











0

h




+

ξ

ζ






1

tanα2









 (28)

since we can set x1 = x2 = 0, y1 = 0, y2 = h, η1 = 0, η2 = h, β1 = −α1

and β2 = α2 without loss of generality. Using the abbreviations a1 = tanα1,
a2 = tanα2 and a = tanα1 + tanα2 the Jacobian of Bloc

j is

Jj(ξ, η) =






1
ζ

0

−1−η
ζ
a1 + η

ζ
a2 1 + ξ

hζ
a




 . (29)

With |Jj| = (hζ + ξa)/(hζ2) we have

J−1
j (ξ, η) =






ζ − ζh(−a1+ηa)
hζ+aξ

0 ζh
hζ+aξ




 , Fj =






ζ + ξ

h
a a1 − ηa

a1 − ηa h (a1−ηa)2+1
hζ+ξa




 .
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Inserting these results in (20) yields

A
(j)
2 = (hjζj + ξaj)






1
3

1
6

1
6

1
3




 (30)

A
(j)
1 =

1

3






aj −a2,j + 2a1,j

2a2,j − a1,j aj




 (31)

A
(j)
0 =

1

3

1

hjζj + ξaj






−a2
1,j + a1,ja2,j − a2

2,j − 3 a2
1,j − a1,ja2,j + a2

2,j + 3

a2
1,j − a1,ja2,j + a2

2,j + 3 −a2
1,j + a1,ja2,j − a2

2,j − 3






+ (hjζj + ξaj)
k2

j

ζ2
j






1
3

1
6

1
6

1
3




 .

(32)

If uh
s,k(ξ) is the coefficient-vector with degrees of freedom corresponding to

segment k, a local contribution to the left-hand side of (16) is

2∑

j=0





1∑

i=−1

(hkζk + ξak)
iM

(k)
i,j



 ∂j
ξu

h
s,k(ξ) =

2∑

j=0

A
(k)
j ∂j

ξu
h
s,k (33)

with

M (k){−1, 0} =
1

3






−a2
1 + a1a2 − a2

2 − 3 a2
1 − a1a2 + a2

2 + 3

a2
1 − a1a2 + a2

2 + 3 −a2
1 + a1a2 − a2

2 − 3






(k)

,

M (k){1, 0} =
k2

k

ζ2
k






1
3

1
6

1
6

1
3




 ,

M (k){0, 1} =
1

3






a −a2 + 2a1

2a2 − a1 a






(k)

,

M (k){1, 2} =
1

3






1 1
2

1
2

1




 ,

(34)

and all other matrices M
(k)
ij = 0. This reveals that the entries of the globally

assembled matrices A0(ξ), A1(ξ), A2(ξ) are composed of rational expressions
in ξ. Due to ζkhk > 0 and ak > 0, there is no pole for a complex ξ with
<(ξ) > 0. This guarantees the presumed analyticity of the matrices.

With the complex extension of the PML-method, the left-hand side of (33)
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reads
2∑

j=0

(
1∑

i=−1

(hkζ
k + (γξ)ak)

iM (k){i, j})(
1

γ
)j ∂j

ξuPML,k(ξ). (35)

5 Solution of the semi-discrete PML-system by the Finite-Element-
Method

We solve the ordinary differential equation (18) by a finite-element-discre-
tization. Different numerical techniques such as spectral methods or finite
differences would be possible, too.

Component m
′

of uPML,k(ξ) is approximated by

uh
PML,k,m′(ξ) =

Nξ∑

n′=1

cPML,k,m
′
n
′Φm

′
n
′ (ξ), (36)

where {Φm
′1, ...Φm

′
Nξ
} is a basis of the finite element space Xh ⊂ C2(R+).

Additional degrees of freedom nPML,k,m
′ are introduced on the boundary ∂Ω

by

nPML,k,m
′ = ∂ξu

h
PML,k,m

′ (0). (37)

Because of the expected absorbing character of the PML-layer we impose a
zero Dirichlet boundary condition on the outer boundary ξ = ρ. Multiplying
(35) by the test function (Φk

n
′ )∗ with components (Φk

m
′
n
′ )∗ and integrating

over the layer in ξ-direction yields after an integration by parts

∑

m
′
n
′

(Sk
mn,m

′
n
′ +Dk

mn,m
′
n
′ +Mk

mn,m
′
n
′ )cPML,k,m

′
n
′ +

∑

m
′

Rk
mn,m

′nPML,k,m
′ (38)

with

Sk
mn,m

′
n
′ = −M

(k)

mm
′ {1, 2}

∫ ρ

0

1

γ2
(hkζk + (γξ)ak)∂ξΦ

∗

mn∂ξΦm
′
n
′ )dξ (39)

