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Abstract

In this paper we propose a new finite element realization of the Perfectly Matched
Layer method (PML-method). Our approach allows to deal with arbitrary shaped
polygonal domains and with certain types of inhomogeneous exterior domains.
Among the covered inhomogeneities are open waveguide structures playing an es-
sential role in integrated optics. We give a detailed insight into implementation
aspects. Numerical examples show exponential convergence behavior to the exact
solution with the thickness of the PML sponge layer.

Key words: transparent boundary conditions, perfectly matched layer, pole
condition

1 Introduction

Scattering problems arising from integrated optics are modeled by Maxwell’s
equations on unbounded domains. Typically waveguide structures connect var-
ious sub-components over a distance of a large number of wavelengths. A cen-
tral task in the numerical solution of such problems is the implementation of
transparent boundary conditions, which is often realized by Berenger’s Per-
fectly Matched Layer method (PML-method) [1,3,4,2]. Monk and Collino [5]
introduce the PML-method in a homogeneous medium for separable coordi-
nate systems as a complex continuation in one distance variable by exploiting
the analyticity of the solution. For this case Lassas et al. prove the exponential
convergence of the PML-method [10]. By introducing a normal tangential co-
ordinate system they extend these results to general convex domains [11]. This
coordinate system is defined by a parametrization of the boundary (7 variable)
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and the Euclidian distance v from the boundary, cf. Fig. 1. Their proof for
the convergence of the PML-method in a homogeneous medium is based on a
complex continuation in v-direction. However in typical applications from in-
tegrated optics, see Figs. 1, 3, the solution may only be analytic in a direction
different from v. In Fig. 1 the scatched waveguide cuts the 7-isolines. Hence
the solution is not analytic in v-direction.

In this paper we propose a new realization of the PML-method by introducing
coordinate systems which we call prismatoidal. This yields a clear concept
on a semi-discrete level. Our approach allows a flexible adaption to many
geometries, even with inhomogeneous exterior domains, cf. Fig. 2. In contrast
to [9] the definition of a complex Riemann metric on a continuous level is
avoided. We restrict ourselves to the two dimensional case for the sake of a
clear presentation of the underlying concept. The ideas carry over to the three
dimensional case and to the vectorial Maxwell equations [13] as we will present
in a future paper.

Fig. 1. Normal-tangential coordinate

system used by Lassas et. al. The Fig. 2. Prismatoidal coordinate sys-
waveguide structure yields solutions tem. The waveguide strucure yiels so-
not analytic in v-direction. lutions analytic in &-direction.

Maxwell’s time harmonic equations for a source and current free medium lead
to the photonic wave equations. We consider the two dimensional case. For
TE-polarization the H-field takes the form (0,0, H,), and the first photonic
wave equation reads

2

V(1)) + o) =0 )

1
v <€(x,y)

For TM-polarization the E-field takes the form (0,0, E.), and the second pho-



tonic wave equation reads

w2

AE.(z,y) + ge(:c, y)E.(x,y) = 0. (2)

In the sequel we deal with the case of TM-polarization. The unbounded domain
is divided into an inner domain €2 and an exterior domain €2.,;. On the common
boundary of the interior and the exterior domain, the field u separates into
a given incoming field u; and a scattered field us. The scattering problem is
determined by

Au(z) + k*(z)u(xz) =0 in Q, (3)
Aug(x) + E*(x)us(x) =0 in Quyr, (4)
u(x) = ui(x) + us(x) on 09, (5)

Ocu(x) = Ocu;(x) + Ogus(x)  on OS2 (6)

Here £ denotes the non-tangential coordinate of the prismatoidal coordinate
system described in Section 2. The scattered field has to satisfy a radiation
condition at infinity. For homogeneous exterior domains this is the Sommerfeld
radiation condition [8],

1 [0
lim rie <8—Z - zku) =0. (7)

