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Abstract

In this research, we present a theoretical and computational framework for using the principle of

decomposition to solve mixed integer linear programs (MILP). We focus on the common threads

among three traditional methods for generating approximations to the convex hull of feasible so-

lutions to an MILP. These include a method employing an outer approximation, the cutting-plane

method, as well as two related methods employing inner approximations, the Dantzig-Wolfe method

and the Lagrangian method. We then extend these traditional methods by allowing for the use of

both outer and inner approximation simultaneously. This leads to the development of two bounding

methods that generate even stronger bounds, known as price-and-cut and relax-and-cut.

We examine a relatively unknown integrated method, called decompose-and-cut, which was

originally inspired by the fact that separation of structured solutions is frequently easier than sep-

aration of arbitrary real vectors. We present its use in the standard cutting-plane method and in-

troduce a class of cutting planes called decomposition cuts. These cuts serve to break the template

paradigm by using information from an implicitly defined polyhedron, in a fashion similar to that

of price-and-cut.

Next, we focus some attention on the implementation of branch-and-price-and-cut methods

based on Dantzig-Wolfe decomposition. We describe a number of algorithmic details discovered

during the development of a software framework for implementing these methods.

We describe DIP (Decomposition for Integer Programming), a new open-source software frame-

work that provides the algorithmic shell for implementation of these methods. DIP has been de-

signed with the goal of providing a user with the ability to easily utilize various traditional and

integrated decomposition methods while requiring only the provision of minimal problem-specific
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algorithmic components. The ability to develop a software framework that can handle these meth-

ods in an application-independent manner relies on the conceptual framework proposed. DIP is the

first of its kind in this respect and should greatly break down the barriers of entry into developing

solvers based on these methods. We provide numerous examples to help solidify the understanding

of how a user would interface with the framework.

To demonstrate the effectiveness of these ideas in practice, we describe details of applications

written in support of work done while the author was employed at SAS Institute. For each applica-

tion, we present computational results showing the effectiveness of the framework in practice. The

first application is the Multi-Choice Multi-Dimensional Knapsack Problem, an important subprob-

lem arising in the algorithms present in SAS Marketing Optimization, which attempts to improve

the return-on-investment for marketing campaign offers. We introduce an application from the

banking industry for ATM cash management that we worked on for the Center of Excellence in

Operations Research at SAS Institute. We model the problem as a mixed integer nonlinear program

and create an application in DIP, to solve an approximating MILP. Finally, we present another appli-

cation developed in DIP, called MILPBlock, which provides a black-box framework for using these

integrated methods on generic MILPs that have some block angular structure. We present some

computational results using MILPBlock on a model presented to us from SAS Retail Optimization.

2



Chapter 1

Introduction

Within the field of mathematical programming, discrete optimization has become the focus of a vast

body of research and development due to the increasing number of industries now employing it to

model the decision analysis for their most complex systems. Mixed integer linear programming

problems involve minimizing (or maximizing) the value of some linear function over a polyhedral

feasible region subject to integrality restrictions on some of the variables. More formally, a mixed

integer linear program (MILP) can be defined as

min
x∈Rn

{
c>x | Ax ≥ b, xi ∈ Z ∀i ∈ I

}
, (1.1)

where c ∈ Qn is a given cost vector, A ∈ Qm×n is the constraint matrix, b ∈ Qm is the right

hand side, and I ⊆ {1, . . . , n} is the index set of variables that are restricted to integer values.

Two important special cases are when I = {1, . . . , n}, which we refer to as a (pure) integer linear

program (ILP) and when I = ∅, which we refer to as a linear program (LP).

Solving an MILP is known to be an NP-hard problem in general [34]. However, due to re-

cent breakthroughs in both the underlying theory and available computer implementations, discrete

optimization is now a viable tool for optimizing some of the most complex systems. We are just

now beginning to understand the impact that discrete optimization can have in helping organiza-

tions optimize the efficiency of their processes. In the past two decades, MILP has seen widespread

adoption in a large and diverse array of industries, including logistics, finance, medical research,
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engineering design, retail, and many others.

In the following paragraphs, we attempt to put into context the direction of our research. For

this purpose, we assume the reader has a working knowledge of the theory and practice of integer

programming. In Sections 1.1 and 1.2, we present a more formal treatment of the relevant definitions

and notation. For an in-depth treatment of the theory of integer programming, we direct the reader

to the works of Schrijver [83], Nemhauser and Wolsey [70], and Wolsey [93].

One of the most successful algorithms developed to date for solving MILPs is the branch-and-

bound method [50]. Branch and bound is a divide-and-conquer approach that reduces the original

problem to a series of smaller subproblems and then recursively solves each subproblem. This

dissertation focuses on the development of a theoretical and computational framework for comput-

ing strong bounds to help improve the performance of branch-and-bound methods. Most bounding

procedures for MILPs are based on the iterative construction and improvement of polyhedral ap-

proximations of P , the convex hull of feasible solutions. Solving an optimization problem over

such a polyhedral approximation, provided it fully contains P , produces a bound that can be used to

drive a branch-and-bound algorithm. The effectiveness of the bounding procedure depends largely

on how well P can be approximated. The most straightforward approximation is the continuous

approximation, consisting simply of the linear constraints present in the original formulation. The

bound resulting from this approximation is frequently too weak to be effective, however. In such

cases, it can be improved by dynamically generating additional polyhedral information that can be

used to augment the approximation.

Traditional dynamic procedures for augmenting the continuous approximation can be grouped

roughly into two categories. Cutting-plane methods improve the approximation by dynamically

generating half-spaces that contain P but not the continuous approximation, i.e., valid inequali-

ties. These half-spaces are then intersected with the current approximation, thereby improving it.

With this approach, valid inequalities are generated by solution of an associated separation prob-

lem. Generally, the addition of each valid inequality reduces the hypervolume of the approximating

polyhedron, resulting in a potentially improved bound. Because they dynamically generate part of

the description of the final approximating polyhedron as the intersection of half-spaces (an outer
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representation), we refer to cutting-plane methods as outer approximation methods. Traditional

column-generation methods, on the other hand, improve the approximation by dynamically gen-

erating the extreme points of a polyhedron containing P , which is again intersected with the con-

tinuous approximation, as in the cutting-plane method, to yield a final approximating polyhedron.

In this case, each successive extreme point is generated by solution of an associated optimization

problem and at each step, the hypervolume of the approximating polyhedron is increased. Because

decomposition methods dynamically generate part of the description of the approximating polyhe-

dron as the convex hull of a finite set (an inner representation), we refer to these methods as inner

approximation methods.

Both inner and outer methods work roughly by alternating between a procedure for computing

solution and bound information (the master problem) and a procedure for augmenting the current

approximation (the subproblem). The two approaches, however, differ in important ways. Outer

methods require that the master problem produce “primal” solution information, which then be-

comes the input to the subproblem, a separation problem. Inner methods require “dual” solution

information, which is then used as the input to the subproblem, an optimization problem. In this

sense, the two approaches can be seen as “dual” to one another. A more important difference,

however, is that the valid inequalities generated by an inner method can be valid with respect to

any polyhedron containing P (see Section 2.3.1), whereas the extreme points generated by an inner

method must come from a single polyhedron, or some restriction of that polyhedron (see Section

3.3). Procedures for generating new valid inequalities can also take advantage of knowledge of

previously generated valid inequalities to further improve the approximation, whereas with inner

methods, such “backward-looking” procedures do not appear to be possible. Finally, the separation

procedures used in the cutting-plane method can be heuristic in nature as long as it can be proven

that the resulting half-spaces do actually contain P . Although heuristic methods can be employed

in solving the optimization problems required of an inner method, valid bounds are obtained only

when using exact optimization for some valid relaxation. On the whole, outer methods have proven

to be more flexible and powerful, and this is reflected in their position as the approach of choice for

solving most MILPs.
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1.1. BACKGROUND DEFINITIONS AND NOTATION

As we show, however, inner methods do still have an important role to play. Although inner and

outer methods have traditionally been considered separate and distinct, it is possible, in principle,

to integrate them in a straightforward way. By doing so, we obtain bounds at least as good as those

yielded by either approach alone. In such an integrated method, one alternates between a master

problem that produces both primal and dual information, and either one of two subproblems, one

an optimization problem and the other a separation problem. This may result in significant synergy

between the subproblems, as information generated by solving the optimization subproblem can be

used to generate cutting planes and vice versa.

The theoretical framework tying together these different bounding methods only starts to scratch

the surface. The computational nuances of standard approaches to MILP, like branch-and-cut, are

just beginning to be better understood. Although much of the theory on these standard methods has

been known for decades [70], real performance improvements are just starting to be realized [14].

Column-generation methods, traditional and integrated, are even less understood. The basic theory

has also been around for quite some time [10]. However, computational success stories have been

limited to a small number of industries. In addition, the ability to apply these methods has relied

heavily on application-specific techniques. In this research, we attempt to generalize many of the

algorithmic enhancements under one umbrella framework that does not depend on the structure of

a specific application.

1.1 Background Definitions and Notation

For ease of exposition, we consider only pure integer linear programs with bounded, nonempty

feasible regions throughout this thesis, although the methods presented herein can be extended to

more general settings. For the remainder of the thesis, we consider an ILP whose feasible set

consists of the integer vectors contained in the polyhedron Q = {x ∈ Rn | Ax ≥ b}, where A ∈
Qm×n and b ∈ Qm. Let F = Q ∩ Zn be the feasible set and let P be the convex hull of F . The

canonical optimization problem for P is that of determining

zIP = min
x∈Zn

{
c>x | Ax ≥ b

}
= min

x∈F

{
c>x

}
= min

x∈P

{
c>x

}
(1.2)
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1.1. BACKGROUND DEFINITIONS AND NOTATION

for a given cost vector c ∈ Qn, where zIP = ∞ if F is empty. We refer to the optimization over

some polyhedron P for a given cost vector c as OPT(P, c). In what follows, we also consider the

equivalent decision version of this problem, OPT(P, c, U), which is to determine, for a given upper

bound U , whether there is a member of P with objective function value strictly better than U . A

method for solving this problem is assumed to return either the empty set, or a set of one or more

(depending on the situation) members of P with objective value better than U .

A related problem is the separation problem forP , which is typically already stated as a decision

problem. Given x ∈ Rn, the problem of separating x from P is that of deciding whether x ∈ P
and if not, determining a ∈ Rn and β ∈ R such that a>y ≥ β ∀y ∈ P but a>x < β. A pair

(a, β) ∈ Rn+1 such that a>y ≥ β ∀y ∈ P is a valid inequality for P and is said to be violated

by x ∈ Rn if a>x < β. We denote by SEP(P, x) a subroutine that separates an arbitrary vector

x ∈ Rn from polyhedron P , returning either the empty set or a set of one or more violated valid

inequalities. The inequalities returned from this subroutine are referred to as cuts. Note that the

optimization form of the separation problem is that of finding the inequality most violated by a

point y /∈ P and is equivalent to the decision form stated here.

A closely related problem is the facet identification problem, which restricts the generated in-

equalities to only those that are facet-defining for P . In [37], it was shown that the facet identifica-

tion problem for P is polynomially equivalent to the optimization problem for P (in the worst-case

sense). However, a theme that arises in what follows is that the complexity of optimization and

separation can vary significantly if either the input or the output must have known structure. If the

solution to an optimization problem is required to be integer, the problem generally becomes much

harder to solve. On the other hand, if the input vector to a separation problem is an integral vector,

then the separation problem frequently becomes much easier to solve in the worst case. From the

dual point of view, if the input cost vector of an optimization problem has known structure, such

as integrality of certain components; this may make the problem easier. Requiring the output of

the separation problem to have known structure is known as the template paradigm and may also

make the separation problem easier, but such a requirement is essentially equivalent to enlarging P .

These concepts are discussed in more detail in Section 2.3.1.
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1.2 The Principle of Decomposition

We now formalize some of the notions described in the introduction. Implementing a branch-and-

bound algorithm for solving an ILP requires a procedure that generates a lower bound on the optimal

value zIP. The most commonly used method of bounding is to solve the linear programming relax-

ation obtained by removing the integrality requirement from the ILP formulation. The LP bound is

given by

zLP = min
x∈Rn

{
c>x | Ax ≥ b

}
= min

x∈Q

{
c>x

}
(1.3)

and is obtained by solving a linear program with the original objective function c over the polyhe-

dron Q. It is clear that zLP ≤ zIP since P ⊆ Q. This LP relaxation is usually much easier to solve

than the original ILP, but zLP may be arbitrarily far away from zIP in general, so we need to consider

more effective procedures.

A description that is represented with a polynomial number of variables and constraints is called

compact. In most cases, the description of Q is compact, it can be represented explicitly, and the

bound computed using a standard linear programming algorithm. To improve the LP bound, de-

composition methods construct a second approximating polyhedron that can be intersected with

Q to form a better approximation. Unlike Q, this second polyhedron usually has a description of

exponential size, and we must generate portions of its description dynamically. Such a dynamic pro-

cedure is the basis both for cutting-plane methods [21, 73] , which generate an outer approximation,

and for column-generation methods, such as the Dantzig-Wolfe method [23] and the Lagrangian

method [31, 11], which generate inner approximations.

For the remainder of this section, we consider the relaxation of (1.2) defined by

min
x∈Zn

{
c>x

∣∣ A′x ≥ b′
}

= min
x∈F ′

{
c>x

}
= min

x∈P ′

{
c>x

}
, (1.4)

where F ⊂ F ′ = {x ∈ Zn | A′x ≥ b′ } for some A′ ∈ Qm′×n, b′ ∈ Qm′
and P ′ is the convex

hull of F ′. Along with P ′ is associated a set of side constraints [A′′, b′′] ∈ Qm′′×(n+1) such that

Q = {x ∈ Rn | A′x ≥ b′, A′′x ≥ b′′ }. We denote by Q′ the polyhedron described by the inequal-

ities [A′, b′] and by Q′′ the polyhedron described by the inequalities [A′′, b′′]. Thus, Q = Q′ ∩ Q′′
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1.2. THE PRINCIPLE OF DECOMPOSITION

andF = {x ∈ Zn | x ∈ P ′ ∩Q′′ }. We often refer toQ′ as the relaxed polyhedron. For the decom-

position to be effective, we must have that P ′ ∩ Q′′ ⊂ Q, so that the bound obtained by optimizing

over P ′∩Q′′ is at least as good as the LP bound and strictly better for some objective functions. The

description of Q′′ must also be compact so that we can construct it explicitly. Finally, we assume

that there exists an effective algorithm for optimizing over P ′ and thereby, for separating arbitrary

real vectors from P ′. We are deliberately using the term effective here to denote an algorithm that

has an acceptable average-case running time, since this is more relevant than worst-case behavior in

our computational framework. Note, throughout this research, we are assuming that the efficiency

of the algorithm used for solving OPT(P ′, c) is not affected by the structure of the cost vector c.

Traditional decomposition methods can all be viewed as techniques for iteratively computing

the bound

zD = min
x∈P ′

{
c>x

∣∣ A′′x ≥ b′′
}

= min
x∈F ′∩Q′′

{
c>x

}
= min

x∈P ′∩Q′′

{
c>x

}
. (1.5)

In Section 2.1, we review the cutting-plane method, the Dantzig-Wolfe method, and the Lagrangian

method, all classical approaches that can be used to compute this bound. This common perspective

motivates Section 2.2, where we consider more advanced decomposition methods called integrated

decomposition methods, in which both inner and outer approximation techniques are used in tan-

dem. To illustrate the effect of applying the decomposition principle, we now introduce three simple

examples that we build on throughout the thesis. The first is a simple generic ILP that we refer to as

SILP (small integer linear program).

9



1.2. THE PRINCIPLE OF DECOMPOSITION

Example 1: SILP Let the following be the formulation of a given ILP:

min x1

s.t. 7 x1 − x2 ≥ 13, (1.6)

x2 ≥ 1, (1.7)

− x1 + x2 ≥ −3, (1.8)

−4 x1 − x2 ≥ −27, (1.9)

− x2 ≥ −5, (1.10)

0.2 x1 − x2 ≥ −4, (1.11)

− x1 − x2 ≥ −8, (1.12)

−0.4 x1 + x2 ≥ 0.3, (1.13)

x1 + x2 ≥ 4.5, (1.14)

3 x1 + x2 ≥ 9.5, (1.15)

0.25 x1 − x2 ≥ −3, (1.16)

x ∈ Z2. (1.18)

In this example, we let

P = conv
{
x ∈ R2 | x satisfies (1.6)− (1.17)

}
,

Q′ =
{
x ∈ R2 | x satisfies (1.6)− (1.11)

}
,

Q′′ =
{
x ∈ R2 | x satisfies (1.12)− (1.16)

}
, and

P ′ = conv(Q′ ∩ Z2).

In Figure 1.1(a), we show the associated polyhedra, where the set of feasible solutions F =

Q′ ∩ Q′′ ∩ Z2 = P ′ ∩ Q′′ ∩ Z2 and P = conv(F). Figure 1.1(b) depicts the continuous approxi-

mationQ′ ∩Q′′, while Figure 1.1(c) shows the improved approximation P ′ ∩Q′′. For the objective

function in this example, optimization over P ′ ∩ Q′′ leads to an improvement over the LP bound

obtained by optimization overQ.

In our second example, we consider the well-known Generalized Assignment Problem (GAP) [60].

The GAP, which is in the complexity class NP-hard, has some interesting relaxations that we use

to illustrate some of the ideas discussed throughout this work.
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(a) (b) (c)

(2,1)
P
P′

Q′′
Q′

P

Q′ ∩ Q′′
P
P′ ∩ Q′′

(2,1) (2,1)

Figure 1.1: Polyhedra (Example 1: SILP)

Example 2: GAP The Generalized Assignment Problem (GAP) is that of finding a minimum

cost assignment of n tasks to m machines such that each task is assigned to precisely one machine

subject to capacity restrictions on the machines. With each possible assignment, we associate a

binary variable xij , which, if set to 1, indicates that machine i is assigned to task j. For ease

of notation, let us define two index sets M = {1, . . . , m} and N = {1, . . . , n}. Then an ILP

formulation of GAP is as follows:

min
∑

i∈M

∑

j∈N

cijxij ,

∑

j∈N

wijxij ≤ bi ∀i ∈M, (1.19)

∑

i∈M

xij = 1 ∀j ∈ N, (1.20)

xij ∈ {0, 1} ∀i, j ∈M ×N. (1.21)

In this formulation, equations (1.20) ensure that each task is assigned to exactly one machine. In-

equalities (1.19) ensure that for each machine, the capacity restrictions are met.
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One possible decomposition of GAP is to let the relaxation polyhedron be defined by the as-

signment constraints as follows:

P ′ = conv
{
xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.20) and (1.21)

}
,

Q′′ =
{
xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.19)

}
.

Unfortunately, for this decomposition, the polytope P ′ has the integrality property, which means

that every extremal solution to its continuous relaxation is integral. In this case, the decomposition

bound is no better than the standard continuous relaxation; i.e., zD = zLP. Therefore, if our goal is

to generate tighter bounds, this is not a good choice for a relaxation. However, if we instead choose

the capacity constraints as our relaxation, we get the following:

P ′ = conv
{
xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.19) and (1.21)

}
,

Q′′ =
{
xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.20)

}
.

In this case, the relaxation is a set of independent knapsack problems, which do not have the

integrality property and are separable. Since there are many efficient algorithms for solving the

knapsack problem, this is a good choice for the subproblem, as each one can be solved indepen-

dently.

In our third example, we consider the classical Traveling Salesman Problem (TSP), a well-known

combinatorial optimization problem [4]. The TSP, which is also in the complexity class NP-hard,

lends itself well to the application of the principle of decomposition, as the standard formulation

contains an exponential number of constraints and has a number of well-solved combinatorial re-

laxations.

Example 3a: TSP The Traveling Salesman Problem is that of finding a minimum cost tour in

an undirected graph G with vertex set V = {0, . . . , n− 1} and edge set E. We assume without

loss of generality that G is complete. A tour is a connected subgraph for which each node has

degree two. The TSP is then to find such a subgraph of minimum cost, where the cost is the sum
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of the costs of the edges comprising the subgraph. With each edge e ∈ E, we therefore associate

a binary variable xe, indicating whether edge e is part of the subgraph, and a cost ce ∈ R. Let

δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S } , E(S : T ) = {{i, j} | i ∈ S, j ∈ T } , E(S) = E(S : S) and

x(F ) =
∑

e∈F xe. Then an ILP formulation of the TSP is as follows:

min
∑

e∈E

cexe,

x(δ({i})) = 2 ∀i ∈ V, (1.22)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ n− 1, (1.23)

0 ≤ xe ≤ 1 ∀e ∈ E, (1.24)

xe ∈ Z ∀e ∈ E. (1.25)

The convex hull of the TSP polytope is then

P = conv
{
x ∈ RE | x satisfies (1.22)− (1.25)

}
.

The equations (1.22) are the degree constraints, which ensure that each vertex has degree two in the

subgraph, while the inequalities (1.23) are known as the subtour elimination constraints (SECs) and

enforce connectivity. Since there are an exponential number of SECs, it is impossible to explicitly

construct the LP relaxation of TSP for large graphs. Following the pioneering work of Held and

Karp [42], however, we can apply the principle of decomposition by employing the well-known

Minimum 1-Tree Problem, a combinatorial relaxation of TSP.

A 1-tree is a tree spanning V \ {0} plus two edges incident to vertex 0. A 1-tree is hence a

subgraph containing exactly one cycle through vertex 0. The Minimum 1-Tree Problem is to find a
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1-tree of minimum cost and can thus be formulated as follows:

min
∑

e∈E

cexe,

x(δ({0})) = 2, (1.26)

x(E(V )) = |V |, (1.27)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0} , 3 ≤ |S| ≤ |V | − 1, (1.28)

xe ∈ {0, 1} ∀e ∈ E. (1.29)

A minimum cost 1-tree can be obtained easily as the union of a minimum cost spanning tree of

V \ {0} plus two cheapest edges incident to vertex 0. For this example, we thus let

P ′ = conv
{
x ∈ RE | x satisfies (1.26)− (1.29)

}

be the 1-tree polytope, while the degree and bound constraints comprise the polytope

Q′′ = {
x ∈ RE | x satisfies (1.22) and (1.24)

}
.

The set of feasible solutions to TSP is then F = P ′∩Q′′∩ZE , the integer points in the intersection

of these two polytopes.

1.3 Computational Software for Decomposition Methods

Sometime around the late 1980s, the recognition of mixed integer programming models as an impor-

tant paradigm for solving real business problems had encouraged a number of commercial software

vendors towards a large investment in tackling the solution of bigger and more difficult MILPs. The

computational strides made in developing methods for solving generic MILPs throughout the 1990s

were dramatic [13]. Despite this, there are still many classes of important MILPs that are extremely

difficult for today’s best solvers. Exploiting the special structure of certain models has long been an

active field of research.
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In the early 1990s, several research groups recognized the potential of abstracting the general

branch-and-cut framework in the form of a software framework with user hooks for adding problem-

specific routines. This led to the development of several popular frameworks, for example, MINTO

[68], MIPO [6], bc-opt [20], SIP [61], ABACUS [46], and SYMPHONY [79]. The majority of

these frameworks are focused on providing an infrastructure for implementing branch-and-bound

algorithms in which the user could provide their own specific methods for customizing both the

branching and the bounding operations. In the 1990s, most of the work using these frameworks

focused on problem-specific cutting planes that were incorporated into the framework to produce a

branch-and-cut algorithm.

At the same time, column-generation methods were also gaining popularity. Of the list above,

the only frameworks that provided some facility for branch-and-price were MINTO, ABACUS, and

SYMPHONY. In all cases, the end-goal was to automate the most common elements of the branch-

and-cut (or price) algorithm, allowing the user to focus on the problem-specific hooks. In addition,

some of the frameworks (SYMPHONY, for example) were designed in a generic manner to allow

complete flexibility for the user to override just about every algorithmic function. This added to

the wide array of problem types and methods that could be implemented within the frameworks.

Much less common in these frameworks was support for integrated methods like branch-and-price-

and-cut. Although there is some early mention of these ideas, there are very few implementations

discussed in the literature that use any of these frameworks.

Around 1993, a research group headed by Ralphs and Ladányi at Cornell University, produced

what was then known as COMPSys (Combinatorial Optimization Multi-Processing System). Af-

ter several revisions to enable broader functionality, COMPSys became SYMPHONY (Single- or

Multi-Process Optimization over Networks) [81]. SYMPHONY was originally written in C and

provided a fully generic branch-and-cut framework where the nodes of the branch-and-bound tree

could be processed in parallel in either distributed or shared memory architectures. SYMPHONY

also provided limited functionality for branch-and-price. A version of SYMPHONY written in C++,

called COIN/BCP was later produced at IBM as part of the COIN-OR (Computational Optimiza-

tion INfrastructure for Operations Research) project [53]. In contrast to SYMPHONY, COIN/BCP
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is more focused on providing extended functionality for branch-and-price-and-cut.

Although column-generation methods are abundant in the literature for tackling difficult MILPs,

the computational improvements are almost always based on problem-specific techniques. In many

cases, theoretical generalizations of these ideas have long been known, but a treatment of the al-

gorithmic implications has not. Consequently, the software frameworks for use in this area have

remained inherently flexible, leaving it up to the users to implement the details of each method as

it pertains to their specific application. With this flexibility comes a great deal of power but also a

burden on the user to implement and reimplement the various algorithmic components in the context

of their specific application.

In this research, we propose a theoretical framework that ties together various algorithmic ap-

proaches related to decomposition methods. From this foundation, we develop a new open-source

C++ software framework, called DIP (Decomposition for Integer Programming). DIP is designed

with the goal of providing a user with the ability to easily utilize various traditional and integrated

decomposition methods while requiring only the provision of minimal problem-specific algorithmic

components. With DIP, the majority of the algorithmic structure is provided as part of the frame-

work, making it easy to compare various algorithms directly and determine which option is the best

for a given problem setting. In addition, DIP is extensible—each algorithmic component can be

overridden by the user, if they so wish, in order to develop sophisticated variants of these methods.

1.4 Contributions

In this section we summarize the contributions of this body of research.

• Development of a conceptual framework tying together numerous decomposition-based meth-

ods for generating approximations of the convex hull of feasible solutions.

We draw connections among various decomposition-based methods used in the context of integer

linear programming. These include outer approximation methods, like the cutting-plane method,

and inner approximation methods, like the Dantzig-Wolfe method and the Lagrangian method. We
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then extend these connections to encompass integrated methods, which generate tighter approxima-

tions by combining elements from more than one method simultaneously.

• Development of a framework for implementation of the integrated method called decompose-

and-cut, based on the concept of structured separation, along with methods for separating an

associated class of cutting planes called decomposition cuts.

We introduce an extension of the well-known template paradigm, called structured separation, in-

spired by the fact that separation of structured solutions is frequently easier than separation of ar-

bitrary real vectors. We also examine a relatively new class of decomposition-based algorithms

called decompose-and-cut. We present its use in the standard cutting-plane method for structured

separation, introduce a class of cutting planes called decomposition cuts, and provide supporting

computational evidence of its effectiveness.

• Descriptions of numerous implementation considerations for branch-and-price-and-cut, in-

cluding an introduction to a relatively unknown idea of using nested polytopes for generating

inner approximations.

We introduce several techniques that may help overall performance when using integrated methods

embedded in a branch-and-bound framework. We introduce an extension to the idea of price-and-

branch and discuss the benefits of using nested polyhedra when generating inner approximations.

We provide computational comparisons of some of these techniques as they apply to the related

methods.

• Development of DIP, an extensible open-source software framework for implementing decomposition-

based methods with minimal user burden.

We have created a new project as part of COIN-OR, called DIP (Decomposition for Integer Pro-

gramming). This project includes a C++ software framework, which implements the majority of

methods described in the thesis. With the framework, we provide numerous examples to show how

a user would interact with the software to develop their own application based on these methods.

17



1.5. OUTLINE OF THE THESIS

• Development of MILPBlock, a DIP application and generic black-box solver for block-diagonal

MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user

input.

Along with the DIP project, we have created an application called MILPBlock. MILPBlock pro-

vides a black-box solver, based on these decomposition-based methods, for generic MILPs that have

some block-angular structure.

• Presentation of computational results using DIP on three real-world applications coming

from the marketing, banking, and retail industries.

Finally, we introduce a few applications developed using DIP and associated computational results

coming from various industries.

1.5 Outline of the Thesis

In this section, we outline the remaining chapters of the thesis. In Chapter 2, we present the overall

theoretical framework for decomposition methods. In Section 2.1, we expand on the principle of de-

composition and its application to integer linear programming in a traditional setting. This includes

a review of three related algorithmic approaches: the cutting plane method, the Dantzig-Wolfe

method, and the Lagrangian method. Each of these methods relies on finding an approximation of

the convex hull of feasible solutions to the original problem. This is accomplished by intersecting

one polyhedron, which has an explicit, compact representation, with another, which has exponential

size and is represented implicitly through the solution of some auxiliary subproblem. We view these

methods in a common frame in order to facilitate the presentation of the more advanced integrated

algorithms. In Section 2.2, we extend the traditional framework to show how the cutting-plane

method can be integrated with either the Dantzig-Wolfe method or the Lagrangian method to yield

improved bounds. In these integrated methods we now allow simultaneous generation of two, both

of exponential size. In Section 2.3, we discuss the solution of the separation subproblem and in-

troduce an extension of the well-known template paradigm, called structured separation, inspired
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by the fact that separation of structured solutions is frequently easier than separation of arbitrary

real vectors. We also examine a relatively new class of decomposition-based algorithms called

decompose-and-cut. We present its use in the standard cutting-plane method for structured separa-

tion and introduce a class of cutting planes called decomposition cuts. These cuts serve to break the

template paradigm by using information from the implicitly defined polyhedron as in the case of the

Dantzig-Wolfe method.

In Chapter 3, we focus attention on the implementation of branch-and-price-and-cut methods

based on Dantzig-Wolfe decomposition. We describe a number of algorithmic details discovered

during the development of DIP. Later, in Chapter 5, we present some applications developed in DIP

and provide some computational results on the effectiveness of some of these ideas.

In Chapter 4, we describe DIP, a new open-source software framework, which follows the con-

ceptual framework described in Chapter 2. We provide numerous examples to help solidify the

understanding of how a user would interface with the framework.