Dk
mn,m

′
n
′ = −M

(k)

mm
′ {1, 2}

∫ ρ

0
∂ξ

1

γ2
∂ξ(hkζk + (γξ)ak)Φ

∗

mn∂ξΦm
′
n
′dξ

+M
(k)

mm
′{1, 2}

∫ ρ

0

1

γ2
(hkζk + (γξ)ak)Φ

∗

mn∂ξΦm
′
n
′dξ,

(40)

Mk
mn,m

′
n
′ =M

(k)

mm
′{−1, 0}

∫ ρ

0
(hkζk + (γξ)ak)

−1Φ∗mnΦm
′
n
′dξ

+M
(k)

mm
′{−1, 0}

∫ ρ

0
(hkζk + (γξ)ak)

−1Φ∗mnΦm
′
n
′dξ

(41)

Rk
mn,m

′ =
2∑

j=0

[
1

γ2
(γξ)j(Mj,2)mm

′Φ∗mn]ρ0. (42)
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Assembling (38) to a global system yields

(S +D +M)cPML +RnPML = 0. (43)

The discrete interior problem reads: Seek uh in Vh = span{ϕ1, ..., ϕNI
} ⊂

H1(Ω) such that

∫

Ω
∇uh(x) · ∇ϕi(x)dx−

∫

Ω
k2(x)uh(x)ϕi(x)dx−

∫

∂Ω
∂nu

h
s(x)ϕi(x)ds

=
∫

∂Ω
∂nui(x)ϕi(x)ds for i = 1, ..., NI.

(44)

The coefficient vector of uh is denoted by U = {U1, ..., UNI
}. The exterior and

the interior problem couple via the boundary integral on the left-hand side
of (44). Let π : {1, ..., N} → {1, ..., NI} be a mapping from the degrees of
freedom corresponding to ∂Ω to the global numbering of degrees of freedom
in the discrete interior problem. A local contribution of the boundary term is

∫ pj

pi

ϕπ(i)(s)n(s)∇xyu
h
s,j(s)ds

= h
∫ 1

0
ϕπ(i)(η)(1, 0)J−T∇ξη(u

h
s,j(0)ϕπ(j)(η))dη

= (h
∫ 1

0
ϕπ(i)(η)(J

−T )11ϕπ(j)dη)
︸ ︷︷ ︸

(B1)ij

∂ξu
h
s,j(0)

+ (h
∫ 1

0
ϕπ(j)(η)(J

−T )12∂ηϕπ(j)(η)dη)
︸ ︷︷ ︸

(B0)ij

uh
s,j(0),

(45)

with i, j = 1, ..., N , where N is the number of degrees of freedom on ∂Ω. The
boundary integrals can be expressed in vector notation as










∫

∂Ω ∂nu
h
s(x)ϕπ(1)(x)ds

...
∫

∂Ω ∂nu
h
s(x)ϕπ(N)(x)ds










= B0










Uπ(1)

...

Uπ(N)










+
1

γ
B1










nPML,1

...

nPML,N










. (46)

Let P be the matrix corresponding to the mapping π(i), (i = 1, ..., N). With

uh(x) =
NI∑

i=1

Uiϕi(x) (47)
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the discrete interior problem reads

NI∑

j=1

(
∫

Ω
∇ϕi(x) · ∇ϕj(x)dx

︸ ︷︷ ︸

Kij

−
∫

Ω
k2(x)ϕi(x)ϕj(x)dx

︸ ︷︷ ︸

Mij

)

Uj

+
NI∑

j=1

N∑

k=1

Pik

N∑

l=1

B0,kl(P
T )ljUj +

N∑

k=1

Pik

1

γ

N∑

l=1

B1,kldl

=
∫

∂Ω
∂nui(x)ϕi(x)dx

︸ ︷︷ ︸

gi

.