For d > 1 this implies that the field decays uniformly for all directions
Z = x/||z||. Further the field is an outgoing monochromatic wave. For inhomo-
geneous exterior domains the Sommerfeld radiation condition does not hold
true. For example regard an exterior domain such as depicted in Fig. 3. Two
straight waveguides with local wavenumbers k41 and kg2 range from the inte-
rior domain to infinity. Such structures guide eigenmodes without damping in
the direction of the waveguides. These types of solutions do not exist for homo-
geneous equations, since the Sommerfeld radiation condition implies the decay
of the fields. Furthermore a waveguide may support a couple of eigenmodes
with different propagation constants. Therefore the field is asymptotically not
monochromatic. F. Schmidt proposes a general concept called pole condition
to define radiation conditions for scattering problems [12]. In [6] it is shown
that the pole condition is equivalent to the Sommerfeld radiation condition for
homogeneous exterior domains. The pole condition leads to new algorithms to
construct transparent boundary conditions [12]. Further it gives a new insight
to PML. In [7] Hohage et al. prove the convergence of the PML-method for
separable but inhomogeneous exterior domains. The aim of this paper is to
propose a new finite element realization of the PML-method which is based
on the theoretical concepts given in [12]. We do not aim to prove existence
and uniqueness of the sought solutions. However various numerical examples
indicate experimental convergence of the method.
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2 Local prismatoidal coordinate systems in two dimensions

This section summarizes geometrical aspects of the pole condition approach
[12], which are the basis for the proposed realization of the PML method.
The central idea is to decompose the exterior domain into a finite number
of segments and to associate with each segment a local coordinate system,
such that a global distance variable £ can be introduced. We realize the PML-
method as a complex continuation along the &- direction. This is analogue to
the approach by Collino and Monk [5] for global separable coordinate systems.
Our approach resembles the definition of a global normal-tangential coordinate
system in [11]. We stress the flexibility and the easy way of implementation of
the method in the finite element context. The decomposition of the exterior
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Fig. 4. Prismatoidal coordinate system. Each segment @ ; is the image of a reference
element under a bilinear mapping Bé"c. These local mappings are combined to a
global mapping B which is continuous in 7.

domain into a finite number of segments is based on straight non-intersecting



rays g;, which connect each vertex p; (j = 1,..., N) of the polygonal boundary
00 with infinity. The set of rays together with the boundary 02 generate a
decomposition £ = {Q1, ..., Qn} of Qezr. The constructed segments @; must
be convex semi-infinite quadrilaterals.

We define a relation between the £n-coordinate system of a reference rectangle
and the zy-coordinate system of each rectangle @); (e.g. Fig. 4). For each Q;
we construct a bilinear transformation

B;»OC . ngfﬂ?) N Q§x7y) (8)

from the semi-infinite reference rectangle Qe := [0, 00] % [0, 1] onto @;, such
that the images of two lines & X [0,1] € Qe and & X [0,1] € Qer remain
parallel under B;OC. This is possible due to the convexity of Qg-m’y). In the
following we define a prismatoidal coordinate system, whereas the name is
chosen in accordance with a future definition in three dimensions.

Definition 1 (Prismatoidal coordinate system) Let Q2 be a convex do-
main with polygonal boundary. Each vertex p; of 98 is connected with a
straight ray g;, such that the set of rays is non-intersecting and a decom-
position of Qege into a finite number of convex semi-infinite segments Q; is
generated. The local bilinear mappings Béoc (8) associated with the segments
Q; are combined to a global transformation

B:Qlm _, qlew (9)

ext ext

such that B is continuous and periodic in n. The Jacobian of B is denoted by
J.

Note that B is linear in £ for fixed 1. We give two different ways to construct
prismatoidal coordinate systems [12].

Example 2 (Radial Rays) Let a nonempty convexr domain be given. Con-
nect a fixed arbitrary interior point by line segments with each of the vertices
of the boundary. FExtend these line segments to linear rays, cf. Fig. 5. For a
star-shaped non-convexr domain there exists an interior point such that any
line segment which connects this point with a vertex of the boundary hits the
boundary only at this vertex. The line segments defined this way lead to a
prismatoidal coordinate system, cf. Fig. 6.