In Chapter 5, we introduce a few applications developed using DIP and associated computa-

tional results referring back to some of the implementation details discussed in Chapter 3. In Sec-

tion 5.1, we present the Multi-Choice Multi-Dimensional Knapsack Problem, which is an important

subproblem arising in the algorithms present in SAS Marketing Optimization, which attempts to

improve the ROI for marketing campaign offers. In Section 5.2, we introduce an application from

the banking industry for ATM cash management, which we worked on for the Center of Excel-

lence in Operations Research at SAS Institute. We model the problem as a mixed integer nonlinear

program and create an application in DIP, called ATM, to solve an approximating MILP using the

aforementioned integrated decomposition methods. We discuss the ease of development using DIP

as well as computational results, which show the effectiveness of the algorithmic approach. Then,

in Section 5.3, we present another application developed in DIP, called MILPBlock, which pro-

vides a black-box framework for using these integrated methods on generic MILPs that have some

block-angular structure. The ability to develop a software framework that can handle these methods

in an application-independent manner relies on the conceptual framework proposed in the first few

chapters. DIP is the first of its kind in this respect and should greatly break down the barriers to
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entry in developing solvers based on these methods. We present some computational results using

MILPBlock on a model presented to us by SAS Retail Optimization. Finally, in Chapter 6, we

conclude with a discussion of proposed future research.
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Chapter 2

Decomposition Methods

In this chapter, we present two major categories of methods for generating bounds by iterative

construction of polyhedral approximations of the convex hull of feasible solutions to some MILP.

The first category, called traditional methods, considers the intersection of a polyhedron having a

compact description with one that is generated implicitly by solving an auxiliary problem. This

is done because the second polyhedron has a description that is of exponential size and therefore

cannot be efficiently defined explicitly. Traditional methods are further broken down into outer

methods, like the cutting-plane method, and inner methods, like the Dantzig-Wolfe method and the

Lagrangian method. The second category, called integrated methods, allows for both polyhedra to

have exponential size. This category includes algorithms that allow the integration of both inner and

outer methods simultaneously.

2.1 Traditional Decomposition Methods

In the following section, we review three classical approaches that take advantage of implicit gener-

ation of a polyhedral approximation. By finding the common threads among each of these methods,

we have generalized the overall approach into four steps. The first step is an initialization step where

we define the initial polyhedral approximation of P ′. This is done using either valid inequalities,

in the case of outer methods, or using extreme points, in the case of inner methods. In the second

step, the master problem is solved which generates primal and or dual solution information over
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the current approximation. Then, in the third step, a subproblem is solved which will be used to

improve the approximation. In the case of outer methods, the subproblem is a separation problem

SEP(P ′, x), where we try to find valid inequalities (for P ′) that are violated by the current primal

solution. In the case of inner methods, the subproblem is an optimization problem OPT(P ′, c),
where we try to find extreme points of P ′ using the current dual solution. In the fourth and final

step, we use the inequalities (or extreme points) found in step three and update the current approx-

imation. By viewing all of these methods within the same conceptual framework, we are able to

draw several connections among the methods. These connections are then used in Section 2.2 to

simplify the presentation of integrated methods, which strive to improve further on the polyhedral

approximation.

2.1.1 Cutting-Plane Method

Using the cutting-plane method, the bound zD = minx∈P ′∩Q′′
{
c>x

}
can be obtained dynamically

by generating the relevant portions of an outer description of P ′. Let [D, d] denote the set of facet-

defining inequalities of P ′, so that

P ′ = {x ∈ Rn | Dx ≥ d} . (2.1)

Then the cutting-plane formulation for the problem of calculating zD can be written as

zCP = min
x∈Q′′

{
c>x | Dx ≥ d

}
. (2.2)

This is a linear program, but since the set [D, d] of valid inequalities is potentially of exponential

size, we dynamically generate them by solving a separation problem. An outline of the method is

presented in Figure 2.1.

In Step 1, we need to initialize the set of valid inequalities to obtain the first approximation.

Typically, if Q is compact, this is done by using the initial set of inequalities [A, b]. If Q is not

compact, then we start with [D0, d0] = [A′′, b′′] and define the initial outer approximationP0
O = Q′′.

In Step 2, the master problem is a linear program whose feasible region is the current outer
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Cutting-Plane Method

Input: An instance OPT (P, c).
Output: A lower bound zCP on the optimal solution value for the instance, and x̂CP ∈ Rn

such that zCP = c>x̂CP.

1. Initialize: Construct an initial outer approximation

P0
O =

{
x ∈ Rn

∣∣ D0x ≥ d0
} ⊇ P, (2.3)

where D0 = A′′ and d0 = b′′, and set t← 0.

2. Master Problem: Solve the linear program

zt
CP = min

x∈Rn

{
c>x

∣∣ Dtx ≥ dt
}

(2.4)

to obtain the optimal value zt
CP = minx∈Pt

O

{
c>x

} ≤ zIP and optimal primal solution
xt

CP.

3. Subproblem: Call the subroutine SEP
(P, xt

CP

)
to generate a set [D̃, d̃] of potentially

improving valid inequalities for P , violated by xt
CP.

4. Update: If violated inequalities were found in Step 3, set [Dt+1, dt+1]← [
Dt dt

D̃ d̃

]
to

form a new outer approximation

Pt+1
O =

{
x ∈ Rn

∣∣ Dt+1x ≤ dt+1
} ⊇ P, (2.5)

and set t← t + 1. Go to Step 2.

5. If no violated inequalities were found, output zCP = zt
CP ≤ zIP and x̂CP = xt

CP.

Figure 2.1: Outline of the cutting-plane method

approximation Pt
O, defined by a set of initial valid inequalities plus those generated dynamically in

Step 3. Solving the master problem in iteration t, we generate the relaxed (primal) solution xt
CP and

a valid lower bound. In the figure, the initial set of inequalities is taken to be those of Q′′, since it

is assumed that the facet-defining inequalities for P ′, which dominate those ofQ′, can be generated

dynamically. In practice, however, this initial set may be chosen to include those of Q′ or some

other polyhedron, on an empirical basis.

In Step 3, we solve the subproblem, which is to try to generate a set of improving valid inequal-

ities, i.e., valid inequalities that improve the bound when added to the current approximation. This
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step is usually accomplished by applying one of the many known techniques for separating xt
CP from

P . It is well known that violation of xt
CP is a necessary condition for an inequality to be improving,

and hence, we generally use this condition to judge the potential effectiveness of generated valid

inequalities. However, this condition is not sufficient and unless the inequality separates the entire

optimal face of Pt
O, it will not actually be improving. Because we want to refer to these results later

in the paper, we state them formally as theorem and corollary without proof. See [85] for a thorough

treatment of the theory of linear programming that leads to this result.

Theorem 2.1 ([77]) Let F be the face of optimal solutions to an LP over a nonempty, bounded

polyhedron X with objective function vector c. Then (a, β) is an improving inequality for X with

respect to c, i.e.,

min
{

c>x
∣∣∣ x ∈ X, a>x ≥ β

}
> min

{
c>x | x ∈ X

}
, (2.6)

if and only if a>y < β for all y ∈ F .

Corollary 2.2 ([77]) If (a, β) is an improving inequality for X with respect to c, then a>x̂ < β,

where x̂ is any optimal solution to the linear program over X with objective function vector c.

Even in the case when the optimal face cannot be separated in its entirety, the augmented cutting-

plane LP must have a different optimal solution, which in turn may be used to generate more poten-

tial improving inequalities. Since the condition of Theorem 2.1 is difficult to verify, one typically

terminates the bounding procedure when increases resulting from additional inequalities become

“too small.”

If violated inequalities are found in Step 3, then the approximation is improved and the algo-

rithm continues. By assumption, OPT (P, c) cannot be solved effectively, which means in turn

that SEP (P, x) is also, in general, assumed to be difficult. Therefore, it is typical to look at the

separation problem over some larger polyhedron containing P , such as P ′.
To better understand this, we must first introduce the template paradigm as it applies to the

cutting-plane method [2]. A set F ⊂ P is called a face if there exists a valid inequality (a, β) for

P such that F =
{
x ∈ P ∣∣ a>x = β

}
. A face of P is a facet of P if dim (F ) = dim (P) − 1.
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Clearly, when looking for tight approximation of P , we ultimately want to generate those facets of

P in the direction of the cost vector.

Instead of considering all valid inequalities at once, the template paradigm considers various

(finite) subsets of valid inequalities, called classes, whose coefficients conform to the structure of

a given template. The separation problem for a class of inequalities is then that of determining

whether a given real vector lies in the polyhedron described by all inequalities in the class, and if

not, determining an inequality from the class that is violated by the vector. In many cases, it is

possible to solve the separation problem for a given class of inequalities valid for the polyhedron

P effectively, though the general separation problem for P is difficult. Consider some finite class

C of valid inequalities. The set of points satisfying all members of C is a polyhedron C, called the

closure with respect to C. Let us denote the separation problem for some class C of inequalities for

a given vector x over the polyhedron C as SEP (C, x).

It is often the case that, for some class C, SEP (C, x) is also difficult to solve for arbitrary x.

However, if we restrict our attention to points x that have some structure, we can often solve the

separation problem for class C effectively. This is a major point of emphasis in the discussion of

integrated decomposition methods. In the classical implementation of the cutting-plane method,

the augmentation of the constraint set is done by finding a hyperplane separating some solution to

a linear program from a given polyhedron. In general, this solution is not guaranteed to have any

structure. One of the advantages of using decomposition methods is that we partition the problem

such that the solutions often have a nice combinatorial structure that we can exploit in the separation

problem. We explore this idea further in Section 2.3.1.

If we start with the continuous approximation P0
O = Q′′ and generate only facet-defining in-

equalities of P ′ in Step 3, then the procedure described here terminates in a finite number of steps

with the bound zCP = zD (see [70]). Since Pt
O ⊇ P ′ ∩ Q′′ ⊇ P , each step yields an approximation

for P , along with a valid bound. In Step 3, we are permitted to generate any valid inequality for P ,

however, not just those that are facet-defining for P ′. In theory, this means that the cutting-plane

method can be used to compute the bound zIP exactly. However, in practice, this is usually not

possible.
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To illustrate the cutting-plane method, we show how it could be applied to generate the bound

zD for the ILPs in Examples 1 (SILP) and 3 (TSP). Since we are discussing the computation of the

bound zD, we only generate facet-defining inequalities for P ′ in these examples. We discuss more

general scenarios later in the paper.

Example 1: SILP (Continued) We define the initial outer approximation to be P0
O = Q′∩Q′′ =

{
x ∈ R2 | x satisfies (1.6)− (1.16)

}
, the continuous approximation.

Iteration 0: Solving the master problem over P0
O, we find an optimal primal solution x0

CP =

(2.25, 2.75) with bound z0
CP = 2.25, as shown in Figure 2.2(a). We then call the subroutine

SEP
(P ′, x0

CP

)
, generating facet-defining inequalities of P ′ that are violated by x0

CP. One such

facet-defining inequality, 3x1 − x2 ≥ 5, is pictured in Figure 2.2(a). We add this inequality to form

a new outer approximation P1
O.

Iteration 1: We again solve the master problem, this time over P1
O, to find an optimal primal so-

lution x1
CP = (2.42, 2.25) and bound z1

CP = 2.42, as shown in Figure 2.2(b). We then call the

subroutine SEP
(P ′, x1

CP

)
. However, as illustrated in Figure 2.2(b), there are no more facet-defining

inequalities violated by x1
CP. In fact, further improvement in the bound would necessitate the addi-

tion of valid inequalities violated by points in P ′. Since we are only generating facets of P ′ in this

example, the method terminates with bound zCP = 2.42 = zD.

We now consider the use of the cutting-plane method for generating the bound zD for the TSP

example. Once again, we only generate facet-defining inequalities for P ′, the 1-tree polytope.

Example 3a: TSP (Continued) We define the initial outer approximation to be comprised of the

degree constraints and the bound constraints, so that

P0
O = Q′′ = {

x ∈ RE | x satisfies (1.22) and (1.24)
}

.
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(a) (b)

x0
CP = (2.25, 2.75)

(2, 1) (2, 1)

P

P′

P0
O = Q′ ∩ Q′′

P

P′

P1
O = P0

O ∩ {x ∈ Rn | 3x1 − x2 ≥ 5}

x1
CP = (2.42, 2.25)

Figure 2.2: Cutting-plane method (Example 1: SILP)

To calculate zCP, we must dynamically generate violated facet-defining inequalities of the 1-tree

polytope P ′ defined earlier. Specifically, we want to find violated subtour elimination constraints

(SECs). Given a vector x̂ ∈ RE satisfying (1.22) and (1.24), the problem of finding an inequality of

the form (1.28) violated by x̂ is equivalent to the well-known minimum cut problem, which can be

nominally solved in O
(|E||V |+ |V |2 log |V |) time [67]. We can use this approach to implement

Step 3 of the cutting-plane method and hence compute the bound zCP effectively. As an example,

consider the vector x̂ pictured graphically in Figure 2.3, obtained in Step 2 of the cutting-plane

method. In the figure, only edges e for which x̂e > 0 are shown. Each edge e is labeled with the

value x̂e, except for edges e with x̂e = 1. The circled set S = {0, 1, 2, 3, 7} of vertices defines an

SEC violated by x̂, since x̂ (E (S)) = 4.6 > 4.0 = |S| − 1.

2.1.2 Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the bound zD can be obtained by dynamically generating the relevant

portions of an inner description of P ′ and intersecting it with Q′′. Consider Minkowski’s Repre-

sentation Theorem, which states that every bounded polyhedron is finitely generated by its extreme

points and extreme rays [70]. Since we assume the feasible region for the problem of interest is

bounded, we can focus solely on extreme points. Let E ⊆ F ′ be the set of extreme points of P ′, so
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Figure 2.3: Finding violated inequalities in the cutting-plane method (Example 3a: TSP)

that

P ′ =
{

x ∈ Rn

∣∣∣∣∣ x =
∑

s∈E
sλs,

∑

s∈E
λs = 1, λs ≥ 0 ∀s ∈ E

}
. (2.7)

That is, every point x ∈ P ′ can be written as a convex combination of extreme points of P ′. In a

slight abuse of notation, we let s ∈ E define an extreme point, a vector in Rn, but also to serve as an

index for the set of weights λ. Then the Dantzig-Wolfe formulation for computing the bound zD is

zDW = min
x∈Rn

{
c>x

∣∣ A′′x ≥ b′′, x ∈ P ′
}

, (2.8)

= min
x∈Rn

{
c>x

∣∣∣∣∣ A′′x ≥ b′′, x =
∑

s∈E
sλs,

∑

s∈E
λs = 1, λs ≥ 0 ∀s ∈ E

}
. (2.9)

By substituting out the original variables, this formulation can be rewritten in the more familiar

form

zDW = min
λ∈RE+

{
c>

(∑

s∈E
sλs

) ∣∣∣∣∣ A′′
(∑

s∈E
sλs

)
≥ b′′,

∑

s∈E
λs = 1

}
. (2.10)

This is a linear program, but since the set E of extreme points is potentially of exponential size,

we dynamically generate those that are relevant by solving an optimization problem over P ′. The

reformulation in (2.10) is commonly referred to as the extended formulation because of the large

number of columns. In contrast, the original formulation (2.2) used in the cutting-plane method
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is referred to as the compact formulation. An outline of the Dantzig-Wolfe method is presented in

Figure 2.4.

In Step 1, we need to initialize the set of extreme points to obtain the first approximation. Note

that there is no obvious candidate for the approximation P0
I . This approximation can be obtained

by generating an initial subset E0 ⊆ E either randomly or by some other appropriate method. This

concept is further explored in Section 3.4.

In Step 2, we solve the master problem, which is a restricted linear program obtained by substi-

tuting E t for E in (2.10). Solving this results in a primal solution λt
DW, and a dual solution consisting

of the dual multipliers ut
DW on the constraints corresponding to [A′′, b′′] and the multiplier αt

DW on

the convexity constraint. The dual solution is needed to generate the improving columns in Step

3. In each iteration, we are generating an inner approximation, Pt
I ⊆ P ′, the convex hull of E t.

Thus Pt
I ∩ Q′′ may or may not contain P , and the value z̄t

DW returned from the master problem in

Step 2 provides an upper bound on zDW. Nonetheless, it is easy to show (see Section 2.1.3) that an

optimal solution to the subproblem solved in Step 3 yields a valid lower bound. In particular, if s̃ is

a member of E with the smallest reduced cost in Step 3, then

zt
DW = zt

DW + rc (s̃) = c>s̃ +
(
ut

DW
)> (

b′′ −A′′s̃
)

(2.15)

is a valid lower bound. It should be noted that any valid lower bound returned from OPT(P ′, c> −
(ut

DW)>A′′, αt
DW) can serve to generate a valid lower bound for zDW. That is, if rc (s̃) ≤ rc (s̃) ,

then zt
DW = zt

DW + rc (s̃) ≤ zDW, is also a valid lower bound.

In Step 3, we search for improving members of E , where, as in the previous section, this means

members that when added to E t yield an improved bound. It is less clear here, however, which

bound we would like to improve, z̄t
DW or zt

DW. A necessary condition for improving z̄t
DW is the

generation of a column with negative reduced cost. In fact, if one considers (2.15), it is clear that

this condition is also necessary for improvement of zt
DW. If any such members exist, we add them

to E t and iterate.

In practice, the algorithm in Figure 2.4 is executed in two phases. Given a set of initial columns,

there is no guarantee that (2.12) will be feasible. To deal with this, we solve a slightly different
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Dantzig-Wolfe Method

Input: An instance OPT (P, c).
Output: A lower bound zDW on the optimal solution value for the instance, a primal solution
λ̂DW ∈ RE , and a dual solution (ûDW, α̂DW) ∈ Rm′′+1.

1. Initialize: Construct an initial inner approximation

P0
I =





∑

s∈E0

sλs

∣∣∣∣∣∣
∑

s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0



 ⊆ P

′ (2.11)

from an initial set E0 of extreme points of P ′ and set t← 0.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄t
DW = min

λ∈RE+

{
c>

(∑

s∈E
sλs

) ∣∣∣∣∣ A′′
(∑

s∈E
sλs

)
≥ b′′,

∑

s∈E
λs = 1, λs = 0 ∀s ∈ E \ E t

}

(2.12)
to obtain the optimal value z̄t

DW = minPt
I∩Q′′ c

>x ≥ zDW, an optimal primal solution

λt
DW ∈ RE+, and an optimal dual solution

(
ut

DW, αt
DW

) ∈ Rm′′+1.

3. Subproblem: Call the subroutine OPT
(
P ′, c> − (

ut
DW

)>
A′′, αt

DW

)
, generating a set

Ẽ of improving members of E with negative reduced cost, where the reduced cost of
s ∈ E is

rc (s) =
(
c> − (

ut
DW

)>
A′′

)
s− αt

DW. (2.13)

If s̃ ∈ Ẽ is a member of E with smallest reduced cost, then zt
DW = rc (s̃) + αt

DW +(
ut

DW
)>

b′′ ≤ zDW provides a valid lower bound.

4. Update: If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ to form the new inner approximation

Pt+1
I =





∑

s∈Et+1

sλs

∣∣∣∣∣∣
∑

s∈Et+1

λs = 1, λs ≥ 0 ∀s ∈ E t+1, λs = 0 ∀s ∈ E \ E t+1



 ⊆ P

′,

(2.14)
and set t← t + 1. Go to Step 2.

5. If Ẽ = ∅, output the bound zDW = z̄t
DW = zt

DW, λ̂DW = λt
DW, and (ûDW, α̂DW) =(

ut
DW, αt

DW
)
.

Figure 2.4: Outline of the Dantzig-Wolfe method
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problem in Phase 1. We add slack variables y ∈ Rm′′
+ to each constraint in the master problem, set

the cost vector c to zero, and instead minimize the slacks. This gives the following restricted master

problem:

z̄t
DW = min

λ∈RE+,y∈Rm′′
+

{
1>y

∣∣∣∣∣ A′′
(∑

s∈E
sλs

)
+ y ≥ b′′,

∑

s∈E
λs = 1, λs = 0 ∀s ∈ E \ E t

}
, (2.16)

which replaces (2.12) while in the first phase. In this manner, the same algorithmic flow applies,

with the standard reduced cost replaced by

rc (s) = − (
ut

DW
)>

A′′s− αt
DW. (2.17)

The goal in this phase is to achieve feasibility rather than optimality. Once a feasible solution has

been found, i.e., ŷ = 0, we can remove the slack variables and move on to Phase 2, as described in

Figure 2.4.

An area that deserves some deeper investigation is the relationship between the solution obtained

by solving the reformulation (2.12) and the solution that would be obtained by solving an LP directly

over Pt
I ∩ Q′′ with the objective function c. Consider the primal optimal solution λt

DW, which we

refer to as an optimal decomposition. If we combine the members of E t using λt
DW to obtain an

optimal fractional solution

xt
DW =

∑

s∈Et

s
(
λt

DW
)
s
, (2.18)

then we see that z̄t
DW = c>xt

DW. In fact, xt
DW ∈ Pt

I∩Q′′ is an optimal solution to the linear program

solved directly over Pt
I ∩Q′′ with objective function c.

The optimal fractional solution plays an important role in the integrated methods to be intro-

duced later. To illustrate the Dantzig-Wolfe method and the role of the optimal fractional solution

in the method, we show how to apply it to generate the bound zD for the ILP of Example 1.

Example 1 : SILP (Continued) For the purposes of illustration, we begin with a randomly gen-

erated initial set E0 = {(4, 1) , (5, 5)} of points. Taking their convex hull, we form the initial inner

approximation P0
I = conv

(E0
)
, as illustrated in Figure 2.5(a).

31



2.1. TRADITIONAL DECOMPOSITION METHODS

Iteration 0: Solving the master problem with inner polyhedron P0
I , we obtain an optimal primal

solution
(
λ0

DW
)
(4,1)

= 0.75,
(
λ0

DW
)
(5,5)

= 0.25, x0
DW = (4.25, 2), and bound z̄0

DW = 4.25. Since

constraint (1.13) is binding at x0
DW, the only nonzero component of u0

DW is
(
u0

DW
)
(1.13)

= 0.28,

while the dual variable associated with the convexity constraint has value α0
DW = 4.17. All other

dual variables have value zero. Next, we search for an extreme point of P ′ with negative reduced

cost, by solving the subproblem OPT
(
P ′, c> − (

ut
DW

)>
A′′, α0

DW

)
. From Figure 2.5(a), we see

that s̃ = (2, 1). This gives a valid lower bound z0
DW = 2.03. We add the corresponding column to

the restricted master and set E1 = E0 ∪ {(2, 1)}.

Iteration 1: The next iteration is depicted in Figure 2.5(b). First, we solve the master problem

with inner polyhedron P1
I = conv

(E1
)

to obtain
(
λ1

DW
)
(5,5)

= 0.21,
(
λ1

DW
)
(2,1)

= 0.79, x1
DW =

(2.64, 1.86), and bound and z̄1
DW = 2.64. This also provides the dual solution

(
u1

DW
)
(1.14) = 0.43

and α1
DW = 0.71 (all other dual values are zero). Solving OPT

(P ′, c> − u1
DWA′′, α1

DW
)
, we obtain

s̃ = (3, 4), and z1
DW = 1.93. We add the corresponding column to the restricted master and set

E2 = E1 ∪ {(3, 4)}.

Iteration 2: The final iteration is depicted in Figure 2.5(c). Solving the master problem once more

with inner polyhedron P2
I = conv

(E2
)
, we obtain

(
λ2

DW
)
(2,1)

= 0.58 and
(
λ2

DW
)
(3,4)

= 0.42,

x2
DW = (2.42, 2.25), and bound z̄2

DW = 2.42. This also provides the dual solution
(
u2

DW
)
(1.15) =

0.17 and α2
DW = 0.83. Solving OPT

(P ′, c> − u2
DWA′′, α2

DW
)
, we conclude that Ẽ = ∅. We there-

fore terminate with the bound zDW = 2.42 = zD.

As a further brief illustration, we return to the TSP example introduced earlier.

Example 3a: TSP (Continued) As we noted earlier, the Minimum 1-Tree Problem can be solved

by computing a minimum cost spanning tree on vertices V \ {0}, and then adding two cheapest

edges incident to vertex 0. This can be done in O (|E| log |V |) time using standard algorithms. In

applying the Dantzig-Wolfe method to compute zD using the decomposition described earlier, the
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(b) (c)(a)

x2
DW = (2.42, 2.25)

P
P′ P′

c> − û>A”c>

c> − û>A”

c> − û>A”

(2, 1) (2, 1) (2, 1)

Q′′ Q′′

P

Q′′

P
P′

P1
I = conv(E1) ⊂ P′ P2

I = conv(E2) ⊂ P′P0
I = conv(E0) ⊂ P′

s̃ = (3, 4)

E1

s̃ = (2, 1)

E0

E2

x0
DW = (4.25, 2) x1

DW = (2.64, 1.86)

Figure 2.5: Dantzig-Wolfe method (Example 1: SILP)

subproblem to be solved in Step 3 is a Minimum 1-Tree Problem. Because we can solve this problem

effectively, we can apply the Dantzig-Wolfe method in this case. As an example of the result of

solving the Dantzig-Wolfe master problem (2.12), Figure 2.6 depicts an optimal fractional solution

(a) to a Dantzig-Wolfe master LP and the six extreme points 2.6(b-g) of the 1-tree polyhedron P ′,
with nonzero weight comprising an optimal decomposition.

Now consider the set S (u, α), defined as

S (u, α) =
{

s ∈ E
∣∣∣
(
c> − u>A′′

)
s = α

}
, (2.19)

where u ∈ Rm′′
and α ∈ R. The set S (

ut
DW, αt

DW
)

is the set of members of E with reduced cost

zero at optimality for (2.12) in iteration t. It follows that conv
(S (

ut
DW, αt

DW
))

is in fact the face

of optimal solutions to the linear program solved over Pt
I with objective function c> − u>A′′. This

line of reasoning culminates in the following theorem tying together the set S (
ut

DW, αt
DW

)
defined

above, the vector xt
DW, and the optimal face of solutions to the LP over the polyhedron Pt

I ∩Q′′.

Theorem 2.3 ([77]) conv
(S (

ut
DW, αt

DW
))

is a face of Pt
I and contains xt

DW.
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Figure 2.6: Dantzig-Wolfe method (Example 3a: TSP)

Proof We first show that conv
(S (

ut
DW, αt

DW
))

is a face of Pt
I . Observe that

(
c> − (

ut
DW

)>
A′′, αt

DW

)

defines a valid inequality for Pt
I since αt

DW is the optimal value for the problem of minimizing over

Pt
I with objective function c> − (

ut
DW

)>
A′′. Thus, the set

G =
{

x ∈ Pt
I

∣∣∣
(
c> − (

ut
DW

)>
A′′

)
x = αt

DW

}
, (2.20)

is a face of Pt
I that contains S (

ut
DW, αt

DW
)
. We show that conv

(S (
ut

DW, αt
DW

))
= G. Since G

is convex and contains S (
ut

DW, αt
DW

)
, it also contains conv

(S (
ut

DW, αt
DW

))
, so we just need to

show that conv
(S (

ut
DW, αt

DW
))

contains G. We do so by observing that the extreme points of G

are elements of S (
ut

DW, αt
DW

)
. By construction, all extreme points of Pt

I are members of E , and
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the extreme points of G are also extreme points of Pt
I . Therefore, the extreme points of G must be

members of E and contained in S (
ut

DW, αt
DW

)
. The claim follows, and conv

(S (
ut

DW, αt
DW

))
is a

face of Pt
I . The fact that xt

DW ∈ conv
(
S

(
ut

DW, αt
DW

))
follows from the fact that xt

DW is a convex

combination of members of S (
ut

DW, αt
DW

)
.

An important consequence of Theorem 2.3 is that the face of optimal solutions to the LP over the

polyhedron Pt
I ∩Q′′ is actually contained in conv

(S (
ut

DW, αt
DW

))∩Q′′, as stated in the following

corollary.

Corollary 2.4 ([77]) If F is the face of optimal solutions to the linear program solved directly over

Pt
I ∩Q′′ with objective function vector c, then F ⊆ conv

(S (
ut

DW, αt
DW

)) ∩Q′′.

Proof Let x̂ ∈ F be given. Then we have that x̂ ∈ Pt
I ∩Q′′ by definition, and

c>x̂ = αt
DW +

(
ut

DW
)>

b′′ = αt
DW +

(
ut

DW
)>

A′′x̂, (2.21)

where the first equality in this chain is a consequence of strong duality and the last is a consequence

of complementary slackness. Hence, it follows that
(
c> − (

ut
DW

)>
A′′

)
x̂ = αt

DW, and the result is

proven.

Hence, each iteration of the method produces not only the primal solution xt
DW ∈ Pt

I ∩Q′′ but also

a dual solution
(
ut

DW, αt
DW

)
that defines a face conv

(S (
ut

DW, αt
DW

))
of Pt

I that contains the entire

optimal face of solutions to the LP solved directly over Pt
I ∩Q′′ with the original objective function

vector c.

When no column with negative reduced cost exists, the two bounds must be equal to zD and we

stop, outputting both the primal solution λ̂DW and the dual solution (ûDW, α̂DW). It follows from

the results proven above that in the final iteration, any column of (2.12) with reduced cost zero must

in fact have a cost of α̂DW = zD − û>DWb′′ when evaluated with respect to the modified objective

function c> − û>DWA′′. In the final iteration, we can therefore strengthen the statement of Theorem

2.3, as follows.

Theorem 2.5 ([77]) conv (S (ûDW, α̂DW)) is a face of P ′ and contains x̂DW.
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The proof follows along the same lines as Theorem 2.3. As before, we can also state the following

important corollary.

Corollary 2.6 ([77]) If F is the face of optimal solutions to the linear program solved directly over

P ′ ∩Q′′ with objective function vector c, then F ⊆ conv (S (ûDW, α̂DW)) ∩Q′′.

Thus, conv (S (ûDW, α̂DW)) is actually a face of P ′ that contains x̂DW and the entire face of optimal

solutions to the LP solved over P ′∩Q′′ with objective function c. This fact provides strong intuition

regarding the connection between the Dantzig-Wolfe method and the cutting-plane method and

allows us to regard Dantzig-Wolfe decomposition as either a procedure for producing the bound

zD = c>x̂DW from primal solution information or the bound zD = c>ŝ + û>DW (b′′ −A′′ŝ), where ŝ

is any member of S (ûDW, α̂DW), from dual solution information. This fact is important in the next

section, as well as later when we discuss integrated methods.

The exact relationship among S (ûDW, α̂DW), the polyhedron P ′∩Q′′, and the face F of optimal

solutions to an LP solved over P ′ ∩ Q′′ can vary for different polyhedra and even for different

objective functions. Figure 2.7 shows the polyhedra of Example 1 with three different objective

functions indicated. The convex hull of S (ûDW, α̂DW) is typically a proper face of P ′, but it is

possible for x̂DW to be an inner point of P ′, in which case we have the following result.

Theorem 2.7 ([77]) If x̂DW is an inner point of P ′, then conv (S (ûDW, α̂DW)) = P ′.

Proof We prove the contrapositive. Suppose conv (S (ûDW, α̂DW)) is a proper face of P ′. Then

there exists a facet-defining valid inequality (a, β) ∈ Rn+1 such that conv (S (ûDW, α̂DW)) ⊆
{
x ∈ Rn

∣∣ a>x = β
}

. By Theorem 2.5, x̂DW ∈ conv (S (ûDW, α̂DW)) and x̂DW therefore cannot

satisfy the definition of an inner point.