(48)

The decomposition u(x)|∂Ω = ui(x)|∂Ω + us(x)|∂Ω requires

P TU = QcPML + Ui, (49)

where c̃PML = QcPML are the degrees of freedom in cPML corresponding to
∂Ω and Ui are the degrees of freedom of the incoming field on the boundary.
Gathering together (43), (48) and (49) yields the global system










K +M + PB0P
T 0 1

γ
PB1

0 S +D +M R

P T −Q 0



















U

cPML

nPML










=










g

0

Ui










. (50)

This system can be further simplified. In (50) the coupling conditions be-
tween the exterior and the interior problem appear explicitly. This resembles
a domain decomposition approach. In the following we will show that the
additional degrees of freedom on the boundary can be avoided. The resulting
system (57) also arises from a finite element system based on mixed triangular
and quadrilateral elements. In this case we scale the PML-equation by γ to
incorporate the matching of the exterior-interior Neumann data as a natural
boundary condition. Let the degrees of freedom of the PML-layer be arranged
as

cPML =






c̃PML

c
′

PML




 . (51)

Accordingly we split A := S +D +M as

A =






A11 A12

A21 A22




 . (52)
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We scale the PML equation with γ













K +M + PB0P
T 0 1

γ
PB1

0 γ






A11 A12

A21 A22











γR

0






P T −Q 0

























U





c̃PML

c
′

PML






nPML













=










g

0

Ui










(53)

and use
c̃PML = P TU − Ui (54)

to obtain the equivalent system










K +M + PB0P
T 0 1

γ
PB1

γ






A11P
T

A21P
T




 γ






A12

A22











γR

0
























U

c
′

PML

nPML










=










g





γA11Ui

γA21Ui















. (55)

Performing elementary row operations yields










K +M + PB0P
T + γPA11P

T PA12
1
γ
PB1 + PγR

γ[A21P
T ] γ[A22] [0]

[0] [0] [0]



















U

c
′

PML

nPML










=










g + γPA11Ui

γA21Ui

0










.

(56)

Since 1
γ
PB1 + PγR = 0, according to (42) and (46) we obtain the equivalent

reduced system






K +M + PB0P
T + γPA11P

T PA12

γ[A21P
T ] γ[A22]











U

c
′

PML




 =






g + γPA11Ui

γA21Ui




 .

(57)

6 Numerical examples

The scattering problem (3)-(6) is solved for two different examples with known
exact solution in order to investigate the convergence of the computed solution
in dependence of the thickness ρ of the PML layer. In general it is a difficult
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task to verify the expected exponential convergence behavior in a numerical
experiment. Since the finite element method converges only polynomially, the
discretization error asymptotically dominates the error caused by the finite
thickness of the PML-layer. We therefore carry out a special discrete conver-
gence check for the quality of the transparent boundary condition. We solve
a sequence of discrete problems with fixed interior triangulation and a dis-
cretization in the PML-layer given by ξ = [0 : hPML : jhPML]. Here hPML is the
mesh width in ξ-direction and jhPML is the thickness of the PML-layer. Then
we expect that the computed solution uh,j of the interior domain converges
exponentially to uh,∞ for j →∞. We repeat this experiment for a halved mesh
width in the interior domain together with the refinement hPML := hPML/2.

In the first experiment we solve a waveguide scattering problem for the case
of TM-polarization with geometry as depicted in Fig. 9. On the left end of the
waveguide an incoming wave is given as an eigenmode of the waveguide. The
electric field is computed in the inner domain [−10, 10]× [−10, 10] with linear
and quadratic finite elements (128249 degrees of freedom). The thickness of
the PML-layer varies from ρ = 0.2 to ρ = 5.6. The layer is discretized with 4
points per 0.2 respectively 0.4 length units in ξ-direction (linear respectively
quadratic elements). Fig. 10 shows a semilog plot of the relative error e1 :=
||u − uh||2/||u||2 in dependence of the thickness ρ of the PML-layer. For a

−10 −5 0 5 10

−10
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0

5

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 9. Discretization of the interior domain and rays in the exterior domain (left
picture). Geometry with representation of the refractive index distribution (right
picture). Infinite waveguide: n = 6.6, background: n = 1.45.

small thickness of the PML-layer and a huge number of degrees of freedom in
the finite element discretization the error caused by the finite thickness of the
PML-layer dominates. Here the error e1 shows an exponential convergence
behavior in dependence of ρ. With growing thickness of the PML-layer the
discretization error becomes more and more relevant. From ρ = 2.5 for linear
elements and ρ = 5 for quadratic elements a further increase of ρ has no
influence on the error.

Fig. 11 shows a semilog plot of the sequence e2(j) = ||uh,J − uh,j||2/||uh,J||2 in
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Fig. 10. Relative error ||u− uh||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the first experiment.

dependence of the thickness of the PML-layer ρ = jhPML. We replace uh,∞ by
uh,J with J := 10/hPML. The sequence converges exponentially in dependence
of ρ, with two different rates. The smaller absolute value of the rate appears in
the range of ρ where the discretization error dominates and the error caused
by the finite thickness of the PML-layer is negligible. The left part of the graph
approaches the error e2 = ||u∗ − u(ρ)||2/||u

∗||2 with u∗ = limρ→∞ u(ρ) for an
increasing number of degrees of freedom.
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Fig. 11. Relative error e2(j) = ||uh,J − uh,j||2/||uh,J ||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top to
down) in the first experiment.