Example 3 (Generalized normal rays) Let a nonempty convexr domain be
giwen. Construct the rays successively corresponding to all but the last marked
vertex such that the rays g; have a representation g,(1) = p; + 7(c;ie; + crey)
with 7 € Ry and both ¢;, ¢ strictly negative. The unit vectors e; and ey are
given by e; = (p; —p;)/|p; —p;| and ey, = (p, —p;)/|pr —p;l, in which p; and
Dy, are the neighboring nodes to p; on the boundary. The last ray is constructed



Fig. 6. Radial ray construction for star-shaped concave domain

according to the following scheme:

(1) Fiz an arbitrary point on the ray through the first marked vertez.

(2) Construct the two lines which go through this point, and which are parallel
to their corresponding boundary segments.

(3) Move in positive direction and continue the following procedure: Deter-
mine the intersection point between the parallel line to the boundary and
the next ray. Then construct a line through this point, parallel to the next
boundary segment.

(4) The last ray must be constructed such that it goes through the last marked
vertex and the intersection of the first and the last line constructed this
way.



Fig. 7. Generalized normal ray construction for convex domains.

3 PML-method based on local prismatoidal coordinate systems

In this section we introduce a new realization of the PML-method, based on
the local prismatoidal coordinate systems from Section 2. Our approach relies
on a finite element solution of the scattering problem (3)-(6).

The discrete form of the weak interior problem reads: Seek u" € Vj, ¢ H(Q)
such that for all v* € V,

/QVuh(:I:)~Vvh(w)dx—/Qk2(w)uh(w)vh(w)dxz o Opu(x)v"(x)ds. (10)

The exterior problem can be formulated in the &, n-coordinate-system. The
transformed Helmholtz-equation is given by

Ven (JHI IV us + |J| k2 us = 0. (11)

We assume a segment-wise constant wave number k. This ensures analyticity
of the scattered field u, in &-direction which is a necessary condition for an
application of the PML-method [10]. Nevertheless enough flexibility is left for
the configuration of the exterior domain by a proper choice of the segments.



With F:= J~1J-T|J| and

as(v, Ogeus) = /an@ggusdn,
Iy
a1 (v, Oeus) = /vﬁgFH@gusdn — /(8n(vF12) + (0yv) Fo1) Ocusdn,
A r,
ap(v, us) = /vagFm@nusdn - /8,]vF228nusd77 + /v|J|k2usd7},
r, r,

Iy

the variational form of the exterior problem reads: Find u, € WQ(Qéif)) such
that for all v € H}(Nmin, Mmaz) and all £ € R,

ao(v, us) + a1 (v, Ogus) + as(v, agus) =0, (12)
us(0,1) = up(n), (13)
Feus(0,n) = un(n). (14)

Here H!(Nmin, Nmax) is the space H([Mmin, Mmaz]) With periodic functions. The

function space W2(Q§J)) is defined as

WQ(Q@’")) ~Jw(&,n) € Hi(Mmin, Mmaz) : &0 € R, fixed |
ext -
w(£7770> € CQ(RJr) 1Mo € [nminunmam]y fixed.

The coupling between interior and exterior problem is determined by (13)
and (14). Instead of introducing the PML-layer in the continuous variational
formulation (12), we perform a discretization in n and realize the PML-method
as a complex continuation on a semi-discrete level.

The field component u, is approximated by

Np

ul(€,m) =D ul ;(€)i(n), (15)

j=1
where {11, ..., ¥ny } is a basis of Sy, C H(Dmin, Tmaz)- The space Sy, is the trace
space of the finite element space V}, of the interior problem. The coefficient-
vector of u”(&,n) is denoted by u”(€). Inserting (15) in (12) for u, yields the
System

Ao(€)u (§) + A1()Deus (&) + A2(6)02ug (€) = 0. (16)

The matrices Ag(z), Ai(2), As(z), z € C, are analytic for R(z) > 0, as we
show in Section 4. Therefore a solution of (16) has a complex continuation
[14]. Motivated by the case of a homogeneous exterior domain we expect an
exponential damping of the solution for (z) — +o0o0. The PML-method is
realized by replacing the variable ¢ in (16) with the complex extension & = v¢



and by replacing the unbounded domain €2.,; with the bounded domain Qpyy,.
With

vy=1+ic and wupyL(§) = us(vE), (17)
the PML system is determined by

Ap(1€ )i (€) + Amg)%agupm(@ 4 Amf)%agum(s) —0. (18)

Remark 4 The formulation of the exterior problem in local prismatoidal co-
ordinate systems also builds up the basis for other realizations of transparent
boundary conditions. In [12] (16) is the starting point for the implementation
of the pole condition.