In this case, illustrated graphically in Figure 2.7(a) with the polyhedra from Example 1, zDW =

zLP and Dantzig-Wolfe decomposition does not improve the bound. All columns of the Dantzig-

Wolfe LP have reduced cost zero, and any member of E can be given positive weight in an optimal

decomposition. A necessary condition for an optimal fractional solution to be an inner point of P ′

is that the dual value of the convexity constraint in an optimal solution to the Dantzig-Wolfe LP be

zero. This condition indicates that the chosen relaxation may be too weak.
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(a) (b) (c)

P′ ∩ Q′′ ⊃ conv(S(ûDW, α̂DW)) ∩ Q′′ ⊃ F

Q′′

c>

c> c>

Q′′Q′′

P′ P′ P′

F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

F = {x̂DW}

P′ ∩ Q′′ = conv(S(ûDW, α̂DW)) ∩ Q′′ ⊃ F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

P′ ∩ Q′′ ⊃ conv(S(ûDW, α̂DW)) ∩ Q′′ = F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

F = {x̂DW}

Figure 2.7: The relationship of P ′ ∩Q′′, conv (S (ûDW, α̂DW)) ∩Q′′, and the face F .

A second case of potential interest is when F = conv (S (ûDW, α̂DW)) ∩Q′′, illustrated graphi-

cally in Figure 2.7(b). In this case, all constraints of the Dantzig-Wolfe LP other than the convexity

constraint must have dual value zero, since removing them does not change the optimal solution

value. This condition can be detected by examining the objective function values of the members

of E with positive weight in the optimal decomposition. If they are all identical, any such member

that is contained in Q′′ (if one exists) must be optimal for the original ILP, since it is feasible and

has objective function value equal to zIP. The more typical case, in which F is a proper subset of

conv (S (ûDW, α̂DW)) ∩Q′′, is shown in Figure 2.7(c).

2.1.3 Lagrangian Method

The Lagrangian method [31, 11] is a general approach for computing zD that is closely related to

the Dantzig-Wolfe method but is focused primarily on producing dual solution information. The

Lagrangian method can be viewed as a method for producing a particular face of P ′, as in the

Dantzig-Wolfe method, but no explicit approximation of P ′ is maintained. Although there are im-

plementations of the Lagrangian method that do produce approximate primal solution information

similar to the solution information that the Dantzig-Wolfe method produces (see Section 2.1.2),
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our viewpoint is that the main difference between the Dantzig-Wolfe method and the Lagrangian

method is the type of solution information they produce. This distinction is important when we

discuss integrated methods in Section 2.2. When exact primal solution information is not required,

faster algorithms for determining the dual solution are possible. By employing a Lagrangian frame-

work instead of a Dantzig-Wolfe framework, we can take advantage of this fact.

For a given vector u ∈ Rm′′
+ , the Lagrangian relaxation of (1.2) is given by

zLR (u) = min
s∈E

{
c>s + u>

(
b′′ −A′′s

)}
. (2.22)

It is easily shown that zLR (u) is a lower bound on zIP for any u ≥ 0. The elements of the vector

u are called Lagrange multipliers or dual multipliers with respect to the rows of [A′′, b′′]. Note that

(2.22) is the same subproblem solved in the Dantzig-Wolfe method to generate the most negative

reduced cost column. The problem

zLD = max
u∈Rm′′

+

{zLR (u)} (2.23)

of maximizing this bound over all choices of dual multipliers is a dual to (1.2) called the Lagrangian

dual and also provides a lower bound zLD, which we call the LD bound. A vector û of multipliers

that yield the largest bound are called optimal (dual) multipliers.

It is easy to see that zLR (u) is a piecewise-linear concave function and can be maximized by

any number of methods for non-differentiable optimization, including the well-known subgradient

algorithm. For a complete treatment of the various methods for solving this problem, see [41]. In

Figure 2.8, we give an outline of the steps involved in the Lagrangian method. As in Dantzig-Wolfe,

the main loop involves updating the dual solution and then generating an improving member of E
by solving a subproblem. Unlike the Dantzig-Wolfe method, there is no approximation and hence

no update step, but the method can nonetheless be viewed in the same frame of reference.

To more clearly see the connection to the Dantzig-Wolfe method, consider the dual of the
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Lagrangian Method

Input: An instance OPT (P, c).
Output: A lower bound zLD on the optimal solution value for the instance and a dual solution
ûLD ∈ Rm′′

.

1. Initialize: Let s0
LD ∈ E define some initial extreme point of P ′, u0

LD some initial
setting for the dual multipliers and set t← 0.

2. Master Problem: Using the solution information gained from solving the pricing
subproblem, and the previous dual setting ut

LD, revise the dual multipliers ut+1
LD .

3. Subproblem: Call the subroutine OPT
(
P ′, c> − (

ut
LD

)>
A′′

)
, to solve

zt
LD = min

s∈E

{(
c> − (

ut
LD

)>
A′′

)
s + b′′>ut

LD

}
. (2.24)

Let st+1
LD ∈ E be the optimal solution to this subproblem, if one is found.

4. If a prespecified stopping criterion is met, then output zLD = zt
LD and ûLD = ut

LD,
otherwise, go to Step 2

Figure 2.8: Outline of the Lagrangian method

Dantzig-Wolfe LP (2.10),

zDW = max
α∈R,u∈Rm′′

+

{
α + b′′>u

∣∣∣ α ≤
(
c> − u>A′′

)
s ∀s ∈ E

}
. (2.25)

Letting η = α + b′′>u and rewriting, we see that

zDW = max
η∈R,u∈Rm′′

+

{
η

∣∣∣ η ≤
(
c> − u>A′′

)
s + b′′>u ∀s ∈ E

}
(2.26)

= max
η∈R,u∈Rm′′

+

{
min
s∈E

{(
c> − u>A′′

)
s + b′′>u

}}
= zLD. (2.27)

Thus, we have that zLD = zDW and that (2.23) is another formulation for the problem of calculating

zD. It is also interesting to observe that the set S (
ut

LD, zt
LD − b′′>ut

LD
)

is the set of alternative

optimal solutions to the subproblem solved at iteration t in Step 3. The following theorem is a

counterpart to Theorem 2.5 that follows from this observation.

Theorem 2.8 ([77]) conv
(S (

ûLD, zLD − b′′>ûLD
))

is a face of P ′. Also, if F is the face of optimal
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solutions to the linear program solved directly over P ′ ∩ Q′′ with objective function vector c, then

F ⊆ conv
(S (

ûLD, zLD − b′′>ûLD
)) ∩Q′′.

Again, the proof is similar to that of Theorem 2.5. This shows that while the Lagrangian method

does not maintain an explicit approximation, it does produce a face of P ′ containing the optimal

face of solutions to the linear program solved over the approximation P ′ ∩Q′′.

2.2 Integrated Decomposition Methods

In Section 2.1, we demonstrated that traditional decomposition approaches can be viewed as uti-

lizing dynamically generated polyhedral information to improve the LP bound by building either

an inner or an outer approximation of an implicitly defined polyhedron that approximates P . The

choice between inner and outer methods is largely an empirical one, but recent computational re-

search has favored outer methods. In what follows, we discuss two methods for integrating inner and

outer methods. In Section 2.3 we introduce a third, relatively unknown, integrated method. Con-

ceptually, these methods are not difficult to understand and can result in bounds that are improved

over those achieved by either approach alone.

While traditional decomposition approaches build either an inner or an outer approximation,

integrated decomposition methods build both an inner and an outer approximation. These methods

follow the same basic logic as traditional decomposition methods, except that the master problem is

required to generate both primal and dual solution information, and the subproblem can be either a

separation problem or an optimization problem. The first two techniques we describe integrate the

cutting-plane method with either the Dantzig-Wolfe method or the Lagrangian method. The third

technique, described in Section 2.3, is a cutting-plane method that uses an inner approximation to

perform separation.

2.2.1 Price-and-Cut

The integration of the cutting-plane method with the Dantzig-Wolfe method results in a procedure

that alternates between a subproblem that attempts to generate improving columns (the pricing
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subproblem) and a subproblem that attempts to generate improving valid inequalities (the cutting

subproblem). Hence, we call the resulting method price-and-cut. When employed in a branch

and bound framework, the overall technique is called branch-and-price-and-cut. This method has

already been studied previously by a number of authors [10, 87, 47, 9, 86] and more recently by

Arãgao and Uchoa [25].

As in the Dantzig-Wolfe method, the bound produced by price-and-cut can be thought of as re-

sulting from the intersection of two approximating polyhedra. However, the Dantzig-Wolfe method

required one of these,Q′′, to have a short description. With integrated methods, both polyhedra can

have descriptions of exponential size. Hence, price-and-cut allows partial descriptions of both an

inner polyhedron PI and an outer polyhedron PO to be generated dynamically. To optimize over

the intersection of PI and PO, we use a Dantzig-Wolfe reformulation as in (2.10), except that the

[A′′, b′′] is replaced by a matrix that changes dynamically. The outline of this method is shown in

Figure 2.9.

In examining the steps of this generalized method, the most interesting question that arises is

how methods for generating improving columns and valid inequalities translate to this new dynamic

setting. Potentially troublesome is the fact that column-generation results in a reduction of the bound

z̄t
PC produced by (2.30), while generation of valid inequalities is aimed at increasing it. Recall again,

however, that while it is the bound z̄t
PC that is directly produced by solving (2.30), it is the bound

zt
PC obtained by solving the pricing subproblem that one might claim is more relevant to our goal,

and this bound can potentially be improved by generation of either valid inequalities or columns.

Improving columns can be generated in much the same way as they were in the Dantzig-Wolfe

method. To generate new columns, we simply look for those with negative reduced cost, where

reduced cost is defined to be the usual LP reduced cost with respect to the current reformulation.

Having a negative reduced cost is still a necessary condition for a column to be improving. How-

ever, it is less clear how to generate improving valid inequalities. Consider an optimal fractional

solution xt
PC obtained by combining the members of E according to weights yielded by the optimal

decomposition λt
PC in iteration t. Following a line of reasoning similar to that followed in analyzing

the results of the Dantzig-Wolfe method, we can conclude that xt
PC is in fact an optimal solution to
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Price-and-Cut Method

Input: An instance OPT(P, c).
Output: A lower bound zPC on the optimal solution value for the instance, a primal solution
x̂PC ∈ Rn, an optimal decomposition λ̂PC ∈ RE , a dual solution (ûPC, α̂PC) ∈ Rmt+1, and the
inequalities [DPC, dPC] ∈ Rmt×(n+1).

1. Initialize: Construct an initial inner approximation

P0
I =





∑

s∈E0

sλs

∣∣∣∣∣∣
∑

s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0



 ⊆ P

′ (2.28)

from an initial set E0 of extreme points of P ′ and an initial outer approximation

P0
O =

{
x ∈ Rn

∣∣ D0x ≥ d0
} ⊇ P, (2.29)

where D0 = A′′ and d0 = b′′, and set t← 0, m0 = m′′.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄t
PC = min

λ∈RE+

{
c>

(∑

s∈E
sλs

) ∣∣∣∣∣ Dt

(∑

s∈E
sλs

)
≥ dt,

∑

s∈E
λs = 1, λs = 0 ∀s ∈ E \ E t

}

(2.30)
of the LP over the polyhedron Pt

I ∩Pt
O to obtain the optimal value z̄t

PC, an optimal primal
solution λt

PC ∈ RE , an optimal fractional solution xt
PC =

∑
s∈E s

(
λt

PC

)
s
, and an optimal

dual solution
(
ut

PC, αt
PC

) ∈ Rmt+1.

3. Do either (a) or (b).

(a) Pricing Subproblem and Update: Call the subroutine OPT(P ′, c> −
(ut

PC)>Dt, αt
PC), generating a set Ẽ of improving members of E with negative re-

duced cost (defined in Figure 2.4). If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ to form a new
inner approximation Pt+1

I . If s̃ ∈ E is a member of E with smallest reduced
cost, then zt

PC = rc (s̃) + αt
PC +

(
dt

)>
ut

PC provides a valid lower bound. Set
[Dt+1, dt+1] ← [Dt, dt], Pt+1

O ← Pt
O, mt+1 ← mt, t ← t + 1, and go to Step

2.

(b) Cutting Subproblem and Update: Call the subroutine SEP
(P, xt

PC

)
to generate

a set of improving valid inequalities [D̃, d̃] ∈ Rm̃×n+1 for P , violated by xt
PC. If

violated inequalities were found, set [Dt+1, dt+1] ← [
Dt dt

D̃ d̃

]
to form a new outer

approximation Pt+1
O . Set mt+1 ← mt + m̃, E t+1 ← E t, Pt+1

I ← Pt
I , t ← t + 1,

and go to Step 2.

4. If Ẽ = ∅ and no valid inequalities were found, output the bound zPC = z̄t
PC = zt

PC =
c>xt

PC, x̂PC = xt
PC, λ̂PC = λt

PC, (ûPC, α̂PC) =
(
ut

PC, αt
PC

)
, and [DPC, dPC] = [Dt, dt].

Figure 2.9: Outline of the price-and-cut method
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an LP solved directly over Pt
I ∩ Pt

O with objective function vector c and that therefore, it follows

from Theorem 2.2 that any improving inequality must be violated by xt
PC. It thus seems sensible

to consider separating xt
PC from P . This is the approach taken in the method of Figure 2.9. To

demonstrate how the price-and-cut method works, we return to Example 1.

Example 1: SILP (Continued) We pick up the example at the last iteration of the Dantzig-Wolfe

method and show how the bound can be further improved by dynamically generating valid inequal-

ities.

Iteration 0. Solving the master problem with E0 = {(4, 1), (5, 5), (2, 1), (3, 4)} and the initial inner

approximation P0
I = conv(E0) yields (λ0

PC)(2,1) = 0.58 and (λ0
PC)(3,4) = 0.42, x0

PC = (2.42, 2.25),

and bound z0
PC = z̄0

PC = 2.42. Next, we solve the cutting subproblem SEP(P, x0
PC), generat-

ing facet-defining inequalities of P that are violated by x0
PC. One such facet-defining inequality,

x1 ≥ 3, is illustrated in Figure 2.10(a). We add this inequality to the current set D0 = [A′′, b′′] to

form a new outer approximation P1
O, defined by the set D1.

Iteration 1. Solving the new master problem, we obtain an optimal primal solution (λ1
PC)(4,1) =

0.42, (λ1
PC)(2,1) = 0.42, (λ1

PC)(3,4) = 0.17, x1
PC = (3, 1.5), bound z̄1

PC = 3, as well as an optimal

dual solution
(
u1

PC, α1
PC

)
. Next, we consider the pricing subproblem. Since x1

PC is in the interior of

P ′, every extreme point of P ′ has reduced cost 0 by Theorem 2.7. Therefore, there are no negative

reduced cost columns, and we switch again to the cutting subproblem SEP
(P, x1

PC

)
. As illustrated

in Figure 2.10(b), we find another facet-defining inequality of P violated by x1
PC, x2 ≥ 2. We then

add this inequality to form D2 and further tighten the outer approximation, now P2
O.

Iteration 2. In the final iteration, we solve the master problem again to obtain (λ2
PC)(4,1) = 0.33,

(λ2
PC)(2,1) = 0.33, (λ2

PC)(3,4) = 0.33, x2
PC = (3, 2), bound z̄2

PC = 3. Now, since the primal solution

is integral and is contained in P ′ ∩Q′′, we know that zPC = z̄2
PC = zIP and we terminate.

Let us now return to the TSP example to further explore the use of the price-and-cut method.
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(a) (b) (c)

(2,1) (2,1) (2,1)

{s ∈ E | (λ2
PC)s > 0}

c>

P

P0
O = Q′′

P

P1
O = P0

O ∩ {x ∈ Rn | x1 ≥ 3}

P

P2
O = P1

O ∩ {x ∈ Rn | x2 ≥ 2}

P0
I = conv(E0) ⊂ P′ P1

I = conv(E1) ⊂ P′ P1
I = conv(E2) ⊂ P′

x0
PC = (2.42, 2.25)

{s ∈ E | (λ0
PC)s > 0}

x1
PC = (3, 1.5)

{s ∈ E | (λ1
PC)s > 0}

x2
PC = (3, 2)

Figure 2.10: Price-and-cut method (Example 1: SILP)

Example 3a: TSP (Continued) As described earlier, application of the Dantzig-Wolfe method

along with the 1-tree relaxation for the TSP allows us to compute the bound zD obtained by optimiz-

ing over the intersection of the 1-tree polyhedron (the inner polyhedron) with the polyhedron Q′′

(the outer polyhedron) defined by constraints (1.22) and (1.24). With price-and-cut, we can further

improve the bound by allowing both the inner and the outer polyhedra to have large descriptions.

For this purpose, let us now introduce the well-known comb inequalities [38, 39], which we gener-

ate to improve our outer approximation. A comb is defined by a set H ⊂ V , called the handle, and

sets T1, T2, . . . , Tk ⊂ V , called the teeth, which satisfy

H ∩ Ti 6= ∅ for i = 1, . . . , k,

Ti \H 6= ∅ for i = 1, . . . , k,

Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,

for some odd k ≥ 3. Then, for |V | ≥ 6 the comb inequality,

x(E(H)) +
k∑

i=1

x(E(Ti)) ≤ |H|+
k∑

i=1

(|Ti| − 1)− dk/2e (2.31)
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is valid and facet-defining for the TSP. Let the comb polyhedron be defined by constraints (1.22),

(1.24), and (2.31).

There are no known efficient algorithms for solving the general facet identification problem for

the comb polyhedron. To overcome this difficulty, one approach is to focus on comb inequalities

with special forms. One subset of the comb inequalities, known as the blossom inequalities, is

obtained by restricting the teeth to have exactly two members. The facet identification for the

polyhedron comprised of the blossom inequalities and constraints (1.22) and (1.24) can be solved

in polynomial time, a fact we return to shortly. Another approach is to use heuristic algorithms not

guaranteed to find a violated comb inequality when one exists (see [3] for a survey). These heuristic

algorithms could be applied in price-and-cut as part of the cutting subproblem in Step 3b to improve

the outer approximation.

In Figure 2.6 of Section 2.1.2, we showed an optimal fractional solution x̂ that resulted from

the solution of a Dantzig-Wolfe master problem and the corresponding optimal decomposition,

consisting of six 1-trees. In Figure 2.11, we show the sets H = {0, 1, 2, 3, 6, 7, 9, 11, 12, 15}, T1 =

{5, 6}, T2 = {8, 9}, and T3 = {12, 13} forming a comb that is violated by this fractional solution,

since

x̂(E(H)) +
k∑

i=1

x̂(E(Ti)) = 11.3 > 11 = |H|+
k∑

i=1

(|Ti| − 1)− dk/2e.

Such a violated comb inequality, if found, could be added to the description of the outer polyhedron

to improve on the bound zD. This shows the additional power of price-and-cut over the Dantzig-

Wolfe method. Of course, it should be noted that it is also possible to generate such inequalities in

the standard cutting-plane method and to achieve the same bound improvement.

The choice of relaxation has a great deal of effect on the empirical behavior of decomposition

algorithms. In Example 3a, we employed an inner polyhedron with integer extreme points. With

such a polyhedron, the integrality constraints of the inner polyhedron have no effect and zD = zLP.

In Example 3b, we consider a relaxation for which the bound zD may be strictly improved over zLP

by employing an inner polyhedron that is not integral.
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Figure 2.11: Price-and-cut method (Example 3a: TSP)

Example 3b: TSP Let G be a graph as defined in Example 3a for the TSP. A 2-matching is a

subgraph in which every vertex has degree two. Every TSP tour is hence a 2-matching. The Mini-

mum 2-Matching Problem is a relaxation of TSP whose feasible region is described by the degree

(1.22), bound (1.24), and integrality (1.25) constraints of the TSP. Interestingly, the 2-matching

polyhedron, which is implicitly defined to be the convex hull of the feasible region just described,

can also be described by replacing the integrality constraints (1.25) with the blossom inequalities.

Just as the SEC constraints provide an almost complete description of the 1-tree polyhedron, the

blossom inequalities (plus degree and bound) constraints provide a complete description of the 2-

matching polyhedron. Therefore, we could use this polyhedron as an outer approximation to the

TSP polyhedron. In [65], Müller-Hannemann and Schwartz present several polynomial algorithms

for optimizing over the 2-matching polyhedron. We can therefore also use the 2-matching relaxation

in the context of price-and-cut to generate an inner approximation of the TSP polyhedron. Using

integrated methods, it would then be possible to simultaneously build up an outer approximation of

the TSP polyhedron consisting of the SECs (1.23). Note that this simply reverses the roles of the

two polyhedra from Example 3a and thus would yield the same bound.

Figure 2.12 shows an optimal fractional solution arising from the solution of the master prob-

lem and the 2-matchings with positive weight in a corresponding optimal decomposition. Given this

fractional subgraph, we could employ the separation algorithm discussed in Example 3a of Section

2.1.1 to generate the violated subtour S = {0, 1, 2, 3, 7}.
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Figure 2.12: Finding violated inequalities in price-and-cut (Example 3b: TSP)

Another approach to generating improving inequalities in price-and-cut is to try to take advan-

tage of the information contained in the optimal decomposition to aid in the separation procedure.

This information, though computed by solving (2.30), is typically ignored. Consider the fractional

solution xt
PC generated in iteration t of the method in Figure 2.9. The optimal decomposition λt

PC

for the master problem in iteration t provides a decomposition of xt
PC into a convex combination of

members of E . We refer to elements of E that have a positive weight in this combination as mem-

bers of the decomposition. The following theorem shows how such a decomposition can be used

to derive an alternate necessary condition for an inequality to be improving. Because we apply this

theorem in a more general context later in the paper, we state it in a general form.

Theorem 2.9 ([77]) If x̂ ∈ Rn violates the inequality (a, β) ∈ R(n+1) and λ̂ ∈ RE+ is such that
∑

s∈E λ̂s = 1 and x̂ =
∑

s∈E sλ̂s, then there must exist an s ∈ E with λ̂s > 0 such that s also

violates the inequality (a, β) .
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Proof Let x̂ ∈ Rn and (a, β) ∈ R(n+1) be given such that a>x̂ < β. Also, let λ̂ ∈ RE+ be given

such that
∑

s∈E λ̂s = 1 and x̂ =
∑

s∈E sλ̂s. Suppose that a>s ≥ β for all s ∈ E with λ̂s > 0.

Since
∑

s∈E λ̂s = 1, we have a>(
∑

s∈E sλ̂s) ≥ β. Hence, a>x̂ = a>(
∑

s∈E sλ̂s) ≥ β, which is a

contradiction.

In other words, an inequality can be improving only if it is violated by at least one member of

the decomposition. If I is the set of all improving inequalities in iteration t, then the following

corollary is a direct consequence of Theorem 2.9.

Corollary 2.10 ([77]) I ⊆ V = {(a, β) ∈ R(n+1) : a>s < β for some s ∈ E such that (λt
PC)s >

0}.

The importance of these results is that in many cases, it is easier to separate members of F ′ from P
than to separate arbitrary real vectors. There are a number of well-known polyhedra for which the

problem of separating an arbitrary real vector is difficult, but the problem of separating a solution

to a given relaxation is easy. This concept is formalized in Section 2.3.1 and some more examples

presented. In Figure 2.13, we describe a new separation procedure that can be embedded in price-

and-cut that takes advantage of this fact. The procedure takes as input an arbitrary real vector x̂ that

has been previously decomposed into a convex combination of vectors with known structure. In

price-and-cut, the arbitrary real vector xt
PC is decomposed into a convex combination of members

of E by solving the master problem (2.30). Rather than separating xt
PC directly, the procedure

consists of separating each one of the members of the decomposition in turn, then checking each

inequality found for violation against xt
PC.

The running time of this procedure depends in part on the cardinality of the decomposition.

Carathéodory’s Theorem assures us that there exists a decomposition with at most dim(Pt
I) + 1

members. Unfortunately, even if we limit our search to a particular known class of valid inequalities,

the number of such inequalities violated by each member of D in Step 2 may be extremely large,

and these inequalities may not be violated by xt
PC (such an inequality cannot be improving). Unless

we enumerate every inequality in the set V from Corollary 2.10, either implicitly or explicitly, the

procedure does not guarantee that an improving inequality is found, even if one exists. In cases
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2.2. INTEGRATED DECOMPOSITION METHODS

Separation using a Decomposition

Input: A decomposition λ ∈ RE of x̂ ∈ Rn.
Output: A set [D, d] of potentially improving inequalities.

1. Form the set D = {s ∈ E | λs > 0}.
2. For each s ∈ D, call the subroutine SEP(P, s) to obtain a set [D̃, d̃] of violated

inequalities.

3. Let [D, d] be composed of the inequalities found in Step 2 that are also violated by
x̂, so that Dx̂ < d.

4. Return [D, d] as the set of potentially improving inequalities.

Figure 2.13: Solving the cutting subproblem with the aid of a decomposition

where it is possible to examine the set V in polynomial time, the worst-case complexity of the entire

procedure is polynomially equivalent to that of optimizing over P ′. Obviously, it is unlikely that

the set V can be examined in polynomial time in situations when separating xt
PC is itself an NP-

complete problem. In such cases, the procedure to select inequalities that are likely to be violated

by xt
PC in Step 2 is necessarily a problem-dependent heuristic. The effectiveness of such heuristics

can be improved in a number of ways, some of which are discussed in [80].

Note that members of the decomposition in iteration t must belong to the set S(ut
PC, αt

PC), as de-

fined by (2.19). It follows that the convex hull of the decomposition is a subset of conv
(S(ut

PC, αt
PC

)
)

that contains xt
PC and can be thought of as a surrogate for the face of optimal solutions to an LP

solved directly over Pt
I ∩ Pt

O with objective function vector c. Combining this corollary with

Theorem 2.1, we conclude that separation of S (
ut

PC, αt
PC

)
from P is a sufficient condition for an

inequality to be improving. Although this sufficient condition is difficult to verify in practice, it

does provide additional motivation for the method described in Figure 2.13.

Example 1: SILP (Continued) Returning to the cutting subproblem in iteration 0 of the price-

and-cut method, we have a decomposition x0
PC = (2.42, 2.25) = 0.58(2, 1)+0.42(3, 4), as depicted

in Figure 2.10(a). Now, instead of trying to solve the subproblem SEP(P, x0
PC), we instead solve

SEP(P, s), for each s ∈ D = {(2, 1), (3, 4)}. In this case, when solving the separation problem for
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s = (2, 1), we find the same facet-defining inequality of P as we did by separating x0
PC directly.

Similarly, in iteration 1, we have a decomposition of x2
PC = (3, 1.5) into a convex combination

of D = {(4, 1), (2, 1), (3, 4)}. Clearly, solving the separation problem for either (2, 1) or (4, 1)

produces the same facet-defining inequality as with the original method.

Example 3a: TSP (Continued) Returning again to Example 3a, recall the optimal fractional

solution and the corresponding optimal decomposition arising during solution of the TSP by the

Dantzig-Wolfe method in Figure 2.6. Figure 2.11 shows a comb inequality violated by this fractional

solution. By Theorem 2.9, at least one of the members of the optimal decomposition shown in Figure

2.6 must also violate this inequality. In fact, the member with index 0, also shown in Figure 2.14, is

the only such member. Note that the violation is easy to discern from the structure of this integral

solution. Let x̂ ∈ {0, 1}E be the incidence vector of a 1-tree. Consider a subset H of V whose

induced subgraph in the 1-tree is a path with edge set P . Consider also an odd set O of edges of the

1-tree of cardinality at least 3 and disjoint from P , such that each edge has one endpoint in H and

one endpoint in V \H . Taking the set H to be the handle and the endpoints of each member of O

to be the teeth, it is easy to verify that the corresponding comb inequality is violated by the 1-tree,

since

x̂(E(H)) +
k∑

i=1

x̂(E(Ti)) = |H| − 1 +
k∑

i=1

(|Ti| − 1) > |H|+
k∑

i=1

(|Ti| − 1)− dk/2e.

Hence, searching for such configurations among the members of the decomposition, as suggested in

the procedure of Figure 2.13, may lead to the discovery of comb inequalities violated by the optimal

fractional solution. In this case, such a configuration does in fact lead to discovery of the previously

indicated comb inequality. Note that we have restricted ourselves in the above discussion to the

generation of blossom inequalities. The teeth, as well as the handles, can have more general forms

that may lead to the discovery of more general forms of violated combs.
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Figure 2.14: Using the optimal decomposition to find violated inequalities in price-and-cut (Exam-
ple 3a: TSP)

Example 3b: TSP (Continued) Returning now to Example 3a, recall the optimal fractional solu-

tion and the corresponding optimal decomposition, consisting of the 2-matchings shown in Figure

2.12. Previously, we produced a set of vertices defining a SEC violated by the fractional point by

using a minimum cut algorithm with the optimal fractional solution as input. Now, let us consider

applying the procedure of Figure 2.13 by examining the members of the decomposition in order to

discover inequalities violated by the optimal fractional solution. Let x̂ ∈ {0, 1}E be the incidence

vector of a 2-matching. If the corresponding subgraph does not form a tour, then it must be dis-

connected. The vertices corresponding to any connected component thus define a violated SEC.

By determining the connected components of each member of the decomposition, it is easy to find

violated SECs. In fact, for any 2-matching, every component of the 2-matching forms a SEC that is

violated by exactly 1. For the 2-matching corresponding to ŝ, we have x̂(E(S)) = |S| > |S| − 1.

Figure 2.15(b) shows the third member of the decomposition along with a violated SEC defined by

one of its components. This same SEC is also violated by the optimal fractional solution.

There are many variants of the price-and-cut method shown in Figure 2.9. Most significant is the

choice of which subproblem to execute during Step 3. It is easy to envision a number of heuristic

rules for deciding this. For example, one obvious rule is to continue generating columns until no

more are available, then switch to valid inequalities for one iteration before generating columns

again until none are available. This can be seen as performing a “complete” dual solution update
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Figure 2.15: Using the optimal decomposition to find violated inequalities in price-and-cut (Exam-
ple 3b: TSP)

before generating valid inequalities. Further variants can be obtained by not insisting on a “com-

plete” dual update before solving the pricing problem [36, 17]. This rule could easily be inverted to

generate valid inequalities until no more are available and then generate columns. A hybrid rule in

which some sort of alternation occurs is a third option. The choice among these options is primarily

empirical.