In the second experiment we solve a cylinder scattering problem for the case
of TM-polarization, with zero boundary condition for the electric field. The
geometry is depicted in Fig. 12. The electric field is computed in the inner
domain [−10, 10]× [−10, 10]\B(0, 1) with linear and quadratic finite elements
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Fig. 12. Discretization of the interior domain and rays in the exterior domain.

(153076 degrees of freedom). The thickness of the PML-layer varies from ρ =
0.2 to ρ = 10.0. The layer is discretized with 4 points per 1.0 respectively
0.8 length units in ξ-direction (linear respectively quadratic elements). Fig. 13
shows a semilog plot of the relative error e1 := ||u−uh||2/||u||2 in dependence
of the thickness ρ of the PML-layer. Again there is exponential convergence of
the error e1 with ρ in the range where the error caused by the finite thickness
of the PML-layer dominates. This time quadratic finite elements lead to a
better rate in the semilog plot.

Fig. 14 shows a semilog plot of the sequence e2(j) = ||uh,∗ − uh,j||2 in de-
pendence of the thickness of the PML-layer ρ = jhPML. Again we replace
uh,∞ by uh,J with J := 10/hPML. The sequence shows the same exponential
convergence behavior as in the first experiment.

0 1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ρ

||u
−

u h|| 2/||
u|

| 2

||u−u
h
||

2
/||u||

2
 : linear

||u−u
h
||

2
/||u||

2
 : quadratic

Fig. 13. Relative error ||u− uh||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the second experiment.
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Fig. 14. Relative error e2(j) = ||uh,J − uh,j||2/||uh(∞)||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top to
down, determined by the points per wavelength (PpW))) in the second experiment.

7 Conclusions

The PML-method has been formulated in the context of F. Schmidt’s dis-
cretization scheme of the exterior domain [12]. This provides a tool for solving
scattering problems with inhomogeneous exterior domains in the case, where
the refraction index distribution allows to choose a decomposition in segments
with constant refractive index. Numerical experiments have indicated expo-
nential convergence of the error ||u− u(ρ)||2 in dependence of the thickness ρ
of the PML-layer.

References

[1] J. Berenger, A perfectly matched layer for the absorption of electromagnetic
waves., J. Comput. Phys.,1994, 114, 2, pp. 185-200,

[2] W.C. Chew and J.M. Jin and E. Michielssen, Complex Coordinate Stretching as
a Generalized Absorbing Boundary Condition, unpublished

[3] W.C. Chew and W.H. Weedon, A 3-D Perfectly Matched Medium from Modified
Maxwell’s Equations with Stretched Coordinates, Micro. Opt. Tech. Lett., 7 (13)
1994

[4] W.C. Chew and W.H. Weedon, A 3-D Perfectly Matched Medium by Coordinate
Stretching and Its Absorption of Static Fields, Applied Computational

Electromagnetics Symposium Digist, pp. 482-489, 1995, 1

[5] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates,
SIAM J. Sci. Comput., 1998, 19, 6, pp. 2061-2090

20



[6] T. Hohage and F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering
problems based on the pole condition: Theory, Zuse Institut Berlin (ZIB), 2001,
Preprint 01-01

[7] T. Hohage and F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering
problems based on the pole condition: Convergence of the PML-method, Konrad-
Zuse-Zentrum (ZIB), 2001, Preprint 01-23

[8] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer, 1998

[9] M. Lassas and J. Liukkonen and E. Somersalo, Complex Riemannian metric and
absorbing boundary condition., J. Math. Pures Appl. 2001, 80, 7, pp. 739–768

[10] M. Lassas and E. Somersalo, On the existence and convergence of the solution
of PML equations., Computing No.3, 229-241, 1998, 60, 3, pp. 229-241

[11] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex
geometry, Proc. Roy. Soc. Edinburgh Sect. A 131, pp. 1183–1207, 2001

[12] F. Schmidt, A New Approach to Coupled Interior-Exterior Helmholtz-Type
Problems: Theory and Algorithms, Konrad-Zuse-Zentrum Berlin, Fachbereich
Mathematik und Informatik, FU Berlin, 2001, Habilitation thesis

[13] H. Shaker, Ein neues Verfahren zur Lösung des Streuproblems der Maxwell-
Gleichungen, Universität Hamburg, Fachbereich Physik. Diplomarbeit
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