4 Computation of local matrices in the semi-discrete exterior sys-
tem

We compute local contributions to the matrices Ay, A1, As in (16) for the
simple case of linear C%-elements. The generalization to higher order elements
is straightforward.

The system matrices Ag, A; and Ay from (16) are given by
A2,ij8§§ug,j = a2(¢ia¢j)8§§ug,j = (/r %’Fn%‘dn> 8§§u2’j,

Al,ijﬁgu’;’j =ay (Y, wjagu’;’j)
= </Fn Vi(Oc Pty + Fro0yth;)dn — /Fn anwz'Fw/fde) Deul
Agjul s =ao(hi, hjul ;)
= </Fn (V100 0c Fro — OytbiOni)j Fo + |J|k32¢z‘¢j)d77> ul ;e

On the unit segment [0, 1] basis functions are given by

() =1—n  0An)=n. (19)
Local contributions from a segment k are
(k) e
(A2 )ij = h/o Uﬂ)jFlld’I],

1 s 1 ~
(Agk))ij = h/o (0;0;0¢F11 + Evﬁm}ij —
1
n2

1
= ﬂiﬁij)dn, (20)
On

1 1~ 5 5 5 s
(A(()k))zj = h/o (EviﬁnvjﬁgFm — 8,7vianij22 -+ ’UZ"UJ"JU{ZQ)dT],



for 7,5 € {1,2}. To compute these matrices it is necessary to derive the trans-

formations Bé»"c : Qgg’”) — ch,y)'

oo
b o
p, 01

o .

Fig. 8. Segment ng’y).

Segment j (Fig. 8) is bounded by two rays through the points p;q; respectively
P2qo, With parameter representations

gl(T) :p1+7_61 (21>
95(T) = py +y7eEs

where ey, es are the unit vectors

er= (g, —p1)/(lg1 — pi1l)
ex = (g — )/ (|q2 — Pol)- (22)

and + is a scaling factor. Since we require pips || G1gz, it holds

COS vy

(23)

YT COSig = T COSQp = 7 = .

COS (rg
We define ¢ as the distance between the line through p; and p, and the line
through ¢; and ¢o, € := 7 cos a;. This yields a symmetric parameter represen-
tation for the rays,

€

g:(&) =p; + Ccosay (24)

—= —'— (&4
9:(§) = p, Ccosag 2
with £ > 0 and a scaling factor ( that may vary from segment to segment. If
¢ and a; correspond to an arbitrary segment and ¢, and ay, to the previous
segment,

¢ = (¢pcosany)/ cosay (25)

10



ensures that these two segments fit continously. The transformation between
the én— and the xy—coordinate-system is

z n—"
:gl<f)+
Y e —

(92() — 91(8))- (26)

With e; = (cos 31, sin 31) and ey = (cos s, sin 3) the mapping B;OC is given
by

x loc
=: Bj (gv 7])
Yy
— x cos
- <1 - u) o) [ & (27)
N2 — M yi)  Scosan \ging
_ x cos 3
i n—" 2 I § 2
N2 — M Yo Ceosan | gip s

This mapping simplifies to

oc n\ € 1 n (0} & 1
Beeem = (1-30) 2 e (28)
¢ —tan oy h ¢ tan apm
since we can set x1 = 2o = 0, 91 = 0, yo = h, ), =0, 9o = h, f1 = —y

and (B = ag without loss of generality. Using the abbreviations a; = tan aq,
as = tan ay and a = tan oy + tan as the Jacobian of B;-OC is