2.2.2 Relax-and-Cut

Just as with the Dantzig-Wolfe method, the Lagrangian method of Figure 2.8 can be integrated with

the cutting-plane method to yield a procedure several authors have recently termed relax-and-cut

[26, 62, 56]. This is done in much the same fashion as in price-and-cut, with a choice in each

iteration between solving a pricing subproblem and a cutting subproblem. In each iteration that the

cutting subproblem is solved, the generated valid inequalities are added to the description of the

outer polyhedron, which is explicitly maintained as the algorithm proceeds. As with the traditional

Lagrangian method, no explicit inner polyhedron is maintained, but the algorithm can again be seen

as one that computes a face of the implicitly defined inner polyhedron that contains the optimal face

of solutions to a linear program solved over the intersection of the two polyhedra. When employed

within a branch-and-bound framework, we call the overall method branch-and-relax-and-cut.
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An outline of the relax-and-cut method is shown in Figure 2.16. The question again arises as

to how to ensure that the inequalities being generated in the cutting subproblem are improving. In

the case of the Lagrangian method, this is a much more difficult issue since we cannot assume the

availability of the same primal solution information available within price-and-cut. Furthermore,

we cannot verify the condition of Corollary 2.2, which is the best available necessary condition for

an inequality to be improving. Nevertheless, some primal solution information is always available

in the form of the solution st
RC to the last pricing subproblem that was solved. Intuitively, separat-

ing st
RC makes sense since the infeasibilities present in st

RC may possibly be removed through the

addition of valid inequalities violated by st
RC.

As with both the cutting-plane and price-and-cut methods, the difficulty is that the valid inequal-

ities generated by separating st
RC from P may not be improving, as Guignard first observed in [40].

To deepen understanding of the potential effectiveness of the valid inequalities generated, we fur-

ther examine the relationship between st
RC and xt

PC by recalling again the results from Section 2.1.2.

Consider the set S(ut
RC, zt

RC), where zt
RC is obtained by solving the pricing subproblem (2.33) from

Figure 2.16 and the set S(·, ·) is as defined in (2.19). In each iteration where the pricing subproblem

is solved, st+1
RC is a member of S(ut

RC, zt
RC). In fact, S(ut

RC, zt
RC) is exactly the set of alternative

solutions to this pricing subproblem. In price-and-cut, a number of members of this set are avail-

able, one of which must be violated in order for a given inequality to be improving. This yields a

verifiable necessary condition for a generated inequality to be improving. Relax-and-cut, in its most

straightforward incarnation, produces one member of this set. Even if improving inequalities exist,

it is possible that none of them are violated by the member of S(ut
RC, zt

RC) so produced, especially

if it would have had a small weight in the optimal decomposition produced by the corresponding

iteration of price-and-cut.

It is important to note that by keeping track of the solutions to the Lagrangian subproblem that

are produced while solving the Lagrangian dual, one can approximate the optimal decomposition

and the optimal fractional solution produced by solving (2.30). This is the approach taken by the

volume algorithm [7] and a number of other subgradient-based methods. As in price-and-cut, when

this fractional solution is an inner point of P ′, all members of F ′ are alternative optimal solutions
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Relax-and-Cut Method

Input: An instance OPT(P, c).
Output: A lower bound zRC on the optimal solution value for the instance and a dual solution
ûRC ∈ Rmt

.

1. Initialize: Let s0
RC ∈ E define some initial extreme point of P ′ and construct an

initial outer approximation

P0
O =

{
x ∈ Rn

∣∣ D0x ≥ d0
} ⊇ P, (2.32)

where D0 = A′′ and d0 = b′′. Let u0
RC ∈ Rm′′

be some initial set of dual multipliers
associated with the constraints

[
D0, d0

]
. Set t← 0 and mt = m′′.

2. Master Problem: Using the solution information gained from solving the pricing
subproblem, and the previous dual solution ut

RC, update the dual solution (if the pric-
ing problem was just solved) or initialize the new dual multipliers (if the cutting
subproblem was just solved) to obtain ut+1

RC ∈ Rmt
.

3. Do either (a) or (b).

(a) Pricing Subproblem: Call the subroutine OPT
(
P ′, c− (

ut
RC

)>
Dt

)
to obtain

zt
RC = min

s∈E

{(
c> − (

ut
RC

)
Dt

)
s + dt

(
ut

RC
)}

. (2.33)

Let st+1
RC ∈ E be the optimal solution to this subproblem. Set

[
Dt+1, dt+1

] ←[
Dt, dt

]
, Pt+1

O ← Pt
O, mt+1 ← mt, t← t + 1, and go to Step 2.

(b) Cutting Subproblem: Call the subroutine SEP
(P, st

RC

)
to generate a set of

improving valid inequalities
[
D̃, d̃

]
∈ Rm̃×n+1 for P , violated by st

RC. If vio-

lated inequalities were found, set
[
Dt+1, dt+1

]← [
Dt dt

D̃ d̃

]
to form a new outer

approximation Pt+1
O . Set mt+1 ← mt + m̃, st+1

RC ← st
RC, t← t + 1, and go to

Step 2.

4. If a pre-specified stopping criterion is met, then output zRC = zt
RC and ûRC = ut

RC.

5. Otherwise, go to Step 2.

Figure 2.16: Outline of the relax-and-cut method
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to the pricing subproblem and the bound is not improved over what the cutting-plane method alone

would produce. In this case, solving the cutting subproblem to obtain additional inequalities is

unlikely to yield further improvement.

As with price-and-cut, there are again many variants of the algorithm shown in Figure 2.16,

depending on the choice of subproblem to execute at each step. One such variant is to alternate be-

tween each of the subproblems, first solving one and then the other [56]. In this case, the Lagrangian

dual is not solved to optimality before solving the cutting subproblem. Alternatively, another ap-

proach is to solve the Lagrangian dual all the way to optimality before generating valid inequalities.

Again, the choice is primarily empirical.

2.3 Decompose-and-Cut

In Section 2.2.1, we introduced the idea of using the decomposition to aid in separation in the

context of price-and-cut. In this chapter we extend this idea to the traditional cutting-plane method

and examine a relatively unknown decomposition-based algorithm we refer to as decompose-and-

cut.

First, we review the well-known template paradigm for separation and introduce a concept

called structured separation. Then, we describe a separation algorithm called decompose-and-cut

that is closely related to the integrated decomposition methods we have already described, which

utilizes several of the concepts introduced earlier. From this, we will derive a class of cutting planes

that we have termed decomposition cuts.

2.3.1 The Template Paradigm and Structured Separation

The ability to generate valid inequalities for P violated by a given real vector is a crucial step in

many of the methods discussed in this paper. Ideally, we would like to be able to solve the general

facet identification problem for P , allowing us to generate a violated valid inequality whenever one

exists. This is clearly not practical in most cases, since the complexity of this problem is the same

as that of solving the original ILP. In practice, the subproblem SEP(P, xt
CP) in Step 3 of the cutting-

plane method pictured in Figure 2.1 is usually solved by dividing the valid inequalities for P into
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template classes with known structure. Procedures are then designed and executed for identifying

violated members of each class individually.

A template class (or simply class) of valid inequalities for P is a set of related valid inequal-

ities that describes a polyhedron containing P , so we can identify each class with its associated

polyhedron. The template paradigm was introduced in Section 2.1.1. In Example 3b, we described

two well-known classes of valid inequalities for the TSP, the subtour elimination constraints and

the comb inequalities. Both classes have an identifiable coefficient structure and describe polyhedra

containing P .

Consider a polyhedron C that is the closure with respect to a class of inequalities valid for

P . The separation problem for the class C of valid inequalities for P is defined to be the facet

identification problem over the polyhedron C. In other words, the separation problem for a class of

valid inequalities depends on the form of the inequality and is independent of the polyhedron P . It

follows that the worst-case running time for solving the separation problem is also independent of

P . In particular, the separation problem for a particular class of inequalities may be much easier

to solve than the general facet identification problem for P . Therefore, in practice, the separation

problem is usually attempted over “easy” classes first, and more difficult classes are attempted only

when needed. This was shown in the context of TSP in Section 2.1. The facet identification problem

for the polyhedron described by all SECs, as well as variable bound constraints, is equivalent to the

minimum cut problem (an optimization problem) and hence is polynomially solvable [4], whereas

the facet identification problem for the convex hull of feasible solutions to the TSP is an NP-

complete problem in general. In general, the intersection of the polyhedra associated with the

classes of inequalities for which the separation problem can be reasonably solved is not equal to P .

It is also frequently the case that when applying a sequence of separation routines for progres-

sively more difficult classes of inequalities, routines for the more difficult classes assume implicitly

that the solution to be separated satisfies all inequalities of the the easier classes. In the case of

the TSP, for instance, any solution passed to the subroutine for separating the comb inequalities is

generally assumed to satisfy the degree and subtour elimination constraints. This assumption can

allow the separation algorithms for subsequent classes to be implemented more efficiently.
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In many cases, the complexity of the separation problem is also affected by the structure of the

real vector being separated. In Section 2.2.1, we informally introduced the notion that a solution

vector with known structure may be easier to separate from a given polyhedron than an arbitrary one

and illustrated this phenomenon for TSP in Examples 3a and 3b. This is a concept called structured

separation that arises quite frequently in the solution of combinatorial optimization problems where

the original formulation is of exponential size. When using the cutting-plane method to solve the LP

relaxation of the TSP, for example, as described in Example 3a, we must generate the SECs dynam-

ically. It is thus possible that the intermediate solutions are integer-valued but nonetheless infeasible

because they violate some SEC that is not present in the current approximation. When the current

solution is optimal, however, it is easy to determine whether it violates a SEC by simply examining

the connected components of the underlying support graph, as described earlier. This process can

be done in O(|V | + |E|) time. For an arbitrary real vector, the separation problem for SECs, the

minimum cut problem, is more difficult, taking O
(|E||V |+ |V |2 log |V |) time. To further illus-

trate this point, let us now introduce another classical example from combinatorial optimization, the

Vehicle Routing Problem (VRP).

Example 4: VRP The Vehicle Routing Problem (VRP) was introduced by Dantzig and Ramser

[24]. In this NP-hard optimization problem, a fleet of k vehicles with uniform capacity C must

service known customer demands for a single commodity from a common depot at minimum cost.

Let V = {1, . . . , |V |} index the set of customers and let the depot have index 0. Associated with

each customer i ∈ V is a demand di. The cost of travel from customer i to j is denoted cij and we

assume that cij = cji > 0 if i 6= j and cii = 0.

By constructing an associated complete undirected graph G with vertex set N = V ∪ {0}
and edge set E, we can formulate the VRP as an integer program. A route is a set of vertices

R = {i1, i2, . . . , im} such that the members of R are distinct. The edge set of R is ER =

{{ij , ij+1} | j ∈ 0, . . . ,m}, where i0 = im+1 = 0. A feasible solution is then any subset of

E that is the union of the edge sets of k disjoint routes Ri, i ∈ {1, . . . , k}], each of which satisfies

the capacity restriction, i.e.,
∑

j∈Ri
dj ≤ C, ∀i ∈ {1, . . . , k}. Each route corresponds to a set

of customers serviced by one of the k vehicles. To simplify the presentation, let us define some
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additional notation.

By associating a variable with each edge in the graph, we obtain the following formulation of

this ILP [51]:

min
∑

e∈E

cexe,

x(δ({0})) = 2k, (2.34)

x(δ({v})) = 2 ∀v ∈ V, (2.35)

x(δ(S)) ≥ 2b(S) ∀S ⊆ V, |S| > 1, (2.36)

xe ∈ {0, 1} ∀e ∈ E(V ), (2.37)

xe ∈ {0, 1, 2} ∀e ∈ δ({0}). (2.38)

Here, b(S) represents a lower bound on the number of vehicles required to service the set S of cus-

tomers. Equations (2.34) ensure that there are exactly k vehicles, each departing from and returning

to the depot, while equations (2.35) require that each customer must be serviced by exactly one ve-

hicle. Inequalities (2.36), known as the generalized subtour elimination constraints (GSECs), can

be viewed as a generalization of the subtour elimination constraints from TSP, and enforce connec-

tivity of the solution, as well as ensuring that no route has total demand exceeding capacity C. For

ease of computation, we can define b(S) =
⌈(∑

i∈S di

)
/C

⌉
, a trivial lower bound on the number

of vehicles required to service the set S of customers.

The set of feasible solutions to the VRP is

F = {x ∈ RE | x satisfies (2.34)− (2.38)}

and we call P = conv(F) the VRP polyhedron. Many classes of valid inequalities for the VRP

polyhedron have been reported in the literature (see [66] for a survey). Significant effort has been

devoted to developing efficient algorithms for separating an arbitrary fractional point using these

classes of inequalities (see [58] for recent results).
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We concentrate here on the separation of GSECs. The separation problem for GSECs was shown

to beNP-complete by Harche and Rinaldi (see [5]), even when b(S) is taken to be
⌈(∑

i∈S di

)
/C

⌉
.

In [58], Lysgaard, et al. review heuristic procedures for generating violated GSECs. Although

GSECs are part of the formulation presented above, there are exponentially many of them, so we

generate them dynamically. We discuss three relaxations of the VRP: the Multiple Traveling Sales-

man Problem, the Perfect b-Matching Problem, and the Minimum Degree-Constrained k-Tree Prob-

lem. For each of these alternatives, violation of GSECs by solutions to the relaxation can be easily

discerned.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-Matching Problem is

to find a minimum-weight subgraph of G such that x(δ(v)) = bv ∀v ∈ V . This problem can be

formulated by dropping the GSECs from the VRP formulation, resulting in the feasible set

F ′ = {x ∈ RE | x satisfies (2.34), (2.35), (2.37), (2.38)}.

In [65], Müller-Hannemann and Schwartz present several fast polynomial algorithms for solving

b-Matching. The polyhedron PO consists of the GSECs (2.36) in this case.

In [64], Miller uses the b-matching relaxation to solve the VRP by branch-and-relax-and-cut. He

suggests generating GSECS violated by b-matchings as follows. Consider a member s of F ′ and its

support graph Gs (a b-matching). If Gs is disconnected, then each component immediately induces a

violated GSEC. On the other hand, if Gs is connected, we first remove the edges incident to the depot

vertex and find the connected components, which comprise the routes described earlier. To identify

a violated GSEC, we compute the total demand of each route, checking whether it exceeds capacity.

If not, the solution is feasible for the original ILP and does not violate any GSECs. If so, the set

S of customers on any route whose total demand exceeds capacity induces a violated GSEC. This

separation routine runs in O(|V |+ |E|) time and can be used in any of the integrated decomposition

methods previously described. Figure 2.17(a) shows an example vector that could arise during

execution of either price and cut or decompose-and-cut, along with a decomposition into a convex

combination of two b-matchings, shown in Figures 2.17(b) and 2.17(c). In this example, the capacity
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C = 35, and by inspection we find a violated GSEC in the second b-matching (c) with S equal to

the marked component. This inequality is also violated by the optimal fractional solution, since

x̂(δ(S)) = 3.0 < 4.0 = 2b(S).

Minimum Degree-Constrained k-Tree Problem. A k-tree is defined as a spanning subgraph of

G that has |V | + k edges (recall that G has |V | + 1 vertices). A degree-constrained k-tree (k-

DCT), as defined by Fisher in [32], is a k-tree with degree 2k at vertex 0. The Minimum k-DCT

Problem is that of finding a minimum-cost k-DCT, where the cost of a k-DCT is the sum of the costs

on the edges present in the k-DCT. Fisher [32] introduced this relaxation as part of a Lagrangian

relaxation-based algorithm for solving the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V |+ k, (2.39)

then deleting the degree constraints (2.35), and finally, relaxing the capacity to C =
∑

i∈S di.

Relaxing the capacity constraints gives b(S) = 1 for all S ⊆ V and replaces constraints (2.36) with

∑

e∈δ(S)

xe ≥ 2, ∀S ⊆ V, |S| > 1. (2.40)

The feasible region of the Minimum k-DCT Problem is then

F ′ = {x ∈ RE | x satisfies (2.34), (2.37), (2.39), (2.40)}.

This time, the polyhedronPO is comprised of the constraints (2.35) and the GSECs (2.36). Since the

constraints (2.35) can be represented explicitly, we focus again on generation of violated GSECs.

In [92], Wei and Yu give a polynomial algorithm for solving the Minimum k-DCT Problem that

runs in O(|V |2 log |V |) time. In [63], Martinhon et al. study the use of the k-DCT relaxation for

the VRP in the context of branch-relax-and-cut. Again, consider separating a member s of F ′ from

the polyhedron defined by all GSECS. It is easy to see that for GSECs, an algorithm identical to

that described above can be applied. Figure 2.17(a) also shows a vector that could arise during the
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execution of either the price-and-cut or decompose-and-cut algorithms, along with a decomposition

into a convex combination of four k-DCTs, shown in Figures 2.17(d) through 2.17(g). Removing

the depot edges and checking each component’s demand, we easily identify the violated GSEC

shown in Figure 2.17(g).

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Problem (k-TSP) is

an uncapacitated version of the VRP obtained by adding the degree constraints to the k-DCT poly-

hedron. The feasible region of the k-TSP is

F ′ = {x ∈ RE | x satisfies (2.34), (2.35), (2.37), (2.38), (2.40)}.

Although the k-TSP is anNP-hard optimization problem, small instances can be solved effectively

by transformation into an equivalent TSP obtained by adjoining to the graph k−1 additional copies

of vertex 0 and its incident edges. In this case, the polyhedron PO is again comprised solely of

the GSECs (2.36). In [80], Ralphs et al. report on an implementation of branch-and-cut using the

k-TSP relaxation to aid in separation.

Consider separating a member s of F ′ from the polyhedron defined by all GSECs. We first

construct the subgraph corresponding to s (a k-TSP) with all edges incident to the depot vertex

removed. We then find the connected components, which comprise the routes described earlier.

In order to identify a GSEC that violates s, we simply compute the total demand of each route,

checking whether it exceeds capacity. If not, the solution is feasible for the original ILP and does

not violate any GSECs. If so, the set S of customers in any route whose total demand exceeds

capacity induces a violated GSEC. In this manner, we can separate a given member of F ′ from P
with GSECs in O(n) time. This separation routine can be used to generate GSECs with any of the

dynamic decomposition methods previously described. Figure 2.18 gives an example of a fractional

solution (a) to the VRP decomposed into three k-TSP tours (b,c,d). In this example, the capacity

C = 6000. So, by inspection we can see that the top component of the second k-TSP tour (b) in-

duces a violated GSEC. Adding this constraint also cuts off the original fractional solution. In [80],

Ralphs et al. reports on the use of this decomposition algorithm for separation of GSECs. This work
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Figure 2.17: Example of a decomposition into b-matchings and k-DCTs
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Figure 2.18: Example of decomposition VRP/k-TSP

was the first known attempt at using the decomposition to aid in finding violated cuts and served as

the original motivation for this thesis.

In our framework, the concept of structured separation is combined with the template paradigm

in specifying template classes of inequalities for which separation of integral solutions is much

easier, in a complexity sense, than separation of arbitrary real vectors over that same class. That

is, for some given relaxation, we consider separating solutions that are known to be integral, in

particular, members of F ′. We now examine a separation paradigm called decompose-and-cut that

can take advantage of our ability to easily separate solutions with structure.

2.3.2 Separation Using an Inner Approximation

The use of an inner approximation to aid in separation, as is described in the procedure of Fig-

ure 2.13, is easy to extend to a traditional branch-and-cut framework using a technique we call

decompose-and-cut, originally proposed by Ralphs in [78] and further developed in [48] and [80].

Suppose that we are given an optimal fractional solution xt
CP obtained during iteration t of the

cutting-plane method. By first decomposing xt
CP (i.e., expressing xt

CP as a convex combination of

members of E ⊆ F ′) and then separating each member of this decomposition from P in the fashion
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described in Figure 2.13, we may be able to find valid inequalities for P that are violated by xt
CP.

The difficult step is finding the decomposition of xt
CP. This can be accomplished by solving a linear

program whose columns are the members of E , as described in Figure 2.19. This linear program

is reminiscent of (2.10) and in fact can be solved using an analogous column-generation scheme,

as described in Figure 2.20. This scheme can be seen as the “inverse” of the method described in

Section 2.2.1, since it begins with the fractional solution xt
CP and tries to compute a decomposition,

instead of the other way around. By the equivalence of optimization and facet identification, we can

conclude that the problem of finding a decomposition of xt
CP is polynomially equivalent to that of

optimizing over P ′.
It should be noted here, that, on average, the master problem (2.41) can be solved much more

efficiently than the linear program in a typical Dantzig-Wolfe method. The reason is two-fold. First,

this linear program is just a feasibility problem. The costs involved are only used to drive out

the artificial variables. So, there is no concept here of best solution–we are simply looking for any

solution (a decomposition), or proof that one does not exist. The second reason is algebraic. Because

the right hand side of constraint (2.43) is the current fractional point x̂, we only need to consider the

support of that vector, i.e., wher x̂i 6= 0. This is due to the fact that for every component i for which

x̂i = 0, constraint (2.43) requires that for any column selected, λs > 0, that column’s component

must also be zero (si = 0). This can also be optionally enforced in the subproblem if the solver

can handle such restrictions. In addition, for the case in which the original space has only binary

variables, we know that for each component i, si ∈ {0, 1}. Therefore, for each component i for

which x̂i = 1, constraint (2.43) is redundant because of the presence of (2.44). The presolver for the

linear programming solver can easily remove these constraints, thereby reducing the computational

cost at each iteration of the master solve.

Once the decomposition is found, it can be used as before to locate a violated valid inequality. In

Figure 2.21(a) we show an example of this based on the small integer program defined in Example 1.

In this case, the fractional point xCP is decomposed into two extreme points of P ′. We then separate

each of these points using valid inequalities for P . As mentioned in Theorem 2.9, if one of these

inequalities separates xCP, then it must also separate one of the extreme points in its decomposition.
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Separation in Decompose-and-Cut

Input: x̂ ∈ Rn

Output: A valid inequality for P violated by x̂, if one is found.

1. Apply standard separation techniques to separate x̂. If one of these returns a violated
inequality, then STOP and output the violated inequality.

2. Otherwise, solve the linear program

min
λ∈RE+

{
0>λ

∣∣∣∣∣
∑

s∈E
sλs = x̂,

∑

s∈E
λs = 1

}
, (2.41)

as in Figure 2.20.

3. The result of Step 2 is either (1) a subsetD of members of E participating in a convex
combination of x̂, or (2) a valid inequality (a, β) for P that is violated by x̂. In the
first case, go to Step 4. In the second case, STOP and output the violated inequality.

4. Attempt to separate each member of D from P . For each inequality violated by a
member of D, check whether it is also violated by x̂. If an inequality violated by x̂ is
encountered, STOP and output it.

Figure 2.19: Separation in the decompose-and-cut method

This case is shown in Figure 2.21(a). Hence, we can perform heuristic separation on the fractional

point at a possibly lower computational cost since separation of the extreme points is typically much

easier than separation of the fractional points.

In contrast to the algorithm proposed in Figure 2.13 for price-and-cut, it is possible that xt
CP 6∈

P ′. This scenario is depicted in Figure 2.21(b). This could occur in the context of the standard

cutting-plane method, if exact separation methods for P ′ are too expensive to apply consistently.

In this case, it is obviously not possible to find a decomposition in Step 2 of Figure 2.19. The

proof of infeasibility for the linear program (2.41), however, provides an inequality separating xt
CP

from P ′ at no additional expense. This comes directly from the well-known Farkas Lemma. We

refer to this class of cuts as decomposition cuts. Hence, even if we fail to find a decomposition,

we still find an inequality valid for P and violated by xt
CP. This idea was originally suggested in

[78] and was further developed in [48] in the context of the Vehicle Routing Problem (VRP). A

similar concept was also discovered and developed independently by Applegate, et al. [2] for use
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Decomposition Method in Decompose-and-Cut

Input: x̂ ∈ Rn

Output: Either (1) a valid inequality for P violated by x̂; or (2) a subset D of E and a vector
λ̂ ∈ RE+ such that

∑
s∈D λss = x̂ and

∑
s∈D λs = 1.

1. Initialize: Construct an initial inner approximation

P0
I =





∑

s∈E0

sλs

∣∣∣∣∣∣
∑

s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0



 ⊆ P

′ (2.42)

from an initial set E0 of extreme points of P ′ and set t← 0.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

min x+ + x−,
∑

s∈E
sλs + x+ − x− = x̂, (2.43)

∑

s∈E
λs = 1, (2.44)

λs = 0 ∀s ∈ E \ E t,

λ ∈ RE+, x+, x− ∈ Rn
+.

to obtain the optimal value z̄t
DC = x+ + x−, an optimal primal solution λt

DC ∈ RE+, and
an optimal dual solution

(
ut

DC, αt
DC

) ∈ Rn+1. If x+ + x− ≤ 0, then we have found a
decomposition; let D = {s ∈ E | λs > 0} and STOP.

3. Subproblem: Call the subroutine OPT
(P ′,−ut

DC, αt
DC

)
, generating a set of Ẽ of im-

proving members of E with negative reduced cost, where the reduced cost of s ∈ E
is

rc(s) = −ut
DCs− αt

DC. (2.45)

4. Update: If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ to form the new inner approximation

Pt+1
I =





∑

s∈Et+1

sλs

∣∣∣∣∣∣
∑

s∈Et+1

λs = 1, λs ≥ 0 ∀s ∈ E t+1, λs = 0 ∀s ∈ E \ E t+1



 ⊆ P

′,

(2.46)
set t← t + 1, and go to Step 2.

5. If Ẽ = ∅, we have failed to find a decomposition. The point x̂ /∈ P ′, and the valid
inequality

(−ut
DC, αt

DC

)
is violated by x̂. STOP.

Figure 2.20: Outline of the decomposition method for decompose-and-cut
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(2,1)(2,1)

PI = P′
P

PO = Q′′

xCP

(b) xCP /∈ P ′

P

PO = Q′′

xCP

(a) xCP ∈ P ′

{s ∈ E | (λCP)s > 0}

PI = P′

Figure 2.21: Decompose-and-cut

with TSP. They termed these cuts non-template cuts, which has a nice symmetry with the template

idea we discussed in the last section. In the following section, we generalize this approach to our

decomposition framework and recognize its potential as a method for generating cuts based on any

number of relaxations.

2.3.3 Decomposition Cuts

Consider the case of the standard cutting-plane method, in which we have a set of valid inequalities

that form some outer approximation PO. For the same problem, consider an inner method with

which we generate some inner approximation PI . As discussed earlier, we assume here that we

have efficient methods for generating these approximations implicitly by solving SEP(PO, x) or

OPT(PI , c). Let’s also assume that
(PI ∩ PO

) ⊂ PO.

The goal in the decompose-and-cut algorithm is to find a decomposition or prove that one does

not exist. Therefore, we set up the model (2.41) as a feasibility problem. In this case, it is easier
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to implement the algorithm by introducing a set of slack variables x+ and x−, similar to what we

did in Phase 1 for the Dantzig-Wolfe method. This is shown in equation (2.43) in Figure 2.20.

In Section 3.4, we will discuss more of the practical details of this two-phase approach used in a

practical implementation of the Dantzig-Wolfe method. In the Phase I model, the slack variables

serve as bounds on the dual variables to drive the pricing mechanism for generating columns, which

can attempt to improve feasibility. In the previous section, we have already considered the case in

which x̂ ∈ P ′. In this section we focus on the case in which x̂ /∈ P ′. As mentioned earlier, the

proof of this provides what we call a decomposition cut. This decomposition cut is conceptually

quite simple. Each step of the Dantzig-Wolfe method is to generate extreme points of P ′ that have

negative reduced costs. When we fail to find such a point, we have proven that the reduced cost

vector must be greater than or equal to zero for all points in P ′. However, since x̂ /∈ P ′, it is

guaranteed that x̂ violates the inequality defined by this vector. Following the notation of Figure

2.20, this means that

ut
DCs + αt

DC ≤ 0 ∀s ∈ P ′ and

ut
DCx̂ + αt

DC > 0.

One of the key advantages of inner methods is the ability to generate bounds that may be much

tighter than those that can be found using a generic cutting-plane approach. Since we often either do

not know the facets of P ′ or cannot generate them efficiently, inner methods approach the problem

with optimization, rather than separation. However, despite the potential from improved bounds,

inner methods are often unsuccessful due to numerous other factors, such as convergence. That is,

the expense of generating better bounds is not always worth the trouble.

Decomposition cuts, as described in this context, provide a possible way to get the best of both

worlds. If we stay in the context of the direct cutting-plane method, we can avoid some of the dif-

ficulties that come about from inner methods. However, we can still obtain the bound improvement

obtained using this approach. Each time the algorithm fails to produce a decomposition, the decom-

position cut provides a violated inequality that is valid for the chosen relaxation P ′. In addition,
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it is possible for us to choose any number of relaxations when attempting to find the decomposi-

tion. This idea was first alluded to by Ralphs [78] when solving VRP. In the most extreme case,

he attempted to decompose the fractional point into a convex combination of extreme points of the

original VRP polytope by solving the column-generation subproblem heuristically. In this sense, he

was assured to fail at finding a decomposition, but had a good chance of producing strong cuts. The

question of whether such an approach could be made practical was and remains an open question.

In Section 5.1, we provide evidence that it has some potential. The software framework presented

in Chapter 4 provides an easy-to-use environment for experimenting with such ideas.
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Chapter 3

Algorithmic Details

This chapter describes some of the issues encounterd when developing a solver based on the inte-

grated methods discussed in the first two chapters. Thus far, we have focused on methods for finding

strong bounds. The overall goal is to embed these bounding methods in a branching framework that

divides the compact space into disjoint subproblems whose union covers the complete set of feasible

solutions. Specifically, we focus here on the implementation details related to branch-and-price-

and-cut. Note that, although the theoretical framework extends to branch-and-relax-and-cut, the

details of implementing this method have been left for future research. The abundance of literature

discussing variants of integrated methods already used to address real-world applications makes

it clear that they are important in practice, but there has been relatively little work on the com-

putational details of implementing such methods. In Chapter 4, we introduce a new open-source

software framework called DIP (Decomposition for Integer Programming) that we hope can help

to facilitate the in-depth study of these methods and the computational implications of their many

algorithmic choices. The development of DIP and the application of it to several problem classes

helped us bridge the gap between theory and implementation. Here, we detail some of the issues

and discoveries that arose during this development work.

Some of the issues we discuss in this chapter are relatively straightforward but worth mentioning

for the benefit of future developers of these methods. In some cases, we provide a simple solution,
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while in other cases we can only provide some guidance, leaving the best practice as an open ques-

tion. Much like other areas of optimization, the key to success in implementation of these methods

is to develop a large toolbox of techniques that may be used to attack any particular problem. It is

rare to find a technique that helps in every instance. However, if it helps in some instance without

hurting most others, it is worth including. The laborious part of developing optimization software

is tuning the solver to find that set of techniques to turn on by default and those to leave as user

options. In the following sections, we provide a starting point for such a study by introducing ideas

that were useful for the applications we tried during our research.

3.1 Branching for Inner Methods

Effective branching methods are an important element of branch-and-bound methods and have been

studied extensively for the specific case of branch and cut [52]. For branch and price, there has also

been some recent research in this area [88]. Branching methods in the context of branch-and-price-

and-cut have received far less attention in the literature. As with most resarch on branch-and-price-

and-cut methods, most existing work on branching methods is application-specific. Here, we take a

very generic approach to branching, with the goal of keeping the framework both theoretically and

computationally straightforward to implement.

In this section, we explain how a generic branching strategy can be implemented in a straight-

forward way in the context of inner methods by mapping back to the compact space. We first explain

the general concept and illustrate it in the context of branch-and-price-and-cut. We then briefly

consider the same setup in the context of branch-and-relax-and-cut. Since Lagrangian methods do

not, by default, generate a primal solution that can be mapped back to the compact space, there are

some additional considerations in this case.

In order to develop branching methods that are generic with regards to the overall decomposition

framework, we recall the mapping (2.18) defined in Section 2.1.2. When integrating methods for

generating valid inequalities with inner methods, this projection into the space of the compact for-

mulation is precisely what allows us to add cuts to the extended formulation without any change in

the complexity of the system. This same idea can also be used to allow for a simple implementation
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of branching.

Branching for Price-and-Cut Consider the standard branching method used in the branch-and-

cut algorithm. After solving the linear programming relaxation to obtain x̂ ∈ Rn, we choose an

integer-constrained variable xi for which x̂i /∈ Z and produce two disjoint subproblems by enforcing

xi ≤ bx̂ic in one subproblem and xi ≥ dx̂ie in the other. In standard branch-and-cut, the branching

constraints are enforced by simply updating the variable bounds in each subproblem. Now consider

the Dantzig-Wolfe reformulation presented in Section 2.1.2 and the price-and-cut algorithm defined

in Section 2.2.1. A simple trick is to let all variable bounds be considered explicitly as constraints

in the compact formulation by moving them into the set of side constraints [A′′, b′′]. This approach

greatly simplifies the process of branching in the context of the Dantzig-Wolfe reformulation. Using

the mapping (2.18), the variable bounds can then be written as general constraints of the form

li ≤
(∑

s∈E sλs

)
i
≤ ui∀i ∈ I in the extended formulation. After solving the master linear program

to obtain λ̂, we use the mapping to construct a solution x̂ in the compact space. Then, as in standard

branch-and-cut, we choose a variable x̂i whose value is currently fractional
(∑

s∈E sλ̂s

)
i
= x̂i /∈ Z

and produce two disjoint subproblems by enforcing
(∑

s∈E sλs

)
i
≤ bx̂ic in one subproblem and

(∑
sλs∈E sλs

)
i
≥ dx̂ie in the other. Since these are branching constraints rather than the standard

branching variables we enforce them by adding them directly to [A′′, b′′].

To illustrate this, we return to our first example, picking up from the last iteration of the Dantzig-

Wolfe method as described in Section 2.1.2.

Example 1 : SILP (Continued) In the final iteration of the Dantzig-Wolfe method, we had con-

structed the inner approximation P0
I = conv{(4, 1), (5, 5), (2, 1), (3, 4)} and solved the restricted

master to give the solution (λDW)(2,1) = 0.58 and (λDW)(3,4) = 0.42. For this example, let the

superscript for the polyhedron represent the node number. Solving the subproblem, we showed

that no more improving columns could be found and the current bound was optimal for the chosen

relaxation. For the sake of illustration, let us assume that no violated cuts were found. Therefore,

we have completed the calculation of the root node bound and now need to check to see whether

the solution is in fact feasible to the original problem. Using the mapping (2.18), we compose the
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(a) (b) (c)

(2,1) (2,1) (2,1)

{s ∈ E | (λDW )s > 0}

P P P

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0}

Figure 3.1: Branching in the Dantzig-Wolfe method (Example 1: SILP)

solution in the compact space as xDW = (2.42, 2.25). Since the solution is fractional, we branch on

the most fractional variable x0 by creating two new nodes:

Node 1: P1
I = conv

{
x ∈ R2 | x satisfies (1.6)− (1.11), (1.17) and x0 ≤ 2

}
,

P1
O =

{
x ∈ R2 | x satisfies (1.12)− (1.16) and x0 ≤ 2

}
,

Node 2: P2
I = conv

{
x ∈ R2 | x satisfies (1.6)− (1.11), (1.17) and x0 ≥ 3

}
,

P2
O =

{
x ∈ R2 | x satisfies (1.12)− (1.16) and x0 ≥ 3

}
.

Notice here that we choose to include the branching constraint in both the master and the sub-

problem. Adding these constraints to the subproblem can improve convergence at the expense of

increasing the time required on each subproblem solve. The choice is purely empirical and the

tradeoff can differ from application to application. This step is depicted in Figure 3.1(a).

We now use the mapping between the compact formulation and the extended formulation to

produce the equivalent branching cuts in the master as follows:

Node 1: 4 (λDW)(4,1) + 5 (λDW)(5,5) + 2 (λDW)(2,1) + 3 (λDW)(3,4) ≤ 2,

Node 2: 4 (λDW)(4,1) + 5 (λDW)(5,5) + 2 (λDW)(2,1) + 3 (λDW)(3,4) ≥ 3.
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We then solve the master problem for node 1 and immediately declare this node infeasible. Mov-

ing to node 2, we solve the master problem, which gives (λDW)(4,1) = 0.04, (λDW)(2,1) = 0.04,

(λDW)(3,4) = 0.92, and xDW = (3, 3.75). This solution is depicted in Figure 3.1(b). Next, we

solve the subproblem in order to generate new columns but find that no more exist that can improve

the bound. Therefore, we are done with node 2 and have a new lower bound zDW = 3. Since the

solution is fractional, we once again branch, this time on x1, creating two new nodes, as depicted in

Figure 3.1(b):

Node 3: P3
I = conv

{
x ∈ R2 | x satisfies (1.6)− (1.11), (1.17), x0 ≥ 3 and x1 ≤ 3

}
,

P3
O =

{
x ∈ R2 | x satisfies (1.12)− (1.16), x0 ≥ 3 and x1 ≤ 3

}
,

Node 4: P4
I = conv

{
x ∈ R2 | x satisfies (1.6)− (1.11), (1.17), x0 ≥ 3 and x1 ≥ 4

}
,

P4
O =

{
x ∈ R2 | x satisfies (1.12)− (1.16), x0 ≥ 3 and x1 ≥ 4

}
.

Using the mapping again gives the following branching cuts in the respective nodes:

Node 3: 4 (λDW)(4,1) + 5 (λDW)(5,5) + 2 (λDW)(2,1) + 3 (λDW)(3,4) ≥ 3,

1 (λDW)(4,1) + 5 (λDW)(5,5) + 1 (λDW)(2,1) + 4 (λDW)(3,4) ≤ 3,

Node 4: 4 (λDW)(4,1) + 5 (λDW)(5,5) + 2 (λDW)(2,1) + 3 (λDW)(3,4) ≥ 3,

1 (λDW)(4,1) + 5 (λDW)(5,5) + 1 (λDW)(2,1) + 4 (λDW)(3,4) ≥ 4.

Next, we solve the master problem for node 3, which gives the solution (λDW)(4,1) = 0.16, (λDW)(2,1) =

0.17, (λDW)(3,4) = 0.67, and xDW = (3, 3). This solution is depicted in Figure 3.1(c). Since this

solution is integer feasible, it now gives a global upper bound of 3. Since the global lower bound is

also 3, we are done.

Branching for Relax-and-Cut We now address the additional considerations when using this

idea in the context of relax-and-cut. As mentioned in Section 2.1.3, one way to solve the master
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problem in the Lagrangian Method is to use the subgradient method. Standard versions of the sub-

gradient method provide only a dual solution (uLR, αLR), which is sufficient when using this method

only for bounding. As shown in Section 2.2.2, we can also apply cutting planes by separating the

solution s ∈ F ′ to the Lagrangian subproblem. However, in order to use the branching framework

we mention above, we need to be able to map back to the compact formulation so that we can con-

struct dichotomies based on the bounds in the compact space. If this can be accomplished, then the

rest of the machinery follows.

As with branch-and-price, the majority of literature on the topic of branching in the context

of the Lagrangian Method uses application-specific information. Some authors have suggested the

following approach [27]. Let B define the set of extreme points that have been found in Step 2

of Figure 2.8. After the method has converged and the bound zLD has been found, take the set of

extreme points B and form the inner approximation PI as we do in the context of the Dantzig-Wolfe

method. That is,

PI =

{
x ∈ Rn

∣∣∣∣∣ x =
∑

s∈B
sλs,

∑

s∈B
λs = 1, λs ≥ 0 ∀s ∈ B

}
. (3.1)

Now, construct a linear program analogous to the Dantzig-Wolfe restricted master formulation using

this set of extreme points as the inner approximation as follows:

min
λ∈RB+

{
c>

(∑

s∈B
sλs

) ∣∣∣∣∣ A′′
(∑

s∈B
sλs

)
≥ b′′,

∑

s∈B
λs = 1

}
. (3.2)

Solve this linear program, giving an optimal primal solution λ̂. Now, from this we can go back to

our mapping (2.18) to project to the compact space and construct the point x̂. This idea of using

the generated set of extreme points to construct a primal solution has close ties to several other

important areas of research, including bundle methods [18] and the volume algorithm [7].

Just as with branching for price-and-cut, once the branching constraints have been constructed,

we enforce them by adding them directly to [A′′, b′′]. In relax-and-cut, these constraints are im-

mediately relaxed and new dual multipliers are added the Lagrangian master problem, as described

in Steps 2 and 3(b) of the relax-and-cut procedure in Figure 2.16. As before, we have the choice
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whether to enforce the branching constraint in the master problem or the subproblem.

3.2 Relaxation Separability

One of the key motivators of the original Dantzig-Wolfe method [23] was the potential separability

of the subproblem. It is often the case that once the side constraints [A′′, b′′] are relaxed, the con-

straint system [A′, b′] becomes separable. Assume that the constraints can be broken up into a set

K = {1, . . . , κ} of independent blocks. This type of problem, often referred to as block-diagonal,

has the following form:

min c>1 x1 + c>2 x2 + . . . + c>κ xκ,

A′1x1 ≥ b1,

A′2x2 ≥ b2,

. . . ≥ ...

A′κxκ ≥ bκ,

A′′1x1 + A′′2x2 + . . . A′′κxκ ≥ b′′,

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . , xκ ∈ Znκ
+ .

As before, we choose [A′, b′] as the relaxation from which to generate extreme points to approxi-

mate P ′ implicitly. From the structure of the above matrix, it should be clear that once [A′′, b′′] is

removed, the constraint system is separable, giving k independent subproblems. We can define a

restriction in which all the variables not in block k are fixed to 0 as follows:

P ′k = conv{x ∈ Znk | A′kx ≥ b′k, xi = 0 ∀i ∈ K \ {k}}, (3.3)

and let Ek represent the set of extreme points of Pk. This means that, instead of solving the sub-

problem OPT(P ′, c), one can solve OPT(P ′k, c) for each k and return a set of extreme points as
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candidates for entering the master problem. If we then sum these restricted extreme points, we are

once again in the original space. This relationship can be seen easily by simply generalizing the

mapping (2.7) between the original compact formulation and the Dantzig-Wolfe reformulation as

follows:

P ′ =


x ∈ Rn

∣∣∣∣∣∣
x =

∑

k∈K

∑

s∈Ek

sλk
s ,

∑

k∈K

∑

s∈Ek

λk
s = 1 ∀k ∈ K,λk

s ≥ 0 ∀k ∈ K, s ∈ Ek



 .

(3.4)

Therefore, we can now write the Dantzig-Wolfe bound as follows:

zDW = min
λ



c>


∑

k∈K

∑

s∈Ek

sλk
s




∣∣∣∣∣∣
A′′


∑

k∈K

∑

s∈Ek

sλk
s


 ≥ b′′,

∑

s∈Ek

λk
s = 1 ∀k ∈ K



 . (3.5)

The independence of the optimization subproblems lends itself nicely to parallel implementation.

By processing the blocks simultaneously we can greatly improve the overall performance of these

applications. This is an important area of future research that we address in Section 6.

Let us return to our second example, the Generalized Assignment Problem.

Example 2: GAP (continued) It should be clear that when choosing the capacity constraints

(1.19) as the relaxation, we are left with a set of independent knapsack problems, one for each

machine in M . Therefore, we can define the projected polytopes for each block as follows:

P ′k = conv {xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.19) and (1.21), xij = 0 ∀i ∈M \ {k}, j ∈ N},

Q′′ = {xij ∈ R+ ∀i, j ∈M ×N | x satisfies (1.20)}.

For clarity, let us consider an example with n = 3 tasks and m = 2 machines. The formulation
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looks as follows:

min x11 + x12 + x13 + x21 + x22 + x23,

x11 + x12 + x13 ≤ b1, (3.6)

x21 + x22 + x23 ≤ b2, (3.7)

x11 + + x21 = 1, (3.8)

x12 + x22 = 1, (3.9)

x13 + x23 = 1, (3.10)

x11, x12, x13, x21, x22, x23 ∈ {0, 1}.

The polyhedron Q′′ is formed from constraints (3.8)-(3.10), while the polyhedron P ′ is formed

from (3.6)-(3.7). From the structure of the matrix, it is clear that the two capacity constraints are

separable, forming two independent blocks.

3.2.1 Identical Subproblems

One of the motivations for using inner methods based on Dantzig-Wolfe reformulation is to help

eliminate the symmetry present in the compact formulation. Symmetry occurs when a model admits

large classes of equivalent solutions obtained by permutation of the variables [72]. To make this

more concrete, let us revisit the Vehicle Routing Problem described in Example 4 in Section 2.3.1.

Example 4: VRP (continued) An alternative formulation for the VRP that is commonly used is

to set up the problem as a multi-commodity network flow problem. Once again, consider a complete

graph, this time a directed graph G with node set N and arc set A. Let V = {1, . . . , n} be the set

of customers and let the depot be represented by vertex 0 (the starting depot) and vertex n + 1 (the

ending depot). Therefore, the node set N = V ∪ {0, n + 1}. Associated with each customer i ∈ V

is a demand di. The cost of travel from customer i to j is denoted cij . Let M = {1, . . . , m} be the

fleet of vehicles, each having capacity C. Define a binary variable xijk for each arc (i, j) ∈ A and
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each vehicle k. If vehicle k traverses arc (i, j), then xijk = 1; otherwise, xijk = 0. Now we obtain

the following alternative formulation for VRP:

min
∑

k∈M

∑

(i,j)∈A

cijxijk,

∑

k∈M

∑

j∈N

xijk = 1 ∀i ∈ V, (3.11)

∑

i∈V

∑

j∈N

dixijk ≤ C ∀k ∈M, (3.12)

∑

j∈N

x0jk = 1 ∀k ∈M, (3.13)

∑

i∈N

xihk −
∑

j∈N

xhjk = 0 ∀h ∈ V, k ∈M, (3.14)

∑

i∈N

xi,n+1,k = 1 ∀k ∈M, (3.15)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈M. (3.16)

In this formulation, equations (3.11) ensure that each customer is visited exactly once. These

are referred to as the assignment constraints. Equations (3.13)-(3.15) force each vehicle to leave the

depot 0 and return to the depot n + 1 while satisfying flow balance; i.e., after a vehicle arrives at a

customer, it must then depart for another destination.

It should be clear that this formulation has a great deal of symmetry resulting from the fact that

the vehicle fleet is homogeneous. In fact, the index given to a particular vehicle is an arbitrary label,

and these can be permuted without affecting the model. For any given solution, it is clear that we

can swap the vehicles assigned to a given pair of routes and obtain a new solution with the same

cost.

The kind of symmetry described in the VRP example can negatively affect the performance

of branch-and-bound algorithms. Breaking this symmetry through reformulation or algorithmic

techniques is an important and active area of current research [72]. One popular way to do this is by

using the Dantzig-Wolfe reformulation. As described in Section 3.2, we often choose a relaxation

that is separable, which leads to the reformulation (3.4). A special case, called identical subproblems
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occurs when P ′a ∼= P ′b for all pairs a, b ∈ K ×K. This occurs when the subproblems formed by

each separable block are structurally identical. This is often the case for models where symmetry is

inherent.

Since this is a special case of the block-diagonal structure, we can, of course, apply the afore-

mentioned algorithms directly. However, this would suffer from the same symmetry issues present

in the original formulation. To counteract this, we introduce a new variable ys, for each extreme

point s ∈ E , that will represent an aggregation across all blocks, as follows:

Λs =
∑

k∈K

sλk
s ∀s ∈ E . (3.17)

Now, substituting into the Dantzig-Wolfe formulation (2.10) we can now redefine the Dantzig-Wolfe

bound in the aggregated space as follows:

zDW = min
Λ

{
c> (sΛs)

∣∣∣∣∣ A′′
(∑

s∈E
sΛs

)
≥ b′′,

∑

s∈E
Λk

s = K

}
. (3.18)

To illustrate this case, let us return to the VRP example.

Example 4: VRP (Continued) A common decomposition for the multi-commodity flow formu-

lation of VRP is to use the assignment constraints in the master formulation and use the capacitated

flow structure as the relaxation, as follows:

P ′k = conv {xijk ∈ ZA×M | x satisfies (3.12)− (3.16)}∀k ∈M,

Q′′ = {xijk ∈ RA×M
+ | x satisfies (3.11)}.

The subproblem defined by P ′k is known as the Elementary Shortest Path Problem with Resource

Constraints (ESPPRC). Since the vehicle fleet is homogeneous, this leads to identical instances of

the ESPPRC subproblem. We can now apply the aggregate reformulation (3.18), which will break

the symmetry. Notice, in the case of VRP, the coefficients of the master reformulation are all in

{0,1}. Because of this, the aggregate convexity constraint in 3.18 is redundant and can be dropped.

This leads to the commonly referenced set partitioning formulation for VRP [35].
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Because the special case of identical subproblems is encountered quite often in practice, we

feel it is important to try and understand this case in the context of our framework. Unfortunately,

the end result of the aggregation reformulation does not directly fit into our framework. This is

because of our dependence on the mapping (2.18) between the compact space x and the extended

space λ. Once the variable Λ has been introduced, the mapping between the two spaces is no longer

one-to-one. This breaks our ability to perform cut generation and branching in the compact space

in a straightforward way. For branch-and-price, a method for generic branching that deals with

this special case is currently being investigated by Vanderbeck, et al. [90]. The idea is based on

performing a disaggregation step to go from Λs to λk
s . Due to the fact that this mapping is not

unique, this has to be done carefully, using lexicographic ordering of the columns. Once this is

done, we can then apply the original mapping back to the compact space and proceed normally.

3.2.2 Price-and-Branch

A not very well-known but quite effective technique to generate good solutions quickly when using

Dantzig-Wolfe decomposition on integer programs is to enforce integrality when solving the re-

stricted master problem (2.12). This can be done once no new columns with negative reduced cost

have been found. The idea, called price-and-branch was used by Barahona and Jensen to solve a

plant location problem in [8]. Price-and-branch is, of course, a heuristic, since there is no guarantee

that one can even find a feasible solution to this integer program. Moreover, the dual information

from the continuous restricted master LP gives no information about whether or not additional en-

tering columns are needed to prove optimality to the original integer program. Nevertheless, as

shown in [8], this can be a very effective heuristic if one is producing good candidate columns dur-

ing the pricing phase. In addition, this algorithm is attractive from the standpoint of simplicity of

implementation.

In this research, we propose to extend the simple idea of price-and-branch to nodes of the

branch-and-bound tree other than the root. That is, in the context of Dantzig-Wolfe decomposition

or price-and-cut, after completing the bounding routine for each node, we restrict the current set

of variables λ to integer values, and solve the resulting integer program. From our computational
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experiments, we have seen that the time to solve this integer program at each node is relatively

small. The reason is two-fold. First, the number of columns needed to obtain the Dantzig-Wolfe

bound is generally small. So, the resulting integer program is relatively easy to solve. Second, we

are careful about keeping the size of the master problem small by actively compressing its size by

removing non-binding cuts and non-active columns. This idea is explored further in Section 3.6.

This technique of extending price-and-branch to each node of the tree is a cheap heuristic that

often does a very good job of producing incumbents and results in a more efficient overall algorithm.

In Sections 5.2 and 5.3, we show computational results using this idea for two different applications.

3.3 Nested Pricing

Although much of the focus of this research has been on the generation of strong lower bounds

for zIP, the performance of branch-and-bound algorithms also depends highly on the ability to find

good feasible solutions, yielding strong upper bounds. Moreover, in practice, users of optimization

solvers often wish to find the best feasible solution possible in some fixed amount of time. We can

tell whether a feasible solution is of high quality by looking at the gap between the lower and upper

bounds on zIP.

As described in Chapter 2, integrated decomposition methods improve upon traditional methods

by implicitly building an inner and an outer approximation. By intersecting these two polyhedra,

one can find better approximations of the convex hull of the original problem. In Section 2.3.1,

we discussed the template paradigm and the idea of a polytope defined by some class of valid in-

equalities. Generally, one thinks of the collection of valid inequalities as the outer approximation

generating during the cutting-plane method. However, one can also view the closures defined by

each class of inequalities as separate polyhedral regions. From this point of view, the outer ap-

proximation is the intersection of the set of these closures. Computationally, it is well-known that

generating cuts from various classes of inequalities can be beneficial in that different classes of

valid inequalities contribute to describing different areas of the feasible region; or, in the context of

a specific application, different cuts correspond to different aspects of the constraint system. This is

especially true for, integer programs that arise as the combination of two (or more) integer programs
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defined over the same set of variables. For example, the classical Vehicle Routing Problem is often

seen as the intersection between a routing problem (TSP) and a bin packing problem. Each problem,

by itself, is relatively easy to solve, while the combination is often extremely difficult. This line of

thinking is the motivating factor behind the idea presented below.

In every study we are aware of, inner approximation methods generate an approximation based

on one fixed relaxation (or polytope). If one considers inner approximations simply as the dual of

outer approximations, then this motivates us to consider generating extreme points from multiple

polyhedra, in a fashion similar to that in which facets are generated from multiple polyhedra in outer

methods. In fact, any polyhedron P ′C ⊆ P ′ is a candidate for inclusion in the pricing phase. For

example, in Step 3 of the Dantzig-Wolfe method, when calling the subroutine

OPT
(
P ′, c> − (

ut
DW

)>
A′′, αt

DW

)
,

we might also call

OPT
(
P ′C , c> − (

ut
DW

)>
A′′, αt

DW

)
,

producing another extreme point. It appears that this simple but intriguing idea has been overlooked

until now. To illustrate, let us again revisit the Vehicle Routing Problem.

Example 4: VRP (continued) Recall the formulation for VRP described in Section 2.3.1. Let’s

assume we choose the perfect b-matching relaxation for our decomposition. Then, the relaxed poly-

hedron P ′ is defined by the constraints (2.35), which enforce that each customer must be serviced

by exactly one vehicle, and (2.34), which enforce that each of the k vehicles must depart and return

to the depot exactly once. Now, let us also consider again the multiple traveling salesman relaxation.

Feasible solutions to this relaxation also satisfy the same constraints as in the case of b-matching. In

addition, solutions to k-TSP also satisfy the subtour elimination constraints (2.40). The two nested

relaxations are defined as follows:

PbMatch = conv{x ∈ RE | x satisfies (2.34), (2.35), (2.37), (2.38)},

PkTSP = conv{x ∈ RE | x satisfies (2.34), (2.35), (2.37), (2.38), (2.40)}.
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where PbMatch ⊃ PkTSP. So, by choosing P ′ = PbMatch, we can generate extreme points from

polytopes. As usual, in order to attain valid bounds, we have to solve the optimization subproblem

for PbMatch exactly. Then, since PkTSP is contained in PbMatch, we can solve the optimization

subproblem for PbMatch heuristically.

Let us now return to our motivating principle—using different classes of valid inequalities when

generating cutting planes. Analogously, it would be beneficial if the extreme points used for the in-

ner approximation had some diversity with respect to which parts of the feasible region are required

to be satisfied. To this end, let us now consider an additional relaxation to use in our nested pricing

scheme for VRP. Recall that (2.36), the generalized subtour elimination constraints (GSECs), have

exponential size. In the standard cutting-plane algorithm for VRP, these GSECs would be generated

dynamically as needed. Assume we have run several iterations of a cutting-plane method and define

G as the set of subsets of nodes that represent the GSECs that were found. Now, define the following

class of inequalities, a subset of the full set of GSECs:

x(δ(S)) ≥ 2b(S) ∀S ∈ G. (3.19)

Now, combining these inequalities with (2.34) and (2.35), let us define a new relaxation

PbMatch+ = conv{x ∈ RE | x satisfies (2.34), (2.35), (3.19), (2.37), (2.38)},

which now incorporates some of the capacity restrictions from the original problem. Now, since

PbMatch ⊃ PbMatch+, we can use all three polyhedra, PbMatch, PbMatch+, and PkTSP when generating

extreme points, thereby improving our diversity and increasing our chances of finding feasible so-

lutions quickly.

One of the key drawbacks for methods like price-and-cut is that, in order to derive a valid bound,

one must price out exactly over the chosen inner relaxation P ′. Although this is still true here, the

idea is that, one can also generate points from tighter relaxations heuristically. Since these extreme

points are in some sense closer to feasible for the original problem, the probability of finding upper
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bounds earlier in the search tree is higher. Typically pricing over more restrictive polytopes can

be more expensive computationally. So, there is a tradeoff between the time spent generating the

extreme points and the improvement gained by better upper bounds. In Section 5.1, we will present

computational results to show the effectiveness of this idea.

3.4 Initial Columns

As discussed in Section 2.1.2, no method for generation of E0, the starting set of extreme points

for P0
I , is specified Computationally, however, the choice of such a method can have a big impact

on performance. For specific applications, the best way to seed the set of columns may be to use a

known heuristic, as any feasible solution to the original problem can serve as a starting column. For

some applications, however, finding a feasible solution is non-trivial. Ideally, we would like to have

some generic way to address this issue.

In the absence of any specific knowledge of the structure of the model, we can being this process

by generating solutions to the subproblem using any arbitrary cost vector. We make a call to the

solver for the subproblem OPT (P ′, c) (an MILP solver by default) with a cost vector c equal to

the original cost vector. This tends to give a high-quality column that can be used to start the

process. In general, starting off with a large collection of columns improves the chances of finding

an initial feasible solution quickly. Therefore, in addition to solving OPT(P ′, c), we may also solve

the relaxation for several random perturbations of the original cost vector.

Another way to seed the master columns is to first run several steps of the Lagrangian method,

collecting those extreme points found at each master step. This idea was proposed by Barahona, et

al. in [8]. The results from this paper imply that this idea can greatly improve the convergence of

the overall Dantzig-Wolfe method.

A third way to generate initial columns is to use the decompose-and-cut procedure described

in Section 2.3. Recall that, the original idea of decompose-and-cut was to take advantage of the

fact that, computationally, separating structured points is easier than separating unstructured points.

This can serve as a heuristic for solving difficult separation problems in the context of the standard

cutting-plane method. As discussed in Section 2.3.3, an additional benefit of the method is the
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potential for finding decomposition cuts, which can help improve the bounds as it pushes the point

into the space of the inner relaxation polyhedron while still in the context of traditional cutting-plane

methods. In the same way, the procedure can be used to seed the initial columns of a Dantzig-Wolfe

formulation. At each step of the decompose-and-cut algorithm, we are generating extreme points of

some relaxation. We can store each of these columns and use this to seed price-and-cut. In addition,

if the decomposition is successful, this then guarantees us that we can start out price-and-cut with a

feasible basis.

3.5 Standard MILP Cutting Planes for Inner Methods

Generic cutting planes have long been one of the most important factors in the success of branch-

and-cut codes. In the past decade, there have been major advances in increasing the variety and

strength of valid inequalities that can be generated and used to solve generic MILPs [13]. Up

until now, the use of cutting planes with inner methods such as price-and-cut has been limited to

specific applications. When structured cuts are known and provably facet-defining, it is typical

for them to dominate generic classes in terms of strength. In real-world applications, however, it is

common for the user not to have any knowledge of the polyhedral structure of the model. EVen with

knowledge of a specific class of facet-defining valid inequalities, an efficient separation algorithm

may not be known, forcing one to rely on heuristics that give no guarantee of quality. In such

cases, methods for generating generic classes of valid inequalities may be necessary to solve a given

problem. This fact has long been understood with respect to branch-and-cut codes, and all solvers

include at least a basic implementation of separation algorithms for the most common classes of

valid inequalities. However, until now, there have been no branch-and-price-and-cut frameworks

that have successfully allowed for direct integration of generic cutting planes. In the framework we

propose, this integration is possible by taking advantage of the same mapping between the compact

and extended formulations that we have mentioned earlier. We explore this idea further in Section

4.2, after introducing our software framework.
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3.6 Compression of Master LP and Object Pools

A well-known idea in the context of branch-and-cut is to remove non-binding cuts, once they have

been deemed ineffective. This idea is described in [73] in the context of solving large-scale TSPs. A

non-binding cut has an associated dual variable that currently has value zero. By removing this cut,

the optimality of the current solution is unchanged. Therefore, removing the cut from the master LP

can improve efficiency by reducing the size of the LP basis and decreasing the overall processing

done by subsequent iterations. In [73], along with this idea of removing non-binding cuts, Padberg

and Rinaldi also suggest the idea of using cut pools to store the discarded cuts for use later in the

algorithm. Since these cuts could once again become violated, or could be useful in some other part

of the tree, it makes sense to store them and simply check them for violation rather than regenerating

them using an expensive separation routine.

An analogous idea can be applied in the context of branch-and-price-and-cut. A variable is

called inactive if it is non-basic and has positive reduced cost. When a variable is deemed inactive,

it may be removed without affecting the optimality of the current solution. As with removal of cuts,

compressing the size of the master LP can improve the efficiency of the solution update step. In

the same way, we can store both discarded cuts and discarded variables in associated pools. Storing

discarded variables may have an even bigger impact on performance than storing discarded cuts,

since the generation of variables can often be relatively expensive. By simply checking the variable

pool for columns with negative reduced cost, we may save a good deal of processing time.

3.7 Solver Choice for Master Problem

Another important algorithmic choice in the implementation of a branch-and-price-and-cut method

is how one solves the master problem (an LP). It is well-known that the dual simplex method gener-

ally performs best in the context of branch-and-cut. This is because upon adding valid inequalities

(rows) to the master LP, or adjusting bounds, the current solution remains dual feasible. Adding a

cut to the (primal) master LP is equivalent to adding a column to its dual, while adjusting a variable

bound is equivalent to changing the dual cost vector. Neither of these things affects the feasibility
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of the current dual solution. Because of this, the dual simplex method can skip its first phase, which

attempts to find a dual feasible basis, and use the previous basis to warm-start the algorithm.

In the context of branch-and-price-and-cut, we may add either rows or columns or both at each

iteration. Adding a column to the master LP is equivalent to adding a row to its dual. This row,

because of how we select the columns to enter, will cause the current point to be dual infeasible.

However, it is still primal feasible. For this reason, the primal simplex method makes more sense

since its first phase is to find a primal feasible basis. So, it seems appropriate to use primal simplex

after adding columns and dual simplex after adding cuts or adjusting bounds.

Of course, the overall algorithmic efficiency of the primal simplex method versus the dual sim-

plex method is also a consideration in this decision. Despite being able to start with a feasible basis,

the primal simplex is in general considered less efficient than dual simplex for solving many of the

linear programs encountered in practice. Thus, there is a tradeoff to be considered that can only

be studied empirically. In Chapter 5 we will present some computational results comparing these

options.