1 0
sem=| ¢ g (29)
——tay+tax 14 5a
With |J;] = (h¢ + €a)/(h(?) we have

Ch(=a1+na) £

J~_1(§ ) _ C - hgia! F - C“‘ na a1 —na

J 1 0 ¢h T h(a1—77¢1)2+1
hC+ag ar —na h{+€a

11



Inserting these results in (20) yields

11
A;J) = (hy¢; + €ay) ‘Z’ ? (30)
6 3
. 1 a; —ag,; + 2&14'
Agj) — g (31)
QCLQJ‘ — Qay; Q;
Ao 11 —ai; T agazg —ay; =3 af; —aya, tag 3
ShiG+8ai \ a2, —ayja0;+ a3, +3  —al, +ayas; —a, — 3
i (1
+ (hyG +§aj)§—]2 L
7 \6 3
(32)

If u’;k(g) is the coefficient-vector with degrees of freedom corresponding to
segment k, a local contribution to the left-hand side of (16) is

2 1
> (Z (i + gakw},’;)) ol (&) = Y- AP oLl (33)

j=0 \i=—1 Jj=0
with
1(—a?+ajay—a2—3 a®—ajas+a2+3 "
3 a? —ajay +ai+3 —a?+ajay—a3 —3
M¥{1,0} = K (5
’ G\L1]’
63
*) (34)
M(k){(), - l a —ag + 2a4 ’
3 209 — ay a
1({11%
M®{1 2} == ?|,
3 % 1

and all other matrices Mi(f) = 0. This reveals that the entries of the globally
assembled matrices Ay(§), A1(§), Ax(€) are composed of rational expressions
in £&. Due to (zhy > 0 and a; > 0, there is no pole for a complex & with
R(£) > 0. This guarantees the presumed analyticity of the matrices.

With the complex extension of the PML-method, the left-hand side of (33)

12



reads

>_( 2 hu¢® + (1§)ar)" MO, J})( -y Oupaw(€). (35)

]:O 1=

5 Solution of the semi-discrete PML-system by the Finite-Element-
Method

We solve the ordinary differential equation (18) by a finite-element-discre-
tization. Different numerical techniques such as spectral methods or finite
differences would be possible, too.

Component m’ of upprk(§) is approximated by

¢
ullgML,k,m’(g) = Z CPML,k,m n' D, (6), (36)

where {®, /,, ...@m/Ng} is a basis of the finite element space X; C C?*(R,).
Additional degrees of freedom npyy 4, are introduced on the boundary 052
by

NpMLkm' = aﬁugML,k,m’ (0). (37)
Because of the expected absorbing character of the PML-layer we impose a
zero Dirichlet boundary condition on the outer boundary & = p. Multiplying
(35) by the test function (®¥)* with components (%, ,)* and integrating
over the layer in {-direction yields after an integration by parts

Z <S1]frm m'n’ + Dﬁrm m'n’ + M:m m'n’ >CPML,k,m/nl + Z Rfrm,m/ nPML,k,m/ (38>

ror ’
mn m

with

Skt = =M, {1%/ (G + (Y)ak) 0605, 06,0, )E (39)

" (40)
M:m,m'n' :Mmm’{_170}/0 (h'ka + (7£>ak) lq);knnq)mln'df (41)
MO =10} [" (e + (0€)a1) 0,0,
2
RE = S e (1) (M)t il (42)

=0

13



Assembling (38) to a global system yields
(S + D+ M)CPML + Rnpy, = 0. (43)

The discrete interior problem reads: Seek u” in Vj, = span{e,...,on,} C
H'(Q) such that

/Q Vul(z) - Viy(z)dx — /Q k2 (2)ul ()i () dx — /a Ol (@)pi(a)ds

(44)
= / Opui(x)p;(x)ds fori=1,...,Nj.
o9

The coefficient vector of u" is denoted by U = {Uy, ..., Uy, }. The exterior and
the interior problem couple via the boundary integral on the left-hand side
of (44). Let w : {1,...,N} — {1,...,N;} be a mapping from the degrees of
freedom corresponding to 0f) to the global numbering of degrees of freedom
in the discrete interior problem. A local contribution of the boundary term is

= (h | n (I 1er(ydn) D ;0) (45)

(B1)4j
1

+(h | ©r() (M) (T 120000y (n)dn) ul ;(0),

(Bo)ij

with 7,5 =1, ..., N, where N is the number of degrees of freedom on 90f). The
boundary integrals can be expressed in vector notation as

Jao, Onul () (1) (x)ds Ur) NPML,1

1
: = By : + —B; : . (46)

faQ 0nU’;(fB)son(N) (:c)ds Un(N) nNpML,N

Let P be the matrix corresponding to the mapping 7 (i), (i = 1, ..., N). With
Ny

u'(@) =Y Uipi(x) (47)
i=1

14



the discrete interior problem reads

%< [,ve@) Voo - [ Baa@p @)

Kij Mi'
N N N N N
+Y > P> Bow(PHyU; + > Pu= > Bid (48)
j=lk=1  1=1 k=1 =1
|, dnui(@)ei(@)ax
gi

The decomposition u(x)|sq = wi(x)|sq + us(x)|sn requires
PTU = Qcpyvr, + Us, (49)

where ¢py, = Qcpur, are the degrees of freedom in cpyyy, corresponding to
00 and Uj; are the degrees of freedom of the incoming field on the boundary.
Gathering together (43), (48) and (49) yields the global system

K+ M + PByPT 0 %PB1 U g
pPT —-Q 0 NPML Ui

This system can be further simplified. In (50) the coupling conditions be-
tween the exterior and the interior problem appear explicitly. This resembles
a domain decomposition approach. In the following we will show that the
additional degrees of freedom on the boundary can be avoided. The resulting
system (57) also arises from a finite element system based on mixed triangular
and quadrilateral elements. In this case we scale the PML-equation by v to
incorporate the matching of the exterior-interior Neumann data as a natural
boundary condition. Let the degrees of freedom of the PML-layer be arranged
as

CPML
CPMI, = . (5 1)

/

CpML

Accordingly we split A:=S+ D+ M as

Apn A
A u bz (52)
Agr Az

15



We scale the PML equation with ~

K + M + PByPT 0 %PBl U
9
A A R ¢
0 11 412 Y PML| (53)
Aoy Ago 0 Cl
PML Ul
P —Q 0 npML
and use
épmr, = PTU - U (54)
to obtain the equivalent system
K + M + PB,PT 0 %PBl U g
y A P y Al YR C;DML YA U; (55)
Ay PT Ago 0 TPML v A2 U
Performing elementary row operations yields
K+M+PB()PT+’)/PA11PT PA12 %PBl—f—P’}/R U
V[A2 PT] 7[As)] [0] Cpu,
[0] [0] [0] npML
(56)
g +vPAnU;
- v A2 U;

0

Since %PBI + PyR = 0, according to (42) and (46) we obtain the equivalent
reduced system

K+M+PBQPT+’)/PA11PT PA12 U o g+’7PA11UZ
7[Az P7] 1[A2] ) \ oy VAU

(57)

6 Numerical examples

The scattering problem (3)-(6) is solved for two different examples with known
exact solution in order to investigate the convergence of the computed solution
in dependence of the thickness p of the PML layer. In general it is a difficult

16



task to verify the expected exponential convergence behavior in a numerical
experiment. Since the finite element method converges only polynomially, the
discretization error asymptotically dominates the error caused by the finite
thickness of the PML-layer. We therefore carry out a special discrete conver-
gence check for the quality of the transparent boundary condition. We solve
a sequence of discrete problems with fixed interior triangulation and a dis-
cretization in the PML-layer given by & = [0 : hpyy, @ jhpwy]. Here hpyyy, is the
mesh width in £-direction and jhpyy, is the thickness of the PML-layer. Then
we expect that the computed solution wy; of the interior domain converges
exponentially to uj o for j — 0o. We repeat this experiment for a halved mesh
width in the interior domain together with the refinement hpy := hpprr /2.