A third option for solving the master LP is to use an interior point method (IPM). It is well-

known that inner methods such as Dantzig-Wolfe may exhibit performance issues when using

simplex-based methods for solving the master LP, due to slow convergence. This slow conver-

gence has been attributed to the nature of the development of the optimal dual values [55]. Since

simplex-based methods provide extremal points, we may encounter oscillation in the dual solutions

produced, which can greatly hurt performance. There have been several attempts at dealing with

this issue by penalizing large movements in the dual solution from some stability center. For an

excellent treatment of these methods, see [16]. A simpler approach to dealing with the stability

issue is to use an interior point method to solve the master LP. Since IPMs give solutions in the inte-

rior of the feasible region as opposed to extremal solutions, the oscillations can be greatly reduced.

Of course, like the choice of primal versus dual simplex, there are other important computational

considerations if choosing to use an interior point method over a simplex-based method. Although

there is some recent work on warm-starting IPMs [95], it is not yet well understood how an IPM

would perform in the context of a branch-and-price-and-cut framework. Integration of some of these
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stabilization ideas into our framework is an important area of future research.
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Chapter 4

Software Framework

The theoretical and algorithmic framework that we proposed in Chapter 2 lends itself nicely to a

wide-ranging and flexible generic software framework. In this chapter, we introduce the new open-

source C++ software framework called DIP (Decomposition for Integer Programming). DIP is a

flexible generic software framework that provides extensible implementations of the various de-

composition algorithms proposed in Chapter 2. The typical user of DIP will have access to the full

suite of decomposition algorithms by providing methods that define application-specific compo-

nents. In addition, the advanced user has the ability to override almost any algorithmic component,

enabling the development of custom variants of the aforementioned methods.

Existing software frameworks for use in implementing decomposition methods are primarily

designed to be flexible, leaving it up to the user to implement various components as they pertain

to specific applications. DIP takes a much different approach, sacrificing some of the extensive

flexibility of a framework like COIN/BCP in order to provide a great deal more automation and to

reduce the user’s burden. For this reason, the learning curve is much less steep using DIP than with

a framework such as COIN/BCP.

One of the key contributions of this research is the manifestation of the conceptual framework

discussed in Chapter 2 in the form of DIP. By considering inner methods, such as Dantzig-Wolfe

decomposition and Lagrangian relaxation, in the same framework as classical cutting-plane meth-

ods, we allow for seamless integration. The mapping (2.18) between the compact formulation and
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the extended formulation, which was discussed in Section 2.1.2, is key to the success of this design.

This allows the framework to simulatenously manage and integrate the dynamic generation of cuts

and variables. In addition, as discussed in Section 3.1, this also greatly simplifies the setup for

branching, as the rules can be defined in the compact space. These two facts allow for a much sim-

pler user interface than any of the previously mentioned frameworks. For example, in COIN/BCP,

to implementing a column-generation algorithm involves defining the pricing subproblem and pro-

viding a solver for it, as well as providing a routine to produce a new column for inclusion in the

reformulated master. The subproblem is generally modeled in the compact space, so the user has the

burden of providing the method of applying the mapping between the two spaces in both directions.

The user must also define the objective function for the subproblem by providing a function that

computes the reduced cost vector from the master formulation’s dual solution.

When simultaneously generating valid inequalities, things get even more complex. The transla-

tion from columns in the compact space to rows in the reformulated space must be done carefully,

taking into account any cuts that have been added or deleted. The same applies to branching, for

which a separate routine is required to enforce branching rules. In COIN/BCP, there are no built-in

facilities for this. DIP does all of this in an automated fashion for the user. The user has simply to

describe the model in the compact space and identify the relaxation (subproblem) that defines the

decomposition.

If the user wishes to add methods for generating problem-specific valid inequalities, these meth-

ods can be defined in terms of the model in the comapct space. If a function to perform the separation

in the compact space is provided, then DIP takes care of all of the accounting necessary for imple-

menting an integrated method such as branch-and-price-and-cut. In addition, because of its design,

one can even employ separation routines for generic classes of valid inequalities for MILP, such as

those provided by COIN/CGL (Cut Generator Library) [54]. The same cuts that help improve the

performance of outer methods, such as branch-and-cut, can be applied in combination with inner

methods using DIP.

An overarching motivation behind the design of this framework is that a user can describe a

model in the compact space and with a simple option run any combination of the traditional or
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integrated methods discussed above. This means that with no additional user interaction, it is pos-

sible to compare cutting-plane methods with price-and-cut or relax-and-cut in the same software

framework. To our knowledge, this is the first time such a framework has been provided.

4.1 Design

DIP is a C++ library that relies on inheritance to define specific customizations. The user interface is

divided into two separate classes, an applications interface, encapsulated in the class DecompApp,

in which the user may provide implementations of application-specific methods (e.g., solvers for

the subproblems), and an algorithms interface, encapsulated in the class DecompAlgo, in which

the user can modify DIP’s internal algorithms, if desired. The DecompAlgo class provides imple-

mentations of all of the methods described in Chapter 2. As mentioned before, an important feature

of DIP is that the problem is always presented, by the user, in the compact space, rather than in the

space of a particular reformulation. The user may provide subroutines for separation and optimiza-

tion in the original space without considering the underlying algorithmic method. DIP performs all

of the necessary bookkeeping tasks, including automatic reformulation for price-and-cut constraint

dualization for relax-and-cut, cut and variable pool management, and row and column expansion.

DIP has been released as part of the COIN-OR repsitory ??. It is built on top of several existing

COIN-OR projects and relies on others for its default implementations. Since we will be mentioning

these projects frequently in the following sections, we include here a reference table of projects that

are used by DIP. One of those projects, ALPS (the Abstract Library for Parallel Search), is the

search-handling layer of the COIN-OR High-Performance Parallel Search (CHiPPS) framework

[94] and serves as the base foundation upon which DIP is built. In ALPS, there is no assumption

about the algorithm that the user wishes to implement, except that it is based on a tree search.

Since our decomposition-based algorithms are focused on the resolution of strong bounds for use

in a branch-and-bound framework, the ALPS framework was a perfect candidate to build upon. To

facilitate this, DIP provides an interface object called AlpsDecompModel, derived from the base

class AlpsModel, which provides the main data access interface for the ALPS framework.
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Project Name Description
ALPS The Abstract Library for Parallel Search, an abstract base layer for

implementations of various tree search algorithms
CBC COIN-OR branch-and-cut, an LP-based branch-and-cut solver for MILP
CGL Cut Generator Library, a library of cutting-plane generators
CLP COIN-OR LP, a linear programming solver that includes simplex and

interior point solvers
CoinUtils Utilities, data structures, and linear algebra methods for COIN-OR projects
OSI Open Solver Interface, a uniform API for calling embedded linear and

mixed integer programming solvers

Table 4.1: COIN-OR Projects used by DIP

Class Description
DecompApp Interface for setting the model and application-specific methods
DecompAlgo Interface for defining algorithmic components
AlpsDecompModel Interface to the Alps tree search framework
DecompConstraintSet Class for defining the model(s)
DecompVar Class for storing an extreme point of P ′
DecompCut Class for storing a valid inequality

Table 4.2: Basic Classes in DIP Interfaces

In the remainder of this section, we discuss the design of DIP at an abstract level. In section 4.4, we

provide several examples to make these concepts more concrete. In Table 4.1 we list the basic set

of classes that a typical user would encounter when creating an application in DIP.

4.1.1 The Application Interface

The base class DecompApp provides an interface for the user to define the model and the application-

specific algorithmic components to define the model. The user must first provide the relevant input

data, i.e., the description of the polyhedronQ′′ and either an implicit description of P ′ or an explicit

description of the polyhedron Q′, as discussed in Section 1.2. The framework expects the user to

define these models using the object DecompConstraintSet. The API for this object is as one

might expect; there are methods for defining the constraint matrix, row and column bounds, and
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variable types (continuous or integral). Once the model has been defined, the user must set these

models using the following methods of the class DecompApp:

• setModelObjective(double * c), for the original objective c, and

• setModelCore(DecompConstraintSet * model), for Q′′.

Optionally, if the chosen relaxation Q′ is to be defined explicitly as an MILP, the user would need

to call the method setModelRelax(DecompConstraintSet * model, int block).

Notice that the block separable case for Q′ is easily accommodated in the method that sets the

relaxation. In the case where the extreme points of the relaxation are generated implicitly, such as

in Example 3 (TSP), we do not have to explicitly define the constraints describing the relaxation.

Once the model has been defined, the user has the choice of overriding a number of different

methods that will affect the algorithmic processing. Here we point out some of the most commonly

used methods. For a full description, reference the doxygen API documentation provided at [33].

DecompApp::solveRelaxed(): With this method, the user can provide an algorithm for

solving the subproblem OPT(P ′, c). In the case of an explicit definition of Q′ as an MILP,

the user does not have to override this method—DIP simply uses the built-in MILP solver

(CBC) or another OSI-supported MILP solver that has been defined in the setup process. In

the case of a problem like TSP or GAP, the user might provide a customized algorithm for

solving the subproblem that is more efficient than a generic MILP solver. In the case of the

GAP, for example, each block can be solved using known specialized methods for the Binary

Knapsack Problem.

To define the meethod, the user must provide a function that takes a cost vector as input and

return a solution or set of solutions in the form of DecompVar objects. The solution s, an

extreme point of P ′, is simply an assignment of values to the variables in the original space.

The DecompVar object itself is a sparse vector that represents this solution.

DecompApp::generateCuts(): With this method, the user can provide an algorithm for

solving the separation subproblem SEP(P ′, x). DIP already has generators for most of the
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common classes of generic valid inequalities provided by the CGL built in. For many ap-

plications, the user will have specific knowledge of methods for generating valid inequalities

that can greatly enhance performance. For the TSP, we have already mentioned subtour elim-

ination constraints (SECs) and comb constraints. For SECs, one approach to solving the

separation problem is to exploit its equivalence to the well-known Minimum Cut Problem. To

define the function, the user must provide a method that, given a solution to the current relax-

ation, returns a valid inequality or set of valid inequalities violated by the solution. The cuts

are returned in the form of DecompCut objects. Like DecompVar, this object is simply a

sparse vector representing the coefficients for the cut plus the sense and right hand side. Also,

like the variable object, the representation of the cut is in the original space.

DecompApp::isUserFeasible(): This function is used to determine whether or not a given

solution, x̂, is feasible to the original model. In case, in which the user gives an explicit

definition of Q′′, this function is unnecessary, since all constraints are explicit and feasibility

can be checked using an automated routine. However, when a full description of Q′′ is not

given a priori, a function for checking feasibility is neccessary to determine whether a given

solution is feasible. In TSP, for example, when the chosen relaxation is 2-Matching, the SECs

are too numerous to define explicitly, so the user must provide this function in order for DIP

to determine whether or not a solution forms a tour.

4.1.2 The Algorithm Interface

At a high level, the main loop of the base algorithm provided in DecompAlgo follows the paradigm

described earlier, alternating between solving a master problem to obtain solution information and

solving a subproblem to generate new polyhedral information. Each of the methods described in

this thesis has its own interface derived from DecompAlgo. For example, the base class for the

price-and-cut method is DecompAlgo::DecompAlgoPC. In this manner, the user can override a

specific subroutine common to all methods (in DecompAlgo) or restrict it to a particular method.

Since the integrated methods described in Section 2.2 generalize the traditional methods from

Section 2.1, we are able to cover the spectrum of aforementioned methods with the following four
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algorithmic classes.

Derived from DecompAlgo

• DecompAlgoC provides the cutting-plane method,

• DecompAlgoPC provides the Dantzig-Wolfe method and price-and-cut,

• DecompAlgoRC provides the Lagrangian method and relax-and-cut.

Derived from DecompAlgoPC

• DecompAlgoDC provides the decompose-and-cut method.

Figure 4.1.2 depicts the inheritance diagram for the algorithmic classes. Recall that the core steps of

the decompose-and-cut method described in Figure 2.20 looks exactly the same as the steps of the

Dantzig-Wolfe method described in Figure 2.4. For this reason, we have derived the decompose-

and-cut object directly from the price-and-cut object, which greatly simplified its implementation.

The typical DIP user simply instantiates a default DecompAlgo objects rather than creating a

dervied class in order to produce a customized algorithm. The decomposition methods mentioned

in Chapter 2 can all be applied to a user’s application by simply passing the application object to the

algorithmic object. An example of this is shown in Section 4.3. However, there are many possible

variants of the basic algorithms that can be explored by simply overriding certain components of

the algorithms. For this reason, all of the methods in the base and derived classes are declared

virtual, giving the user full flexibility to experiment with different derivations.

4.1.3 Interface with ALPS

Once the user has constructed an applications interface DecompApp and an algorithmic interface

DecompAlgo, they must pass this information to an AlpsDecompModel. This object is derived

from the ALPS object, AlpsModel, which provides an interface to a basic tree search. It han-

dles the basic operations required to implement a classic branch and bound. In the context of this

research, the interaction with ALPS is quite simple because we currently process the tree search
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DecompAlgoDC

DecompAlgo

DecompAlgoC DecompAlgoPC DecompAlgoRC

Figure 4.1: Inheritance Diagram for DecompAlgo

in a serial environment. However, ALPS was originally designed to be deployed on distributed

architectures, such as clusters or grids, and is targeted at large-scale computing platforms where

the number of processors participating in the search can be very large. Using DIP with ALPS in

a parallel environment has great potential and is one important area of future research discussed in

Section 6.

4.2 Interface with CGL

By using COIN’s Cut Generator Library project, DIP has access to all of the well-known separation

algorithms for generic classes of valid inequalities typically employed in a branch-and-cut code:

Knapsack Cover, Flow Cover, Cliques, Mixed-Integer Rounding, and Gomory Mixed Integer. The

design of each cut generator follows the simple paradigm of producing an inequality valid for a

given polyhedron that is violated by a given vector. Since DIP always projects back to the compact

formulation, the polyhedra Q′′ and (optionally) Q′, are defined in the compact space. Obviously,

the solution vector to be separated must also be given in the compact space. In this manner, imple-

mentation for the majority of cuts is relatively straightforward. This simple observation is a major

contribution of this work allowing, for the first time, for direct integration of standard cutting planes

into an inner method like branch-and-price-and-cut.

The simple design above works for any class of generic valid inequality that follows the template

paradigm and whose implementation is independent of the solution technique used to calculate
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the solution vector to be separated, i.e., the solution method for the master problem. For classes

of valid inequalities such as Gomory Mixed Integer, the standard separation algorithm depends

on the existence of an optimal basis associated with the relaxed solution, resulting from having

solved the compact formulation using the simplex method. In the context of branch-and-cut, the

master problem is the compact formulation and, if solved using the simplex algorithm, can easily

be integrated with separation algorithms for Gomory Mixed Integer cuts. In the case of branch-and-

price-and-cut, however, the master problem is formulated in the extended space and we map back

to the compact space to compute x̂. This gives us a primal solution but not an associated basis.

Conceptually, this can be overcome by running a crossover step to construct a basis from the primal

solution x̂. This idea of “crossing over” from a solution to a basic solution is common in hybrid

linear programming solvers that start out using an interior point method and then cross over to the

simplex method [28]. Applying this idea in the context of DIP is another potential area of future

research.

4.3 Creating an Application

To better understand how a user might interact with the framework, let us return to our examples.

4.3.1 Small Integer Program

The small integer linear program in Example 1 provides the simplest use of the software. In Listing

4.1 we show the driver program for the application SILP 1. Lines 3–6 use the UtilParameters

class, a simple utility object for reading parameters from a file or the command line. At line 9, the

user declares a SILP DecompApp object that is derived from a DecompApp object. This object

contains all of the necessary member functions for defining the model and any user-specific over-

rides as described in Section 4.1. Lines 12–15 define the DecompAlgo object of interest and take

the application and parameter objects as input. At this point, the two main objects (the application

and the algorithm) have been constructed and DIP is ready to execute the solution algorithm. The
1For the sake of conserving space, in each of the listings in this chapter, we remove all of the standard error checking,

exception handling, logging, and memory deallocation. Therefore, these listings should be considered code snippets. For
a complete set of source code, please see [33].
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1 i n t main ( i n t argc , char ∗∗ a r gv ){
2 / / c r e a t e t h e u t i l i t y c l a s s f o r p a r s i n g p a r a m e t e r s
3 U t i l P a r a m e t e r s u t i l P a r a m ( argc , a rgv ) ;
4 bool doCut = u t i l P a r a m . G e t S e t t i n g ( ” doCut ” , t rue ) ;
5 bool d o P r i c e C u t = u t i l P a r a m . G e t S e t t i n g ( ” d o P r i c e C u t ” , f a l s e ) ;
6 bool doRelaxCut = u t i l P a r a m . G e t S e t t i n g ( ” doRelaxCut ” , f a l s e ) ;
7
8 / / c r e a t e t h e u s e r a p p l i c a t i o n ( a DecompApp )
9 SILP DecompApp s i p ( u t i l P a r a m ) ;

10
11 / / c r e a t e t h e CPM/ PC / RC a l g o r i t h m o b j e c t s ( a DecompAlgo )
12 DecompAlgo ∗ a l g o = NULL;
13 i f ( doCut ) a l g o = new DecompAlgoC (& s i p , &u t i l P a r a m ) ;
14 i f ( d o P r i c e C u t ) a l g o = new DecompAlgoPC(& s i p , &u t i l P a r a m ) ;
15 i f ( doRelaxCut ) a l g o = new DecompAlgoRC(& s i p , &u t i l P a r a m ) ;
16
17 / / c r e a t e t h e d r i v e r AlpsDecomp model
18 AlpsDecompModel a lpsMode l ( u t i l P a r a m , a l g o ) ;
19
20 / / s o l v e
21 a lpsMode l . s o l v e ( ) ;
22 }

Listing 4.1: DIP main for SILP example

last step is to construct an AlpsDecompModel from the algorithm and parameter object, which is

done at Line 18. Then, at Line 21, we call the solve method. The setup for the main program in this

example is almost identical to that for any other application. The details of the implementation are

contained in the framework itself and the user derivations.

In Listing 4.2, we take a closer look at what is happening when the user application is con-

structed at Line 9 of main. In this code, we are considered two different possible decompositions

for Example 1. The original decomposition described in Section 1.2,

P ′1 = {x ∈ Z2 | x satisfies (1.6)− (1.11)},

Q′′1 = {x ∈ R2 | x satisfies (1.12)− (1.16)},

as well as the opposite construction

P ′2 = {x ∈ Z2 | x satisfies (1.12)− (1.16)},

Q′′2 = {x ∈ R2 | x satisfies (1.6)− (1.11)}.
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1 void SILP DecompApp : : c r e a t e M o d e l s ( ) {
2 / / c o n s t r u c t t h e o b j e c t i v e f u n c t i o n
3 c o n s t i n t numCols = 2 ;
4 double o b j e c t i v e [ 2 ] = {0 , 1} ;
5 s e t M o d e l O b j e c t i v e ( o b j e c t i v e ) ;
6
7 / / b u i l d m a t r i x p a r t s 1 and 2
8 c o n s t i n t numNzs1 = 10 , numNz2 = 1 0 ;
9 c o n s t i n t numRows1 = 6 , numRows2 = 5 ;

10 i n t r o w I n d i c e s 1 [ numNzs1 ] = {0 , 0 , 1 , 2 , 2 , 3 , 3 , 4 , 5 , 5} ;
11 i n t c o l I n d i c e s 1 [ numNzs1 ] = {0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1} ;
12 double e l e m e n t s 1 [ numNzs1 ] = { 7 . 0 , −1.0 , 1 . 0 , −1.0 , 1 . 0 ,
13 −4.0 , −1.0 , −1.0 , 0 . 2 , −1.0} ;
14 i n t r o w I n d i c e s 2 [ numNzs2 ] = {0 , 0 , 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4} ;
15 i n t c o l I n d i c e s 2 [ numNzs2 ] = {0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1} ;
16 double e l e m e n t s 2 [ numNzs2 ] = {−1.0 , −1.0 , −0.4 , 1 . 0 , 1 . 0 ,
17 1 . 0 , 3 . 0 , 1 . 0 , 0 . 2 5 , −1.0} ;
18
19 m modelPar t1 .M = new CoinPackedMat r ix ( f a l s e , r o w I n d i c e s 1 , c o l I n d i c e s 1 ,
20 e l emen t s1 , numNzs1 ) ;
21 m modelPar t2 .M = new CoinPackedMat r ix ( f a l s e , r o w I n d i c e s 2 , c o l I n d i c e s 2 ,
22 e l emen t s2 , numNzs2 ) ;
23
24 / / s e t t h e row upper and lower bounds o f p a r t 1
25 double rowLB1 [ numRows1 ] = {1 3 . 0 , 1 . 0 , −3.0 , −27.0 , −5.0 , −4.0} ;
26 s t d : : f i l l n ( b a c k i n s e r t e r ( m modelPar t1 . rowUB ) , numRows1 , DecompInf ) ;
27 s t d : : copy ( rowLB1 , rowLB1 + numRows1 , b a c k i n s e r t e r ( m modelPar t1 . rowLB ) ) ;
28
29 / / s e t t h e column upper and lower bounds o f p a r t 1
30 s t d : : f i l l n ( b a c k i n s e r t e r ( m modelPar t1 . colLB ) , numCols , 0 . 0 ) ;
31 s t d : : f i l l n ( b a c k i n s e r t e r ( m modelPar t1 . colUB ) , numCols , 6 . 0 ) ;
32
33 / / s e t t h e i n t e g e r v a r i a b l e s f o r p a r t 1
34 m modelPar t1 . i n t e g e r V a r s . p u s h b a c k ( 0 ) ;
35 m modelPar t1 . i n t e g e r V a r s . p u s h b a c k ( 1 ) ;
36
37 / / s e t t h e row / c o l bounds and i n t e g e r v a r i a b l e s f o r p a r t 2
38 < . . . s n i p . . . >
39
40 sw i t c h ( whichRelax ){
41 case 1 :
42 / / s e t model 1
43 s e tM od e lR e l a x (& m modelPar t1 ) ; / / P ’
44 se tMode lCore (& m modelPar t2 ) ; / / Q ’ ’
45 break ;
46 case 2 :
47 / / s e t model 2
48 s e tM od e lR e l a x (& m modelPar t2 ) ; / / P ’
49 se tMode lCore (& m modelPar t1 ) ; / / Q ’ ’
50 break ;
51 }
52 }

Listing 4.2: DIP createModels for SILP example
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The data members m modelPart1 and m modelPart2 are DecompConstraintSet objects.

They are passed into the applications interface to define the relevant model, depending on the de-

composition the user is interested in solving. The construction of the model follows the typical steps

for creating an MILP model using the COIN utilities. At lines 3–5, we define and set the objective

function, which is the same for either decomposition. Next, at lines 8–22, we build two matrices us-

ing the triple index data structure used as input for a CoinPackedMatrix, which is the standard

sparse matrix data structure provided with the CoinUtils project. There are many different ways to

construct the input using this object. The interested reader is referred to the documentation for the

CoinUtils API [49]. Finally, at lines 24–38, we define the column and row bounds, as well as a list

of those variables that are integral. At this point, we are done defining the necessary model elements

and we can simply assign the appropriate data member using the methods setModelRelax and

setModelCore. As can be seen, switching the choice of relaxations is quite easy.

At this point, the work to create the application SILP is complete. In this case, the methods for

solving the subproblem are all built into the framework. The generation of variables is done using

the built-in MILP solver (CBC), and the generation of valid inequalities is done by the built-in

separation routines (CGL). Checking feasibility is as simple as checking that the constraints of the

complete model as well as integrality requirements, are satisfied. In the following section, we look

at a slightly more advanced implementation for the Generalized Assignment Problem that requires

using a few more of the interface methods defined by DecompApp.

4.3.2 Generalized Assignment Problem

Looking back at our second example, the Generalized Assignment Problem, we recall that when

choosing the capacity constraints (1.19) as the relaxation, we are left with a set of independent

knapsack problems, one for each machine in M .

In Listing 4.3, we show how one defines these blocks when setting the model components. At

lines 15–17, we create and set the desription of Q′′, the assignment constraints, using the method

setModelCore. Then, at lines 19–23, we create and set each block using the setModelRelax

method. Notice that the third argument of this method allows the user to specify the block identifier.
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1 void GAP DecompApp : : c r e a t e M o d e l s ( ) {
2
3 / / g e t i n f o r m a t i o n abou t t h i s problem i n s t a n c e
4 i n t nTasks = m i n s t a n c e . ge tNTasks ( ) ; / / n
5 i n t nMachines = m i n s t a n c e . getNMachines ( ) ; / / m
6 c o n s t i n t ∗ p r o f i t = m i n s t a n c e . g e t P r o f i t ( ) ;
7 i n t nCols = nTasks ∗ nMachines ;
8
9 / / c o n s t r u c t t h e o b j e c t i v e f u n c t i o n

10 m o b j e c t i v e = new double [ nCols ] ;
11 f o r ( i = 0 ; i < nCols ; i ++)
12 m o b j e c t i v e [ i ] = p r o f i t [ i ] ;
13 s e t M o d e l O b j e c t i v e ( m o b j e c t i v e ) ;
14
15 D e c o m p C o n s t r a i n t S e t ∗ modelCore = new D e c o m p C o n s t r a i n t S e t ( ) ;
16 c r e a t e M o d e l P a r t A P ( modelCore ) ;
17 se tMode lCore ( modelCore ) ;
18
19 f o r ( i = 0 ; i < nMachines ; i ++){
20 D e c o m p C o n s t r a i n t S e t ∗ modelRelax = new D e c o m p C o n s t r a i n t S e t ( ) ;
21 c r e a t e M o d e l P a r t K P ( modelRelax , i ) ;
22 se tMode lRe l ax ( modelRelax , i ) ;
23 }
24 }

Listing 4.3: DIP createModels for GAP example

For each block defined, DIP knows how to handle the algorithmic accounting necessary for the

associated reformulations.

Since each block defines an independent binary knapsack problem, we want to take advan-

tage of this using one of the many well-known algorithms for solving this problem. We could

explicitly define the knapsack problem as an MILP when defining the matrix Q′. In that case,

DIP would just call the built-in MILP solver when asked to generate new extreme points of P ′.
Instead, we employ a public-domain code for solving the binary knapsack problem distributed

by Pisinger at [74] that uses the combo algorithm described in [59]. The algorithm is based on

dynamic programming. In Listing 4.4, we show the main elements of declaring a user-specified

solver for the subproblem by derivation of the base function solveRelaxed. The framework’s

recourse is determined by the DecompSolverStatus status code returned by this method. In

the case of DecompSolStatNoSolution, the framework attempts to solve the subproblem as

a generic MILP, assuming an explicit description of Q′ was provided. The inputs to the method

solveRelaxed() are as follows:
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1 DecompS o lve rS t a tu s GAP DecompApp : : s o l v e R e l a x e d ( c o n s t i n t whichBlock ,
2 c o n s t double ∗ c o s t C o e f f ,
3 DecompVarList & newVars ){
4
5 DecompSo lve rS t a tu s s t a t u s = DecompSolS ta tNoSo lu t ion ;
6 i f ( ! m appParam . U s e P i s i n g e r )
7 re turn s t a t u s ;
8
9 v e c t o r <i n t > s o l I n d ;

10 v e c t o r <double> s o l E l s ;
11 double v a r C o s t = 0 . 0 ;
12 c o n s t double ∗ c o s t C o e f f B = c o s t C o e f f + g e t O f f s e t I ( whichBlock ) ;
13
14 s t a t u s = m knap [ whichBlock]−> s o l v e ( whichBlock ,
15 cos tCoef fB ,
16 s o l I n d ,
17 s o l E l s ,
18 v a r C o s t ) ;
19
20 DecompVar ∗ v a r = new DecompVar ( s o l I n d ,
21 s o l E l s ,
22 va rCos t ,
23 whichBlock ) ;
24 newVars . p u s h ba c k ( v a r ) ;
25 re turn s t a t u s ;
26 }

Listing 4.4: DIP solveRelaxed for GAP example

• whichBlock defines which block it is currently processing, and

• costCoeff defines the coefficients of the cost vector used in the subproblem.

In lines 14–17, we are calling the specialized knpsack solver. This code solves the binary knapsack

problem, using the provided cost function. It returns a sparse vector that represents the solution to

that knapsack problem. Then, in lines 20–23, that vector is used to create a DecompVar object that

is then returned in a list of extreme points to be considered as candidates for adding to the master

formulation.

In the following section, we look once more at the Traveling Salesman Problem. For the TSP as

well, we need to implement the solveRelaxed method so that we can take advantage of efficient

algorithms for solving the 1-tree or 2-matching relaxations. In addition, TSP requires a user-defined

separation algorithm for the subtour elimination constraints. We explore that next.
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1 i n t TSP DecompApp : : g e n e r a t e C u t s ( c o n s t double ∗ x ,
2 DecompCutLis t & newCuts ){
3
4 i n t nCuts = 0 ;
5 U t i l G r a p h L i b & g r a p h L i b = m tsp . m graphLib ;
6 TSP Concorde & t s p C o n c o r d e = m tsp . m concorde ;
7 t s p C o n c o r d e . bu i ldSubGraph ( g r a p h L i b . n v e r t i c e s ,
8 g r a p h L i b . n edges , x ) ;
9

10 v e c t o r <ConcordeSubtourCut> s u b t o u r C u t s ;
11 i n t c ;
12 i n t n v e r t i c e s = g r a p h L i b . n v e r t i c e s ;
13 i n t n s u b t o u r = t s p C o n c o r d e . g e n e r a t e C u t s S u b t o u r ( s u b t o u r C u t s ) ;
14 f o r ( c = 0 ; c < n s u b t o u r ; c ++){
15 v e c t o r <i n t > & S = s u b t o u r C u t s [ c ] . S ;
16 v e c t o r <bool> & inS = s u b t o u r C u t s [ c ] . inS ;
17 TSP SubtourCut ∗ s e c c u t = new TSP SubtourCut ( inS , S ) ;
18 newCuts . p u s h b a c k ( s e c c u t ) ;
19 nCuts ++;
20 }
21 re turn nCuts ;
22 }

Listing 4.5: DIP generateCuts for TSP example

4.3.3 Traveling Salesman Problem

In Listing 4.5, we show the derivation of the base function generateCuts in the context of

separation for subtour elimination constraints for TSP. The only input to this method is x̂, the

current relaxed solution to be separated. The output is a list of DecompCut objects that sepa-

rate the current point. The details of the actual separation algorithm are contained in the call to

the generateCutsSubtour method of the TSP Concorde object at line 13. This method

is a wrapper around Concorde’s algorithm for finding the minimum cut [1]. It returns a vector of

ConcordeSubtourCuts that are simply containers for a set of nodes in the graph that form a vi-

olated subtour. From these sets of nodes, we must formulate the SEC constraint in the form of a cut

in the compact space of the edge variables defined for the TSP as in (1.23). This is done at line 17 in

the constructor of the class TSP SubtourCut, which is derived from the base class DecompCut.

Since the TSP SubtourCut is a DecompCut it can be returned in the list of newCuts for DIP

to process.
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4.4 Other Examples

In this section we briefly discuss some of the other example applications that are included in the

COIN distribution for the sake of illustrating the various types of models that can be solved using

DIP. In addition, in Chapter 4 we use some of these applications for an empirical analysis of certain

algorithmic components. A list of the current applications included in the distribution appears in

Table 4.4. The table lists the application name, a short description, the choice of relaxation P ′, and

the form of the user input data. In addition, it shows what technology was used for the associated

optimization and separation subproblems.

In the application AP3, we solve the Three-Index Assignment Problem, which is the problem of

finding a minimum-weight clique cover of a complete tripartite graph. This problem is a generaliza-

tion of the well-known Assignment Problem (AP). In this application, we use the AP solver provided

by Jonker [45] to solve the optimization subproblem. This code is based on a shortest augmenting

path algorithm described in [44]. In addition, we implemented various separation routines for some

facet-defining valid inequalities, which are discussed in [76].

As mentioned before, in the GAP application, we solve the optimization subproblem using the

knapsack solver provided by Pisinger [74]. For the separation subproblem, we employ CGL.

The application MAD attempts to solve the Matrix Decomposition Problem described in [15].

This problem attempts to decompose a matrix row-wise into a given number of blocks while satisfy-

ing capacity constraints on each block. The optimization subproblem, in this case, is the maximum

node-weighted clique problem, for which we employ the public-domain solver Cliquer [71]. For

the separation subproblem we again employ CGL.

In the TSP application, we generate valid inequalities by using methods provided by the software

package Concorde [1]. As described in Examples 3a and 3b, we consider relaxations based on

extreme points from the 1-tree polytope and the 2-matching polytope. In the latter case, we simply

use CBC to solve the optimization subproblem; in the former case, we employ the graph algorithms

included in the software package Boost/Graph [84].

In the VRP application, we also consider two relaxations mentioned in Section 2.3.1. They are

the Multiple Traveling Salesman Problem (k-TSP) and the Perfect b-Matching Problem (b-Match).

105



4.4. OTHER EXAMPLES

Table 4.3: COIN/DIP Applications
Application Description P ′ OPT(c) SEP(x) Input
AP3 3-index assignment AP Jonker user user
ATM cash management (SAS COE) MILP(s) CBC CGL user
GAP generalized assignment KP(s) Pisinger CGL user
MAD matrix decomposition MaxClique Cliquer CGL user
MILP random partition into A′, A′′ MILP CBC CGL mps
MILPBlock user-defined blocks for A′ MILP(s) CBC CGL mps, block
MMKP multi-dim/choice knapsack MCKP Pisinger CGL user

MDKP CBC CGL user
SILP intro example, tiny IP MILP CBC CGL user
TSP traveling salesman problem 1-Tree Boost Concorde user

2-Match CBC Concorde user
VRP vehicle routing problem k-TSP Concorde CVRPSEP user

b-Match CBC CVRPSEP user

In the latter case we simply formulate the subproblem as an MILP and use CBC. In the former case,

we use an expanded graph to formulate k-TSP as a standard TSP and use the solvers in Concorde.

For the separation routines, we use the software package CVRPSEP [57], which is described in

[58].

In Chapter 5 we will expand in full detail on the remaining applications: ATM, MMKP, MILP,

and MILPBlock.
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Chapter 5

Applications and Computational Results

This chapter describes several applications written using DIP in support of work done at SAS Insti-

tute. For each, we present computational results referring back to some of the details considered in

Chapter 3. As stated earlier, although the theory behind integrated decomposition methods has been

around for some time, there have been very few studies on the implementation details. We expect

this area of computational research to grow dramatically as solvers for more real-world applications

are successfully implemented. We hope that DIP can help facilitate the study of these methods.

In the first section, we present the Multi-Choice Multi-Dimensional Knapsack Problem (MMKP),

an important subproblem used in the algorithms present in SAS Marketing Optimization (SAS/MO).

SAS/MO attempts to improve the return-on-investment for marketing campaign offers. It does this

by targeting higher response rates, improving channel effectiveness, and reducing spending. We

look at a number of benchmark instances for MMKP to compare and contrast the different inte-

grated methods and some associated options available in DIP.

In the second section, we introduce an application from the banking industry for ATM cash

management that we worked on for the Center of Excellence in Operations Research at SAS Insti-

tute. We model the problem as a mixed integer nonlinear program and create an application in DIP

to solve an approximating MILP. We show results using DIP’s branch-and-price-and-cut method

and compare it directly to the branch-and-cut algorithm in CPLEX 10.2 [28].

In the third section, we present another application developed in DIP, called MILPBlock, which
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provides a black-box solver, using integrated methods, to solve generic MILPs that have block-

angular structure. We present computational results using MILPBlock on a model presented to us

from SAS Retail Optimization. The model comes from a multi-tiered supply chain distribution

problem.

5.1 Multi-Choice Multi-Dimensional Knapsack

The Multi-Choice Multi-Dimensional Knapsack Problem (MMKP) is an important problem that has

attracted a great deal of interest in numerous industries. One well-documented context is for quality

adaptation and admission control of interactive multimedia systems [19]. It has also been used

for service-level agreement management in telecommunications networks [91]. At SAS Institute,

MMKP has been recognized as an important subproblem in the algorithms used for SAS Marketing

Optimization and, hence, motivated our study of this application using the ideas presented in this

thesis.

Given a set of groups of items, the goal is to select the best item in each group so as to maximize

the value, given some set of resource constraints. Let N define the set of groups, and for each group

i, let Li define the set of items in that group. Let M be the set of resource types and define rkij to be

the amount of consumption of resource type k for item j in group i. Define vij as the value of item

j in group i, and bk as the capacity of resource type k. With each possible selection, we associate

a binary variable xij , which, if set to 1, indicates that item j from group i is selected. Then an ILP

formulation of MMKP is as follows:

max
∑

i∈N

∑

j∈Li

vijxij ,

∑

i∈N

∑

j∈Li

rkijxij ≤ bk ∀k ∈M, (5.1)

∑

j∈Li

xij = 1 ∀i ∈ N, (5.2)

xij ∈ {0, 1} ∀i ∈ N, j ∈ Li. (5.3)
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In this formulation, equations (5.2) ensure that exactly one item is selected from each group. In-

equalities (5.1) enforce the capacity restrictions on each type of resource.

The relaxation that we focus on for MMKP is the well-known Multi-Choice Knapsack Problem

(MCKP), which is simply an MMKP with only one resource type, i.e., |M | = 1. Let us choose one

particular resource type m ∈ M to define our MCKP relaxation. Now, we break out the resource

constraints as follows:

∑

i∈N

∑

j∈Li

rmijxij ≤ bm, (5.4)

∑

i∈N

∑

j∈Li

rkijxij ≤ bk ∀k ∈M \ {m}, (5.5)

so that we can define the associated polyhedra for our decomposition. That is,

P = conv {xij ∈ {0, 1} ∀i ∈ N, j ∈ Li | x satisfies (5.1), (5.2), (5.3)} ,

P ′ = conv {xij ∈ {0, 1} ∀i ∈ N, j ∈ Li | x satisfies (5.4), (5.2), (5.3)} ,

Q′′ = {xij ∈ [0, 1] ∀i ∈ N, j ∈ Li | x satisfies (5.5)} .

We developed an application in DIP to solve MMKP using the integrated methods discussed earlier.

The chosen relaxation, MCKP, is studied extensively by Pisinger in [75]. For solving this relax-

ation, we employed his public-domain code called mcknap [74]. The algorithm for MCKP uses a

sophisticated core-based branch-and-bound algorithm integrated with dynamic programming. For

generation of valid inequalities, we used CGL, which includes the class of Knapsack Cover cuts

that can be useful for solving MMKP due to the structure of constraints (5.1).

In the following sections, we present results on the use of DIP to solve this problem. We used

a standard set of benchmarks that can be found in [43]. All comparisons were run on the inferno

servers, which are part of the High Performance Computing cluster at Lehigh University. Each

machine is running the CentOS (release 5), 64-bit x86 64 operating system and has a dual quad-

core Xeon 1.8Ghz processor, 16GB of memory, and 4MB of cache. For a baseline comparison, we

compare our results using DIP with the branch-and-cut algorithm provided by CPLEX 10.2 [28].
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In each run we used a time limit of 600 seconds and focus on the best solution and gap provided

within the limit.

5.1.1 Results on Integrated Methods

In this first experiment we compared the following variants of DIP against CPLEX 10.2: (DIP-

CPM) branch-and-cut, using CGL cuts; (DIP-PC) branch-and-price-and-cut, using CGL cuts and

mcknap to solve the relaxation MCKP; and, (DIP-DC): branch-and-cut, using CGL cuts and using

decompose-and-cut (with the MCKP relaxation), for separation of decomposition cuts. We provide

detailed results in Tables A.1 and A.2, in the Appendix.

In Table 5.1, we provide a summary of results. For each solver, we provide the time to solve

(Time) and the percentage gap (Gap) 1. In addition, Figure 5.1 shows the results in the form of a

performance profile [29], which is a way to easily visualize the relative performance of algorith-

mic variants. Given some specified comparison metric, a performance profile gives the cumulative

distribution function of the ratio of that metric for a particular algorithm to the best corresponding

value obtained in any of the algorithms used. Since the majority of the MMKP instances are too

difficult to solve to optimality, we use the percentage gap between the lower and upper bounds as

our comparison metric.

It is not too surprising that DIP’s branch-and-cut algorithm performs poorly as compared to

CPLEX. There are many aspects of implementing a state-of-the-art branch-and-cut solver that are

out of the scope of this research and therefore not yet included in DIP. The most important miss-

ing aspects include: a presolver, better branching strategies, and primal heuristics. A presolver is

important to reduce and tighten the formulation before it reaches the main solution process. The

reductions done by the presolver have numerous implications on the performance of subsequent

cutting planes, branching decisions, and heuristics. Better branching strategies are also extremely

important to overall performance. In DIP, we simply choose the branching variable (in the com-

pact space) as that variable that is currently most fractional. When selecting a node from the active

search tree for processing, we simply choose the node with the best relaxed objective. Perhaps the
1For the summary tables, Time=T means the solver hit the specified time limit, Gap=OPT means the solver declared

the problem optimal, and Gap=∞ means the solver found no feasible solutions.
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CPX10.2 DIP-CPM DIP-PC DIP-DC
Instance Time Gap Time Gap Time Gap Time Gap
I1 0.00 OPT 0.02 OPT 0.04 OPT 0.14 OPT
I10 T 0.05% T ∞ T 11.86% T 0.15%
I11 T 0.03% T ∞ T 12.25% T 0.14%
I12 T 0.01% T ∞ T 7.93% T 0.10%
I13 T 0.02% T ∞ T 11.89% T 0.12%
I2 0.01 OPT 0.01 OPT 0.05 OPT 0.05 OPT
I3 1.17 OPT 23.23 OPT T 1.07% T 0.75%
I4 15.71 OPT T ∞ T 5.14% T 0.77%
I5 0.01 0.01% 0.01 OPT 0.13 OPT 0.05 OPT
I6 0.14 OPT 0.07 OPT T 0.28% 0.63 OPT
I7 T 0.08% T ∞ T 14.32% T 0.09%
I8 T 0.09% T ∞ T 13.36% T 0.20%
I9 T 0.06% T ∞ T 10.71% T 0.19%
INST01 T 0.43% T ∞ T 9.99% T 0.70%
INST02 T 0.09% T ∞ T 7.39% T 0.45%
INST03 T 0.38% T ∞ T 3.83% T 0.85%
INST04 T 0.34% T ∞ T 7.48% T 0.45%
INST05 T 0.18% T ∞ T 10.23% T 0.62%
INST06 T 0.21% T ∞ T 9.82% T 0.38%
INST07 T 0.36% T ∞ T 15.75% T 0.62%
INST08 T 0.25% T ∞ T 11.55% T 0.46%
INST09 T 0.21% T ∞ T 15.24% T 0.40%
INST11 T 0.22% T ∞ T 7.96% T 0.39%
INST12 T 0.18% T ∞ T 7.90% T 0.42%
INST13 T 0.08% T ∞ T 2.97% T 0.14%
INST14 T 0.05% T ∞ T 3.89% T 0.09%
INST15 T 0.04% T ∞ T 3.43% T 0.10%
INST16 T 0.06% T ∞ T 2.19% T 0.06%
INST17 T 0.03% T ∞ T 2.09% T 0.09%
INST18 T 0.03% T ∞ T 4.43% T 0.06%
INST19 T 0.03% T ∞ T 3.13% T 0.04%
INST20 T 0.03% T ∞ T 3.05% T 0.04%
Optimal 5 5 3 4
≤ 1% Gap 32 5 4 32
≤ 10% Gap 32 5 22 32

Table 5.1: MMKP: CPX10.2 vs CPM/PC/DC (Summary Table)
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most essential missing piece is the lack of primal heuristics for generating feasible solutions (and

therefore good upper bounds) early in the search process. The ability to find good feasible solutions

is extremely important to overall performance. CPLEX 10.2 currently employs numerous primal

heuristics.

Despite this, the performance of DIP’s integrated methods relative to CPLEX is quite accept-

able. The default branch-and-price-and-cut (using MCKP as the relaxation) performs well, finding

solutions within 10% of optimal in 22 of 32 cases. Relative to our implementation of branch-and-

cut, which only found 5 of 32, this is very good. This example supports our claim that inner methods

can be very useful when the polyhedron defined by the outer approximation is not good enough. Our

outer approximation, in this case, is simply defined by the vlasses of valid inequalities that can be

generated by CGL. Recall, from Section 4.2, that this includes the following classes: Knapsack

Cover, Flow Cover, Cliques, Mixed-Integer Rounding, and Gomory Mixed Integer. CPLEX, of

course, also has generators for each of these classes of cuts. In addition, there is another class of

generic valid inequalities, called GUB Covers [69] missing from CGL that might be putting DIP at
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a disadvantage for this problem type. In fact, these cuts, which are a strengthening of the Knapsack

Cover cuts, are generated from relaxations that have the form of MCKP. Clearly, since MCKP is an

important substructure of MMKP, the lack of GUB Covers could be a major factor in performance.

With inner approximation methods, since we are using MCKP as our relaxation, we are im-

plicitly generating the same polyhedral approximation as CPLEX (with GUB covers). This might

partially explain why our integrated methods perform well compared to CPLEX and outperforms

our direct cutting-plane method. Moreover, the implementation of branch-and-cut that includes de-

composition cuts, seems to be outperforming our branch-and-price-and-cut. In fact, is very close to

the performance of CPLEX. Both CPLEX and DIP with decompose-and-cut find a solution within

1% of optimal in all 32 cases. CPLEX finds the optimal solution in 5 cases, while DIP does so

in 4 cases. The dramatic improvement over standard branch-and-cut implies that, in these cases,

the decomposition cuts are quite effective. In the next section, we look at how our idea of nested

pricing, described in Section 3.3, can improve the performance of branch-and-price-and-cut on this

problem.

5.1.2 Results using Nested Pricing

In order to test our ideas on using nested pricing, we now consider another relaxation that we call

the Multi-Choice 2-Dimensional Knapsack Problem (MC2KP). For each p ∈ M \ {m}, define the

MC2KP polyhedron as

PMC2KP
p = P ′ ∩ conv



xij ∈ R+ ∀i ∈ N, j ∈ Li

∣∣∣∣∣∣
∑

i∈N

∑

j∈Li

rpijxij ≤ bp



 . (5.6)

Since each of those polyhedra are contained in P ′, any (or all) of them are candidates for generating

extreme points heuristically. Unfortunately, there are no known algorithms for solving MC2KP,

so there will be an efficiency tradeoff to consider. To implement this in DIP, we construct the

constraint matrix for each polyhedron directly and use the built-in MILP solver (CPLEX10.2) to

solve the optimization subproblems. Since we have several polyhedra, we have many different

possible strategies for choosing which polyhedron to use and how to set the limits on the solver of
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returning heuristic solutions. To keep things simple, we chose to solve every subproblem at each

iteration, and we set the integrality gap for the MILP solver to 10%. Note, that this is a perfect

opportunity to exploit parallelism, since the subproblems used to generate extreme points can all be

solved independently and simultaneously. This is another area of future research that we consider

in Chapter 6.

The comparison of the default branch-and-price-and-cut (DIP-PC) and a version using the

nested polyhedra (DIP-PC-M2) is shown in Table 5.2 and with a performance profile in Figure

5.2. Using the default method, we are able to solve 22 out of 32 to within 10% gap, while using

nested pricing, we can now solve 27 out of 32 within the gap. The performance profile also shows

a clear improvement when using nested pricing.

With evidence that the nested pricing idea can be beneficial, we now push the idea further. In

the same table and figure, we show the results of an experiment in which we use P itself as the

nested polyhedron (DIP-PC-MM). That is, when solving the subproblem in the integrated method,

we heuristically solve MMKP using the built-in MILP solver. The improvements above our default

implementation were dramatic. Now, we are able to solve all cases to within 10% of optimality and

20 out of 32 cases to within 1%.

To summarize the results so far, we show, in Figure 5.3, all the experiments on the same perfor-

mance profile. In addition, in Figure 5.4, we show a stacked bar chart that gives the percentage of

instances solved to optimality, within 5% gap and within 10% gap respectively. As can be seen, our

implementation of decompose-and-cut performs best relative to CPLEX. After that, the nested pric-

ing that uses P to generate extreme points heuristically is next, followed by the other two variants

of branch-and-price-and-cut. As expected, the cutting-plane method is the wosrst performer.

5.1.3 Comparison of Master Solver

As discussed in Section 3.7, the choice of solver for the master problem can have an effect on

performance. The natural choice is to use primal simplex after adding columns and dual simplex

after adding rows. To test this, we ran each of the variants of our algorithms twice. In the first case,

we used DIP’s default settings, which uses primal simplex after adding columns (denoted PC-PS,
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DIP-PC DIP-PC-M2 DIP-PC-MM
Instance Time Gap Time Gap Time Gap
I1 0.04 OPT 0.16 OPT 0.08 OPT
I10 T 11.86% T 6.99% T 0.63%
I11 T 12.25% T 11.15% T 0.60%
I12 T 7.93% T 11.41% T 0.79%
I13 T 11.89% T 13.65% T 0.52%
I2 0.05 OPT 0.45 OPT 0.14 OPT
I3 T 1.07% T 1.18% T 1.10%
I4 T 5.14% T 3.18% T 1.23%
I5 0.13 OPT 0.14 OPT 0.07 OPT
I6 T 0.28% 483.53 OPT T 0.25%
I7 T 14.32% T 4.85% T 0.97%
I8 T 13.36% T 9.79% T 0.67%
I9 T 10.71% T 10.57% T 0.73%
INST01 T 9.99% T 5.97% T 1.86%
INST02 T 7.39% T 7.29% T 1.74%
INST03 T 3.83% T 11.93% T 1.61%
INST04 T 7.48% T 7.04% T 1.56%
INST05 T 10.23% T 8.84% T 1.11%
INST06 T 9.82% T 9.77% T 1.39%
INST07 T 15.75% T 8.78% T 1.23%
INST08 T 11.55% T 8.50% T 1.37%
INST09 T 15.24% T 8.48% T 0.89%
INST11 T 7.96% T 8.72% T 1.13%
INST12 T 7.90% T 6.72% T 1.03%
INST13 T 2.97% T 3.06% T 0.76%
INST14 T 3.89% T 3.67% T 0.52%
INST15 T 3.43% T 2.81% T 0.78%
INST16 T 2.19% T 3.01% T 0.50%
INST17 T 2.09% T 2.16% T 0.39%
INST18 T 4.43% T 2.60% T 0.41%
INST19 T 3.13% T 3.97% T 0.46%
INST20 T 3.05% T 4.06% T 0.94%
Optimal 3 4 3
≤ 1% Gap 4 4 20
≤ 10% Gap 22 27 32

Table 5.2: MMKP: PC vs PC Nested with MC2KP and MMKP (Summary Table)
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DC-PS, PC-M2-PS, and PC-MM-PS). In the second case, we used dual simplex at every iteration

(denoted PC-DS, DC-DS, PC-M2-DS, and PC-MM-DS). The results from these experiments are

shown in the four performance profiles in Figures 5.5 and 5.6. From the experiments, there is

no clear winner, though dual simplex is slightly favored. This is a bit surprising given the fact

that when using dual simplex after adding columns, the solver must run a first phase to generate

a dual feasible basis, while primal simplex can start directly in the second phase. However, it has

been documented that the dual simplex method, on average, performs somewhat better than primal

simplex [12]. Therefore, the benefit of the warm-start might be negated.

This experiment could be improved by also comparing the use of an interior point method for the

master solver. Unfortunately, the OSI interface used in DIP does not currently support interaction

with interior point methods. For this reason, we have left this exercise for future research.
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5.2 ATM Cash Management Problem

The application described in this section was presented to the Center of Excellence in Operations

Research Applications (OR COE) at SAS Institute. The model definitions and data have been obfus-

cated to protect the proprietary nature of the work. However, the general structure of the problem

has been retained. The goal of this application is to determine a schedule for allocation of cash

inventory at bank branches to service a preassigned subset of automated teller machines (ATMs).

Given historical training data per day for each ATM, we first define a polynomial fit for the pre-

dicted cash flow need. This is done using SAS forecasting tools to determine the expected total

daily cash withdrawals and deposits at each branch. The modeling of this prediction depends on

various seasonal factors, including the days of the week, the weeks of the month, holidays, typical

salary disbursement days, location of the branches, and other demographic data. We then want to

determine the multipliers that minimize the mismatch based on predicted withdrawals. The amount

of cash allocated to each day is subject to a budget constraint. In addition, there is a constraint for

each ATM that limits the number of days the cash flow can be less than the predicted withdrawal.

This scenario is referred to as a cash-out. Cash allocation plans are usually finalized at the beginning

of the month, and any deviation from the plan is costly. In some cases, it may not even be feasible.

So, the goal is to determine a policy for cash distribution that balances the inventory levels while

satisfying the budget and customer dissatisfaction constraints. By keeping too much cash-on-hand

for ATM fulfillment, the banks will incur investment opportunity loss. In addition, regulatory agen-

cies in many nations enforce a minimum cash reserve ratio at branch banks. According to regulatory

policy, the cash in ATMs or in transit, do not contribute towards this threshold.

5.2.1 Mixed Integer Nonlinear Programming Formulation

The most natural formulation for this model is in the form of a mixed integer nonlinear program

(MINLP). Let A denote the set of ATMs and D denote the set of days used in the training data. The

predictive model fit is defined by the following set of parameters: (cx
ad, c

y
ad, c

xy
ad, cu

ad) for each ATM

a on each day d. Define variables (xa, ya, ua) for each ATM that, when applied to the predictive

model, give the estimated cash flow need per day, per ATM. In addition, define a surrogate variable

120
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fad for each ATM on each day that defines the net cash flow minus withdrawals given by the fit.

Let Bd define the budget per day, Ka define the limit on cash-outs per ATM, and wad define the

historical withdrawals at a particular ATM, on a particular day. Then the following MINLP models

this problem.

min
∑

a∈A

∑

d∈D

|fad|,

s.t. cx
adxa + cy

adya + cxy
adxaya + cu

adua − wad = fad ∀a ∈ A, d ∈ D, (5.7)

∑

a∈A

(fad + wad) ≤ Bd ∀d ∈ D, (5.8)

|{d ∈ D | fad < 0}| ≤ Ka ∀a ∈ A, (5.9)

xa, ya ∈ [0, 1] ∀a ∈ A, (5.10)

ua ≥ 0 ∀a ∈ A, (5.11)

fad ≥ −wad ∀a ∈ A, d ∈ D. (5.12)

Inequalities (5.8) and (5.9) ensure that the solution satisfies the budget and cash-out constraints,

respectively. Constraint (5.7) defines the surrogate variable fad, which gives the estimated net cash

flow.

In order to put this model into a more standard form, we first must use some standard model

reformulations to linearize the absolute value and the cash-out constraint (5.9).

Linearization of Absolute Value. A well-known reformulation for linearizing the absolute value

of a variable is to introduce one variable for each side of the absolute value. The following system:

min |y|,

s.t. Ay ≤ b,

is equivalent to
min y+ + y−,

s.t. A(y+ − y−) ≤ b,

y+, y− ≥ 0.

Let f+
ad and f−ad represent the positive and negative parts, respectively, of the net cash flow fad.
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Then, we can rewrite the model, removing the absolute value, as the following:

min
∑

a∈A

∑

d∈D

(
f+

ad + f−ad

)
,

s.t. cx
adxa + cy

adya + cxy
adxaya + cu

adua − wad = f+
ad − f−ad ∀a ∈ A, d ∈ D,

∑

a∈A

(
f+

ad − f−ad + wad

) ≤ Bd ∀d ∈ D,

|{d ∈ D | (f+
ad − f−ad) < 0}| ≤ Ka ∀a ∈ A,

xa, ya ∈ [0, 1] ∀a ∈ A,

ua ≥ 0 ∀a ∈ A,

f+
ad ≥ 0 ∀a ∈ A, d ∈ D,

f−ad ∈ [0, wad] ∀a ∈ A, d ∈ D.

Modeling the Cash-Out Constraints In order to count the number of times a cash-out occurs,

we need to introduce a binary variable to keep track of when this event occurs. Let vad be an

indicator variable that takes value 1 when the net cash flow is negative. We can model the following

implication f−ad > 0⇒ vad = 1, or its contrapositive vad = 0⇒ f−ad ≤ 0, by adding the constraint

f−ad ≤ wadvad ∀a ∈ A, d ∈ D.

Now, we can model the cash-out constraint simply by counting the number of days the net-cash flow

is negative for each ATM, as follows:

∑

d∈D

vad ≤ Ka ∀a ∈ A.
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The MINLP model can now be written as follows:

min
∑

a∈A

∑

d∈D

(
f+

ad + f−ad

)
,

s.t. cx
adxa + cy

adya + cxy
adxaya + cu

adua − wad = f+
ad − f−ad ∀a ∈ A, d ∈ D,

∑

a∈A

(
f+

ad − f−ad + wad

) ≤ Bd ∀d ∈ D,

f−ad ≤ wadvad ∀a ∈ A, d ∈ D,

∑

d∈D

vad ≤ Ka ∀a ∈ A,

xa, ya ∈ [0, 1] ∀a ∈ A,

ua ≥ 0 ∀a ∈ A,

f+
ad ≥ 0 ∀a ∈ A, d ∈ D,

f−ad ∈ [0, wad] ∀a ∈ A, d ∈ D,

vad ∈ {0, 1} ∀a ∈ A, d ∈ D.

We tried using this model with several of the available MINLP solvers on the NEOS Server for

Optimization [22]. However, we had little success solving anything but models of trivial size. We

also solicited the help of several researchers doing computational work in MINLP, but thus far,

none of the solvers have been able to successfully solve this problem. Presumably the difficulty

comes from the non-convexity of the prediction function. Another approach is to formulate an

approximation of the problem using mixed integer linear programming (MILP). We show this in the

next section.

5.2.2 Mixed Integer Linear Programming Approximation.

Since the predictive model is a forecast, finding the optimal multipliers based on nondeterministic

data is not of primary importance. Rather, we want to provide as good a solution as possible in

a reasonable amount of time. So, using MILP to approximate the MINLP is perfectly acceptable.
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In the original problem we have products of two continuous variables that are both bounded by 0

(lower bound) and 1 (upper bound). This allows us to create an approximate linear model using a

few standard modeling reformulations.

Discretization of Continuous Variables. The first step is to discretize one of the continuous

variables xa. The goal is to transform the product xaya of a continuous variable with another

continuous variable instead to a continuous variable with a binary variable. By doing this, we can

linearize the product form.

We must assume some level of approximation by defining a binary variable for each possible

setting of the continuous variable to be chosen from some discrete set. For example, if we let

n = 10, then we allow x to be chosen from the set {0.1, 0.2, 0.3, ..., 1.0}. Let T = {1, 2, ..., n}
represent the possible steps and ct = t/n. Then, we apply the following transformation to variable

xa:

∑

t∈T

ctxat = xa,

∑

t∈T

xat ≤ 1,

xat ∈ {0, 1} ∀t ∈ T.
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The MINLP model can now be approximated as the following:

min
∑

a∈A

∑

d∈D

(
f+

ad + f−ad

)
,

s.t. cx
ad

∑

t∈T

ctxat + cy
adya +

cxy
ad

∑

t∈T

ctxatya + cu
adua − wad = f+

ad − f−ad ∀a ∈ A, d ∈ D,

∑

t∈T

xat ≤ 1 ∀a ∈ A,

∑

a∈A

(
f+

ad − f−ad + wad

) ≤ Bd ∀d ∈ D,

f−ad ≤ wadvad ∀a ∈ A, d ∈ D,

∑

d∈D

vad ≤ Ka ∀a ∈ A,

ya ∈ [0, 1] ∀a ∈ A,

ua ≥ 0 ∀a ∈ A,

f+
ad ≥ 0 ∀a ∈ A, d ∈ D,

f−ad ∈ [0, wad] ∀a ∈ A, d ∈ D,

vad ∈ {0, 1} ∀a ∈ A, d ∈ D,

xat ∈ {0, 1} ∀a ∈ A, t ∈ T.

Linearization of Products. Now, we need to linearize the product of a bounded continuous vari-

able and a binary. This can be accomplished by introducing another variable z, which serves as a

surrogate for the product. In general, we know the following relationship:
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z = xy,

x ∈ {0, 1},

y ∈ [0, 1],

is equivalent to

z ≥ 0,

z ≤ x,

z ≤ y,

z ≥ x + y − 1,

x ∈ {0, 1},

y ∈ [0, 1].

Using this to replace each product form, we now can write the problem as an approximate MILP as
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follows:

min
∑

a∈A

∑

d∈D

(
f+

ad + f−ad

)

s.t. cx
ad

∑

t∈T

ctxat + cy
adya +

cxy
ad

∑

t∈T

ctzat + cu
adua − wad = f+

ad − f−ad ∀a ∈ A, d ∈ D, (5.13)

∑

t∈T

xat ≤ 1 ∀a ∈ A, (5.14)

∑

a∈A

(
f+

ad − f−ad + wad

) ≤ Bd ∀d ∈ D, (5.15)

f−ad ≤ wadvad ∀a ∈ A, d ∈ D, (5.16)

∑

d∈D

vad ≤ Ka ∀a ∈ A, (5.17)

zat ≤ xat ∀a ∈ A, t ∈ T, (5.18)

zat ≤ ya ∀a ∈ A, t ∈ T, (5.19)

zat ≥ xat + ya − 1 ∀a ∈ A, t ∈ T, (5.20)

zat ≥ 0 ∀a ∈ A, t ∈ T, (5.21)

ya ∈ [0, 1] ∀a ∈ A, (5.22)

ua ≥ 0 ∀a ∈ A, (5.23)

f+
ad ≥ 0 ∀a ∈ A, d ∈ D, (5.24)

f−ad ∈ [0, wad] ∀a ∈ A, d ∈ D, (5.25)

vad ∈ [0, 1] ∀a ∈ A, d ∈ D, (5.26)

xat ∈ [0, 1] ∀a ∈ A, t ∈ T, (5.27)

vad ∈ Z ∀a ∈ A, d ∈ D, (5.28)

xat ∈ Z ∀a ∈ A, t ∈ T. (5.29)
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5.2.3 Results

Since we had trouble solving the the MINLP model directly, we had no choice but to move to

the approximate MILP formulation. Unfortunately, the size of the approximate MILP was much

bigger than the associated MINLP. Due to the fact that state-of-the-art commercial MILP solvers

can now handle many different large-scale models, we had confidence that this approach would

be successful. Unfortunately, solving the problem directly using commercial solvers proved to be

nearly impossible, as will be evident from our computational results.