In the first experiment we solve a waveguide scattering problem for the case
of TM-polarization with geometry as depicted in Fig. 9. On the left end of the
waveguide an incoming wave is given as an eigenmode of the waveguide. The
electric field is computed in the inner domain [—10, 10] x [—10, 10] with linear
and quadratic finite elements (128249 degrees of freedom). The thickness of
the PML-layer varies from p = 0.2 to p = 5.6. The layer is discretized with 4
points per 0.2 respectively 0.4 length units in ¢-direction (linear respectively
quadratic elements). Fig. 10 shows a semilog plot of the relative error e; :=
l|lu — up||2/]|ull2 in dependence of the thickness p of the PML-layer. For a

10 g
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-10 -5 0 5 10

Fig. 9. Discretization of the interior domain and rays in the exterior domain (left
picture). Geometry with representation of the refractive index distribution (right
picture). Infinite waveguide: n = 6.6, background: n = 1.45.

small thickness of the PML-layer and a huge number of degrees of freedom in
the finite element discretization the error caused by the finite thickness of the
PML-layer dominates. Here the error e; shows an exponential convergence
behavior in dependence of p. With growing thickness of the PML-layer the
discretization error becomes more and more relevant. From p = 2.5 for linear
elements and p = 5 for quadratic elements a further increase of p has no
influence on the error.

Fig. 11 shows a semilog plot of the sequence es(j) = ||un,; — un jl|2/]|un,s||2 in

17
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Fig. 10. Relative error ||u — up||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the first experiment.

dependence of the thickness of the PML-layer p = jhpyr. We replace uy, oo by
up, g with J := 10/hppr. The sequence converges exponentially in dependence
of p, with two different rates. The smaller absolute value of the rate appears in
the range of p where the discretization error dominates and the error caused
by the finite thickness of the PML-layer is negligible. The left part of the graph
approaches the error es = ||u* — u(p)||2/||w*||2 with u* = lim,_.. u(p) for an
increasing number of degrees of freedom.

— PPW,_ =10,h_ =2
10—1 L - Epwintizo’ hPMLil H
—o— PPW; =40, hPML_O'S

s PpW, =80, h, =0.25

| A (37| U

Fig. 11. Relative error ex(j) = ||up,; — unjl|2/||un,s||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top to
down) in the first experiment.

In the second experiment we solve a cylinder scattering problem for the case
of TM-polarization, with zero boundary condition for the electric field. The
geometry is depicted in Fig. 12. The electric field is computed in the inner
domain [—10, 10] x [-10, 10]\ B(0, 1) with linear and quadratic finite elements
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Fig. 12. Discretization of the interior domain and rays in the exterior domain.

(153076 degrees of freedom). The thickness of the PML-layer varies from p =
0.2 to p = 10.0. The layer is discretized with 4 points per 1.0 respectively
0.8 length units in ¢-direction (linear respectively quadratic elements). Fig. 13
shows a semilog plot of the relative error e; := ||u — uy||2/||u||2 in dependence
of the thickness p of the PML-layer. Again there is exponential convergence of
the error e; with p in the range where the error caused by the finite thickness
of the PML-layer dominates. This time quadratic finite elements lead to a
better rate in the semilog plot.

Fig. 14 shows a semilog plot of the sequence es(j) = ||up. — upj||2 in de-
pendence of the thickness of the PML-layer p = jhpy. Again we replace
Upco DY up, g with J := 10/hppr. The sequence shows the same exponential
convergence behavior as in the first experiment.

- Hufuhllzjllull2 : Ilnezr ]
|\u—uh||2 ||u||2 : quadratic

llu-u, [1/l1ull

Fig. 13. Relative error ||u —up||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the second experiment.
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Fig. 14. Relative error es(j) = ||un,; — unjll2/||un(o0)||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top to
down, determined by the points per wavelength (PpW))) in the second experiment.

7 Conclusions

The PML-method has been formulated in the context of F. Schmidt’s dis-
cretization scheme of the exterior domain [12]. This provides a tool for solving
scattering problems with inhomogeneous exterior domains in the case, where
the refraction index distribution allows to choose a decomposition in segments
with constant refractive index. Numerical experiments have indicated expo-

nential convergence of the error ||u — u(p)||2 in dependence of the thickness p
of the PML-layer.
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