Examining the structure of the MILP model, it is clear that the constraints can be easily decom-

posed by ATM. In fact, the only set of constraints involving decision variables across ATMs is the

budget constraint (5.15). That is, if we relax constraint (5.15) we are left with independent blocks of

constraints, one for each ATM. This fits the block angular structure that we have mentioned in pre-

vious chapters and therefore lends itself nicely to our decomposition methods. Using DIP, we built

a new application, called ATM, that constructs this approximate MILP and defines the subproblems

as follows:

P ′k = conv {(x, v, z, y, u, f+, f−) | (x, v, z, y, u, f+, f−) satisfies (5.13), (5.14), (5.16)− (5.29)},

Q′′ = {(x, v, z, y, u, f+, f−) | (x, v, z, y, u, f+, f−) satisfies (5.15), (5.21)− (5.27)}.

In order to test the effectiveness of decomposition methods on this model, we generated a set of

problem instances that have the same characteristics as those provided by the client. In order to do

this, we took point estimates of all the relevant data parameters and generated random data using

normal distributions around these estimates. From this, we then randomly perturbed the constraint

requirements to ensure the problem had a feasible solution. We simulated several different sizes

based on the number of ATMS and the number of days.

For these experiments, all comparisons were run on the altair server at Lehigh University. This

machine is running the Redhat Enterprise Linux (release 5) 64-bit x86 64 operating system and

has 8 quad-core Xeon 2.3Ghz processor, 128GB of memory, and 6MB of cache. In this case, we

compared our results using DIP with the branch-and-cut algorithm provided by CPLEX 11. In each

run, we used a time limit of 3600 seconds and once again, focus is on the best solution and gap
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provided within the limit.

Table 5.3 gives a summary of the results for each problem instance. The first three columns

denote the size of the problem and an instance id. For each size we generate five random instances.

In columns 4-6 (CPX11) we show the results for CPLEX 11, including time to solve (Time), gap

(Gap), and the number of nodes generated in the search tree (Nodes). In columns 7-9 (DIP-PC), we

show the same results for the default branch-and-price-and-cut method in DIP. Since this problem

has a block-diagonal form, we also used this experiment to show the effectiveness of using price-

and-branch, as described in Section 3.2.2. These results are shown in columns 10-12 (DIP-PC+).

Once again, we display the comparative results in the form of performance profiles, in Figure

5.7, and a stacked bar chart in Figure 5.8. In Figure 5.7, we use the gap after one hour as the

metric for the profile, as well as the time it took to solve to optimality. It is clear from the re-

sults, that all three solvers can solve the majority of the small instances (|A| = 5) to optimality.

For the medium instances (|A| = 10, |D| = 50), CPLEX has some trouble, while the two vari-

ants based on integrated methods still find the optimal solution fairly quickly. Looking at the case

(|A| = 10, |D| = 100), CPLEX no longer finds any feasible solutions after one hour of process-

ing. Interestingly, neither does DIP-PC. However, when using the price-and-branch technique, it

is able to solve all 5 instances to within 2% gap. This gives some indication of how this heuristic

can greatly enhance performance by producing additional incumbents during the branch-and-bound

search.

5.3 Automated Decomposition for Block Angular MILP

One of the main goals in the development of DIP was to provide a more user-friendly environ-

ment for the development of application solvers based on decomposition methods. During our work

with the SAS Center of Excellence, it became apparent that there was an abundance of difficult

client MILPs that could not be solved with direct branch-and-cut methods, for which we would then

reconsider using inner methods like Dantzig-Wolfe. The difficulty, of course, was that, in order to
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CPX11 DIP-PC DIP-PC+
|A| |D| s Time Gap Nodes Time Gap Nodes Time Gap Nodes
5 25 1 0.76 OPT 467 1.62 OPT 6 1.96 OPT 6
5 25 2 1.41 OPT 804 1.95 OPT 9 1.57 OPT 7
5 25 3 0.42 OPT 147 7.38 OPT 32 8.03 OPT 32
5 25 4 1.49 OPT 714 2.74 OPT 14 2.45 OPT 13
5 25 5 0.16 OPT 32 0.98 OPT 7 0.95 OPT 6
5 50 1 T 0.10 1264574 162.74 OPT 127 164.46 OPT 131
5 50 2 87.96 OPT 38341 183.28 OPT 273 263.24 OPT 275
5 50 3 8.09 OPT 3576 17.58 OPT 36 22.28 OPT 35
5 50 4 4.13 OPT 1317 3.13 OPT 3 3.17 OPT 3
5 50 5 57.55 OPT 32443 91.30 OPT 145 141.29 OPT 147
10 50 1 T 0.76 998624 297.65 OPT 301 234.47 OPT 156
10 50 2 1507.84 OPT 351879 28.84 OPT 29 52.99 OPT 29
10 50 3 T 0.81 667371 64.72 OPT 64 49.20 OPT 47
10 50 4 1319.00 OPT 433155 7.97 OPT 1 5.00 OPT 1
10 50 5 365.51 OPT 181013 12.49 OPT 3 5.18 OPT 3
10 100 1 T ∞ 128155 T ∞ 20590 T 0.11 13190
10 100 2 T ∞ 116522 T ∞ 60554 2437.43 OPT 135
10 100 3 T ∞ 118617 T ∞ 52902 T 0.20 40793
10 100 4 T ∞ 108899 T ∞ 47931 T 1.51 59477
10 100 5 T ∞ 167617 T ∞ 40283 T 0.38 26490
20 100 1 T ∞ 93519 379.75 OPT 9 544.49 OPT 9
20 100 2 T ∞ 68863 T 16.44 14240 T 0.26 25756
20 100 3 T ∞ 95981 T 15.37 41495 T 0.12 3834
20 100 4 T ∞ 81836 T 0.39 7554 T 0.08 7918
20 100 5 T ∞ 101917 635.59 OPT 21 608.68 OPT 19

Optimal 12 17 18
≤ 1% Gap 15 18 25
≤ 10% Gap 15 18 25

Table 5.3: ATM: CPX11 vs PC/PC+ (Summary Table)

experiment with these methods, we had to create a different application for each client. Even though

DIP greatly simplifies this task, the development time was still significant for experimentation on

methods that were not even sure to help. Often, the models we received had no well-known relax-

ation from which we could employ specialized techniques for solving the subproblem. However,

we did find that, quite often, the models had a block-diagonal structure, leading to independent

subproblems. This is not too surprising, since business problems are often modeled such that there

are departmental policies that are then governed by some global constraint that couples the system.

After enough engagements, we came to realize that, by utilizing DIP’s built-in facilities, we could

automate the entire process of using integrated methods in a generic manner. Given a model in
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Figure 5.8: ATM: CPX11 vs PC/PC+ (Stacked Bar Chart)

standard MPS (Mathematical Programming System) format, if the user simply defines which rows

belong to which blocks, then DIP can process everything automatically with no user interaction.

To this end, we have developed a DIP application called MILPBlock, which accepts the model

in MPS format, as input and a file that identifies the rows in each block. To our knowledge, this is

the first time a black-box solver for integrated methods has been developed. There is currently work

being done at INRIA (Institut National De Recherche En Informatique Et En Automatique) on a

product called BapCod (A Generic Branch-and-Price Code) [89] that has the same general goal of

providing a black-box implementation. It is our understanding that this framework does not include

cut generation in its branch-and-price algorithm.

To test effectiveness (and ease-of-use) of the MILPBlock application, we partnered with the

Retail Optimization group at SAS who are working on a product offering for a multi-tiered supply

chain distribution problem. In early development, the retail group developed prototype optimization

models using SAS’s modeling language OPTMODEL [82]. From this, they were able to easily

produce the necessary input for MILPBlock.

The following experiments were done on the same hardware we used for the ATM model. We
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CPX11 DIP-PC
Instance Time Gap Nodes Time Gap Nodes
retail27 T 2.30% 2674921 3.18 OPT 1
retail31 T 0.49% 1434931 767.36 OPT 41
retail3 529.77 OPT 2632157 0.54 OPT 1
retail4 T 1.61% 1606911 116.55 OPT 1
retail6 1.12 OPT 803 264.59 OPT 303

Table 5.4: MILPBlock Retail: CPX11 vs PC (Summary Table)

were given 5 instances that covered a wide spectrum of supply chain configurations. We once again

compared our results using DIP with the branch-and-cut algorithm provided by CPLEX 11, and a

time limit of 3600 seconds. Table 5.4 gives a summary of the results for each problem instance.

In columns 2-5 (CPX11), we show the results for CPLEX 11, including time to solve (Time), gap

(Gap), and the number of nodes generated in the search tree (Nodes). In columns 6-8 (DIP-PC),

we show the same results for the default branch-and-price-and-cut method in DIP. While CPLEX

struggles to solve some of the instances, DIP solves all cases within the specified time limit.

MILPBlock is the first step in creating a black-box implementation of integrated decomposition

methods for MILP. The next step is to attempt to embed some automatic recognition of the block

diagonal structure, so the user can simply input an MPS file directly. There is a great deal of research

in the linear algebra community on detecting this structure [30]. In addition, there are several public-

domain software packages that could potentially be integrated into DIP, making MILPBlock a fully

automated solver.
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Chapter 6

Conclutions and Future Research

In this final chapter, we summarize the thesis and briefly present some areas for future research.

We conclude the research with an attempt to motivate the importance of this field of study and its

potential.

In this thesis we developed a conceptual framework tying together various decomposition-based

methods for generating approximations of the convex hull of feasible solutions of an integer lin-

ear program. We reviewed traditional methods that form an approximation by intersection of one

explicitly-defined polyhedron and one implicitly-defined polyhedron. The implicitly-defined poly-

hedron was constructed using an outer method (cutting-plane method) or an inner method (Dantzig-

Wolfe method and the Lagrangian method). We then examined integrated methods that combine

elements from more than one method simultaneously.

We introduced structured separation, an extension of the template paradigm, inspired by the fact

that separation of structured solutions is frequently easier than separation of arbitrary real vectors.

We examined a relatively unknown integrated method called decompose-and-cut and presented its

use in the standard cutting-plane method. We then considered numerous implementation consid-

erations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of

using nested polytopes for generating inner approximations. This idea of heuristically using nested

polytopes has potential to be useful in many real-world applications.
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To facilitate the study of these methods, we developed a software framework, DIP, for imple-

menting decomposition-based methods with very little user burden. We developed a generic black-

block solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm

with no additional user input. We presented computational results using DIP on three real-world

applications coming from the marketing, banking, and retail industries.

6.1 Future Research

In this section, we briefly discuss areas for future research. Specifically, we mention some of the

missing pieces in the DIP implementation of our framework, as well as ideas for improving overall

performance.

Branch-and-Relax-and-Cut Although the conceptual framework included the area of relax-and-

cut, we have focused most of our computational study on branch-and-price-and-cut. A basic im-

plementation of relax-and-cut has already been included in DIP. However, we have not yet im-

plemented the ideas discussed in Section 3.1 to integrate relax-and-cut in the branch-and-bound

framework, which will allow us to do branch-and-relax-and-cut. Adding this feature will open the

door for a great deal more computational experimentation and will complete the mapping between

the conceptual framework and the software framework.

Convergence Issues and Stabilization Issues with the convergence of the Dantzig-Wolfe method

have been well-documented [55]. As discussed in Section 3.7, there have been several papers on

using stability centers to control the oscillation of the dual solutions and improve convergence. A

number of authors have stated that this can make a big difference in overall performance. Con-

ceptually, this should be possible to add to DIP and we hope to investigate this in the near future.

Along the same lines, as mentioned in Section 3.7, the use of an interior point method when solving

the master problem might also improve convergence by reducing some of the extreme jumps in the

dual solutions when using simplex-based methods. Integration of an interior point solver into DIP

is currently work-in-progress.
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Identical Subproblems The case of block-diagonal decomposition, discussed in Section 3.2.1,

where the subproblems have identical structure, is an important modeling paradigm. Many ap-

plications can be modeled in this way, and it would be nice if the framework could handle this

situation. Theoretically, much of the machinery breaks down because the mapping between the

compact space and the extended space is no longer unique. However, recent work by Vanderbeck

in [90] might make it possible to handle this situation in our framework.

Parallel Processing The decomposition framework has two obvious candidates for paralleliza-

tion. The first, of course, is to parallelize the branch-and-bound tree search. Fortunately, since

we are using ALPS as the base of our tree search method, moving the processing to a parallel en-

vironment should not be difficult. ALPS was designed to work in distributed or shared memory

environments and already has the infrastructure in place to run in parallel. Since the amount of

work done at each node of the tree is generally much higher for integrated methods, as opposed to

standard branch-and-cut, there is good potential for speed-ups since the communication overhead

will be relatively low.

The second area of parallelism is during the solution of the relaxed polyhedra when generating

extreme points in the various methods. There are three areas where we can see potential for perfor-

mance improvements. The first case is perhaps the most obvious. In the block-diagonal case, the

subproblems are independent and can therefore be processed simultaneously. We have already done

some preliminary work on making DIP multi-threaded for this case. The second case is for nested

pricing. As mentioned in the MMKP application in Section 5.1, we can define many polyhedra

that are all contained in the relaxed polyhedron to use in generation of extreme points. The more

diverse this set of extreme points, the better the chance to find good incumbents. Since the opti-

mization problems for these polyhedra can be solved independently, we can also do this processing

in parallel. The third case is in the generation of decomposition cuts. This is quite similar to the

nested pricing case, but perhaps even more flexible. Unlike nested pricing, there is no restriction

on the choice of polyhedra we choose when attempting to decompose the point x̂, as long as it is a

relaxation of the original problem. We can pick various polyhedra and in trying to decompose them

into convex combinations of the extreme points of different polyhedra, we would in turn generate
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different types of decomposition cuts. In the same way nested pricing diversifies our collection of

inner points, these ideas could help diversify the orientation of the cuts found. This idea can also be

parallelized since the computation of each decomposition is independent.

Simplex-Based Cutting Planes in Price-and-Cut As mentioned in Section 4.2, we have inte-

grated all of the cut generators present in CGL into DIP except for those which depend on the use of

a simplex-based solver. Since the point we give to the cut generator has come from a mapping to the

compact space, we only have a primal solution and no basis. For cuts like Gomory Mixed Integer,

the separation routine depends on the existence of a basis. To provide one, we are considering the

use of a crossover step similar to what is used by interior point methods when crossing over to a

simplex-based method.

6.2 Conclusion

The success of decomposition-based methods in real applications shows the potential for this area

to make a positive impact on the field of mathematical programming. Until now, the study of these

methods has been somewhat disconnected and application-specific. This thesis has provided a way

to consider these various methods under one framework. The software framework DIP has the

potential for opening the door to various new areas of research related to decomposition methods.

The ease-of-use and extensibility of the framework should allow users to compare and contrast

these methods, as well as numerous extensions, under one uniform computational environment.

From this, computational studies can be easily conducted which will allow practitioners to make

intelligent choices between the many possible algorithmic variants. Along with this, we can also

gain much insight into further areas of computational research. Specifically, the use of hybrid

methods that combine different components of the numerous algorithms seems promising. DIP

allows the user to easily experiment with these ideas which should generate several new avenues of

research.

The MILPBlock application in DIP is a prototype version of what could be a new paradigm for

generic MILP solvers. As we have shown in our study of several applications, there are numerous
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problems that are well suited for integrated methods for which the generic approaches of today

(i.e., branch-and-cut) are not sufficient. MILPBlock can provide a powerful alternative while still

remaining a black-box implementation without the need for any user input.

For every successful application we show in this study, there are twice as many applications

we tried where the performance of the inner approximation methods (even with integrated cuts)

performs quite poorly when compared to more standard approaches like branch-and-cut. For some

applications, the reasons are immediately apparent, like in the case where convergence is very slow.

As mentioned above, this issue has been studied by many authors and great strides have been made

in applying stabilization techniques from non-differentiable optimization to these methods. Another

case that is apparent is when the relaxation does not improve the bound very much over what is

found using built-in generic cutting planes. This is a tribute to the incredible work that has been

done on polyhedral theory for MILP. One nice result from the applications we have studied is the

advantages that inner methods give on finding good feasible solutions early in the search tree—

as we saw in the MMKP and ATM applications. So, even if the bound produced by the inner

approximation is not a great deal better than what could be found with an outer approximation,

there are still other benefits. The computational study of these methods is a wide-open area of

research. We hope that this thesis motivates and facilitates the future study of this area.
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Detailed Tables of Results
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CPX10.2 DIP-CPM
Instance Time LB UB Gap Nodes Time LB UB Gap Nodes
I1 0.00 -173.00 -173.00 OPT 0 0.02 -173.00 -173.00 OPT 15
I10 T -61485.54 -61456.00 0.05% 135090 T -61484.92 ∞ ∞ 47807
I11 T -73796.87 -73776.00 0.03% 128985 T -73796.44 ∞ ∞ 45295
I12 T -86099.80 -86088.00 0.01% 106922 T -86099.36 ∞ ∞ 35160
I13 T -98448.03 -98427.00 0.02% 94485 T -98447.54 ∞ ∞ 29896
I2 0.01 -364.00 -364.00 OPT 0 0.01 -364.00 -364.00 OPT 3
I3 1.17 -1602.00 -1602.00 OPT 6243 23.23 -1602.00 -1602.00 OPT 19582
I4 15.71 -3597.00 -3597.00 OPT 80438 T -3600.12 ∞ ∞ 107716
I5 0.01 -3905.90 -3905.70 0.01% 0 0.01 -3905.70 -3905.70 OPT 3
I6 0.14 -4799.30 -4799.30 OPT 1 0.07 -4799.30 -4799.30 OPT 59
I7 T -24604.24 -24584.00 0.08% 212311 T -24602.79 ∞ ∞ 73433
I8 T -36902.51 -36868.00 0.09% 200759 T -36901.40 ∞ ∞ 64035
I9 T -49192.89 -49161.00 0.06% 156984 T -49192.16 ∞ ∞ 60411
INST01 T -10747.51 -10702.00 0.43% 530376 T -10745.94 ∞ ∞ 96236
INST02 T -13608.89 -13597.00 0.09% 611249 T -13612.15 ∞ ∞ 100130
INST03 T -10976.54 -10935.00 0.38% 481301 T -10974.37 ∞ ∞ 94806
INST04 T -14472.06 -14423.00 0.34% 324323 T -14469.89 ∞ ∞ 83122
INST05 T -17074.63 -17044.00 0.18% 397541 T -17073.04 ∞ ∞ 84945
INST06 T -16852.72 -16818.00 0.21% 426871 T -16851.42 ∞ ∞ 80697
INST07 T -16456.43 -16398.00 0.36% 335416 T -16454.86 ∞ ∞ 85158
INST08 T -17530.44 -17487.00 0.25% 372261 T -17529.08 ∞ ∞ 86583
INST09 T -17777.24 -17740.00 0.21% 397692 T -17775.97 ∞ ∞ 87234
INST11 T -19459.70 -19417.00 0.22% 329214 T -19458.41 ∞ ∞ 88541
INST12 T -21754.47 -21716.00 0.18% 289646 T -21753.05 ∞ ∞ 76864
INST13 T -21590.57 -21574.00 0.08% 225896 T -21589.88 ∞ ∞ 36381
INST14 T -32885.70 -32870.00 0.05% 157631 T -32885.12 ∞ ∞ 25402
INST15 T -39173.60 -39157.00 0.04% 138190 T -39173.01 ∞ ∞ 21484
INST16 T -43378.19 -43354.00 0.06% 113757 T -43377.43 ∞ ∞ 18590
INST17 T -54371.33 -54356.00 0.03% 110296 T -54370.98 ∞ ∞ 16018
INST18 T -60478.08 -60462.00 0.03% 96441 T -60477.67 ∞ ∞ 21774
INST19 T -64942.99 -64926.00 0.03% 120924 T -64942.53 ∞ ∞ 19293
INST20 T -75626.52 -75607.00 0.03% 84953 T -75626.12 ∞ ∞ 16156

Table A.1: MMKP: CPX10.2 vs CPM (Detailed Table)
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DIP-PC DIP-DC
Instance Time LB UB Gap Nodes Time LB UB Gap Nodes
I1 0.04 -173.00 -173.00 OPT 14 0.14 -173.00 -173.00 OPT 7
I10 T -61636.62 -55102.00 11.86% 74 T -61485.90 -61395.00 0.15% 158
I11 T -74025.27 -65948.00 12.25% 110 T -73797.39 -73697.00 0.14% 108
I12 T -86271.06 -79934.00 7.93% 92 T -86100.15 -86014.00 0.10% 94
I13 T -98708.40 -88217.00 11.89% 119 T -98448.31 -98329.00 0.12% 96
I2 0.05 -364.00 -364.00 OPT 15 0.05 -364.00 -364.00 OPT 3
I3 T -1618.16 -1601.00 1.07% 1677 T -1612.95 -1601.00 0.75% 812
I4 T -3631.61 -3454.00 5.14% 463 T -3617.59 -3590.00 0.77% 658
I5 0.13 -3905.70 -3905.70 OPT 11 0.05 -3905.70 -3905.70 OPT 3
I6 T -4812.81 -4799.30 0.28% 129 0.63 -4799.30 -4799.30 OPT 55
I7 T -24677.94 -21587.00 14.32% 87 T -24605.98 -24584.00 0.09% 300
I8 T -37021.81 -32658.00 13.36% 85 T -36903.19 -36828.00 0.20% 240
I9 T -49358.35 -44585.00 10.71% 71 T -49193.47 -49099.00 0.19% 193
INST01 T -10782.59 -9803.00 9.99% 91 T -10750.84 -10676.00 0.70% 423
INST02 T -13670.19 -12729.00 7.39% 152 T -13625.00 -13564.00 0.45% 459
INST03 T -11017.95 -10612.00 3.83% 132 T -10981.36 -10889.00 0.85% 405
INST04 T -14506.40 -13497.00 7.48% 82 T -14475.27 -14410.00 0.45% 404
INST05 T -17132.11 -15542.00 10.23% 90 T -17076.04 -16971.00 0.62% 398
INST06 T -16882.29 -15373.00 9.82% 84 T -16854.19 -16791.00 0.38% 363
INST07 T -16518.21 -14270.00 15.75% 83 T -16458.15 -16356.00 0.62% 350
INST08 T -17582.56 -15762.00 11.55% 96 T -17531.60 -17452.00 0.46% 344
INST09 T -17828.76 -15471.00 15.24% 159 T -17778.59 -17708.00 0.40% 354
INST11 T -19508.10 -18070.00 7.96% 68 T -19461.01 -19386.00 0.39% 322
INST12 T -21833.21 -20235.00 7.90% 63 T -21755.86 -21665.00 0.42% 332
INST13 T -21661.71 -21036.00 2.97% 117 T -21592.40 -21563.00 0.14% 120
INST14 T -32980.39 -31744.00 3.89% 139 T -32887.01 -32856.00 0.09% 66
INST15 T -39267.40 -37965.00 3.43% 118 T -39174.44 -39137.00 0.10% 53
INST16 T -43478.36 -42545.00 2.19% 111 T -43379.15 -43355.00 0.06% 52
INST17 T -54523.77 -53408.00 2.09% 165 T -54371.97 -54324.00 0.09% 15
INST18 T -60661.12 -58089.00 4.43% 205 T -60478.53 -60442.00 0.06% 49
INST19 T -65103.37 -63130.00 3.13% 120 T -64943.67 -64915.00 0.04% 33
INST20 T -75784.90 -73539.00 3.05% 106 T -75626.97 -75594.00 0.04% 16

Table A.2: MMKP: PC vs DC (Detailed Table)
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DIP-PC-M2 DIP-PC-MM
Instance Time LB UB Gap Nodes Time LB UB Gap Nodes
I1 0.16 -173.00 -173.00 OPT 11 0.08 -173.00 -173.00 OPT 10
I10 T -61660.98 -57633.00 6.99% 301 T -61710.03 -61325.00 0.63% 50
I11 T -73991.84 -66567.00 11.15% 524 T -74071.70 -73633.00 0.60% 86
I12 T -86309.57 -77473.00 11.41% 429 T -86576.93 -85902.00 0.79% 51
I13 T -98709.15 -86851.00 13.65% 165 T -98831.24 -98321.00 0.52% 60
I2 0.45 -364.00 -364.00 OPT 14 0.14 -364.00 -364.00 OPT 11
I3 T -1619.88 -1601.00 1.18% 16973 T -1618.63 -1601.00 1.10% 3702
I4 T -3630.73 -3519.00 3.18% 18826 T -3631.16 -3587.00 1.23% 929
I5 0.14 -3905.70 -3905.70 OPT 1 0.07 -3905.70 -3905.70 OPT 1
I6 483.53 -4799.30 -4799.30 OPT 381 T -4811.20 -4799.30 0.25% 103
I7 T -24660.72 -23520.00 4.85% 1265 T -24676.73 -24439.00 0.97% 112
I8 T -36956.59 -33661.00 9.79% 417 T -37007.99 -36761.00 0.67% 91
I9 T -49327.29 -44611.00 10.57% 500 T -49385.20 -49027.00 0.73% 95
INST01 T -10783.00 -10176.00 5.97% 489 T -10791.15 -10594.00 1.86% 96
INST02 T -13677.96 -12749.00 7.29% 247 T -13674.36 -13441.00 1.74% 181
INST03 T -11019.75 -9845.00 11.93% 9217 T -11024.52 -10850.00 1.61% 73
INST04 T -14512.80 -13558.00 7.04% 6578 T -14525.21 -14302.00 1.56% 75
INST05 T -17132.74 -15741.00 8.84% 745 T -17122.34 -16935.00 1.11% 217
INST06 T -16912.78 -15408.00 9.77% 786 T -16905.11 -16673.00 1.39% 120
INST07 T -16498.17 -15167.00 8.78% 1614 T -16522.37 -16322.00 1.23% 81
INST08 T -17584.13 -16207.00 8.50% 343 T -17584.83 -17348.00 1.37% 102
INST09 T -17827.13 -16433.00 8.48% 219 T -17832.41 -17675.00 0.89% 81
INST11 T -19521.25 -17955.00 8.72% 1948 T -19496.31 -19278.00 1.13% 98
INST12 T -21790.44 -20418.00 6.72% 279 T -21825.86 -21603.00 1.03% 102
INST13 T -21648.15 -21005.00 3.06% 986 T -21675.42 -21511.00 0.76% 134
INST14 T -32955.51 -31789.00 3.67% 158 T -32983.86 -32812.00 0.52% 111
INST15 T -39256.07 -38183.00 2.81% 266 T -39414.68 -39111.00 0.78% 100
INST16 T -43500.51 -42229.00 3.01% 51 T -43528.10 -43311.00 0.50% 49
INST17 T -54509.06 -53357.00 2.16% 94 T -54509.42 -54297.00 0.39% 59
INST18 T -60634.96 -59096.00 2.60% 68 T -60638.95 -60389.00 0.41% 100
INST19 T -65141.30 -62651.00 3.97% 118 T -65151.86 -64855.00 0.46% 75
INST20 T -75880.68 -72922.00 4.06% 150 T -76288.35 -75581.00 0.94% 44

Table A.3: MMKP: PC-M2 vs PC-MM (Detailed Table)
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[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE TSP solver.

http://www.tsp.gatech.edu/concorde.html.
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[6] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-

and-cut framework. Management Science, 42:1229–1246, 1996.

[7] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgra-

dient method. Mathematical Programming, 87:385–399, 2000.

143



BIBLIOGRAPHY

[8] F. Barahona and D. Jensen. Plant location with minimum inventory. Mathematical Program-

ming, 83:101–111, 1998.

[9] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-

destination integer multi-commodity flow problems. Operations Research, 48:318–326, 2000.

[10] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch

and price: Column generation for solving huge integer programs. Operations Research,

46:316–329, 1998.

[11] J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern Heuristic Techniques for

Combinatorial Optimization. Wiley, 1993.

[12] R. Bixby. Solving real-world linear programs: A decade and more of progress. Oper. Res.,

50(1):3–15, 2002.

[13] R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory and practice -

closing the gap. In Proceedings of the 19th IFIP TC7 Conference on System Modelling and

Optimization, pages 19–50, Deventer, The Netherlands, The Netherlands, 2000. Kluwer, B.V.

[14] R. Bixby and E. Rothberg. Progress in computational mixed integer programming - a look

back from the other side of the tipping point. Annals OR, 149(1):37–41, 2007.

[15] R. Bornd’́orfer, C. Ferreira, and A. Martin. Matrix decomposition by branch-and-cut. Techni-

cal Report TR 97-04, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1997.
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[22] J. Czyzyk, M. Mesnier, and J. Moré. The NEOS server. IEEE Journal on Computational

Science and Engineering, 5:68–75, 1998.

[23] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Re-

search, 8(1):101–111, 1960.

[24] G.B. Dantzig and R.H. Ramser. The truck dispatching problem. Management Science, 6:80–

91, 1959.

[25] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-cut-

and-price. Working paper, Pontifı́ca Universidade Católica do Rio de Janeiro, 2004. Available
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[85] V. Chvátal. Linear Programming. W.H. Freeman and Company, 1983.

[86] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed formulations

for machine scheduling problems: Column generation. INFORMS Journal on Computing,

12:111–124, 2000.

[87] F. Vanderbeck. Lot-sizing with start-up times. Management Science, 44:1409–1425, 1998.

150



BIBLIOGRAPHY

[88] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to perform

branching in a branch-and-price algorithm. Operations Research, 48:111–128, 2000.

[89] F. Vanderbeck. BapCod : a generic Branch-and-Price Code, 2009. Available from http:

//ralyx.inria.fr/2007/Raweb/realopt/uid31.html.

[90] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Technical report, 2009.

[91] R.K. Watson. Packet Networks and Optimal Admission and Upgrade of Service Level Agree-

ments: Applying the Utility Model. PhD thesis, University of Victoria, 2001.

[92] G. Wei and G. Yu. An improved O(n2 log n) algorithm for the degree-constrained minimum

k-tree problem. Technical report, The University of Texas at Austin, Center for Management

of Operations and Logistics, 1995.

[93] L.A. Wolsey. Integer Programming. Wiley, New York, 1998.
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