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Abstract
The aim of this thesis is to deepen our understand of how IDA* heuristics influence the number
of nodes expanded during search. To this end, we develop Korf’s formula for the number of
expanded nodes [6] into a heuristic quality η which expresses the quality of a heuristic function
as a constant factor on the number of expanded nodes, independent of a particular problem
instance.

We proceed to show how to compute η for some common kinds of heuristics and how to
estimate η by means of a random sample for arbitrary heuristics. Using the value of η for some
concrete examples, we then inspect for which parts of the search space the values of h(v) are
particularly critical to the performance of the heuristic, allowing us to build better heuristics
for future problems.

This report originally appeared as a master thesis at Humboldt University of Berlin.

1 Notation
We write A: = B for A is defined by A = B. Some other relational symbol may stand in place of =
occasionally; for example, we write x: ∈ S to indicate that x is defined to be some element of S. The
natural numbers

N: = {0, 1, 2 . . .} (1.1)

start at 0.
Let G = (V,E) with edge set E ⊂ V ×V be an undirected graph. In this work, it is assumed that all

graphs we consider are connected. Then we write ∼ for the edge relation such that u ∼ v iff {u, v} ∈ V .
This relation is reflexive and symmetric. The (open) neighborhood, denoted by

N(v): = {u | u ∈ V, u ∼ v, u ̸= v }, (1.2)

is the set of vertices adjacent to v. It does not contain v itself. Likewise, we write

N [v]: = {u | u ∈ V, u ∼ v } = N(v) ∪ {v} (1.3)

for the closed neighborhood which is the set of vertices adjacent to v including v. The closed k-
neighborhood of v with k ∈ N is denoted by

N0[v]: = {v}
Nk+1[v]: = {u | u ∈ Nk[w], w ∈ N [v] }

(1.4)

and is the set of all vertices reachable within k steps from v. This leads us to the definition of the distance
function

d(u, v): = min{n | n ∈ N, v ∈ Nn[u] } (1.5)

which yields the length of the shortest path from u to v. As G is assumed to be connected, such a path
always exists. Similarly, we define the open k-neighborhood of v as

Nk(v): = {u | u ∈ V, d(u, v) = k }, (1.6)

which is the set of vertices with distance k to v.
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2 Background
In this thesis, we consider the (single pair) shortest path problem which is the problem of finding the
shortest path v0, v1, . . . , vd(v,z) between two vertices v = v0 and z = vd(v,z) of some graph G = (V,E).
Depending on the use case, we are some times interested in finding all shortest paths between the two
vertices, or just any one of them.

2.1 Heuristic Functions
The goal vertex z (from German Ziel) is generally fixed, allowing us to build powerful heuristic functions.
These heuristics give us extra information about the distance from an arbitrary vertex w to z. Specifically,
a heuristic is a function h : V → N such that

h(w) ≤ d(w, z) and |h(w)− h(w′)| ≤ 1 (2.1)

for any vertices w and any neighbor w′ ∼ w. The first condition is called admissability and states that
the value of the heuristic (or h-value) is a lower bound for the true distance from w to z. This property
tells us when a possible path from v to z going over w would take too long to arrive at z, allowing us
to disregard it in the search. The second property, called consistency, states that the heuristic does not
make sudden jumps in value when following a path. Consistency is a property strictly stronger than
admissability in that every consistent heuristic for which h(z) = 0 holds is also admissible [7].

Most useful or interesting heuristics are naturally consistent. While inconsistent heuristics can be
used with IDA* and enjoy popularity for some applications, they pose additional challenges in their
performance analysis. In the rest of this work, we thus assume that all heuristic functions are both
admissible and consistent. The focus of this thesis lies on analysing the effectiveness (or quality) of such
heuristic functions; how they are constructed is out of scope.

2.2 The IDA* Algorithm
In this thesis, the iterative-deepening A* or IDA* algorithm is used to solve the shortest path problem.
IDA*, invented in 1985 by Richard Korf [8], combines the idea of an iterative-deepening search (IDS)
with the heuristic pruning used by A*.

Like IDS, IDA* performs a sequence of depth-first searches up to a limit d that is incremented after
each search until a solution is found. Like in A*, this is combined with a heuristic function h(v): for
each node u, we compute the total node cost

f(u) = g(u) + h(u) (2.2)

which is the sum of the number of steps g(u) taken to reach u and the h-value of u. If this cost exceeds d,
no solution starting with the current path will be found within a total of d steps and u needs not be
expanded. A description of IDA* for unweighted undirected graphs obtains:

Algorithm 2.1 The IDA* algorithm [8]. Find a shortest path from v to z using heuristic h.
1 found ← ⊥, d← 0
2 until found do

2.1 found ← search(v, 0)
2.2 d← d + 1

function search(v, g)
Search depth-first for the shortest path from v to z up to distance d having already gone g steps.

1 if v = z then return ⊤
2 f ← g + h(v)
3 if f > d then return ⊥
4 for each v′ ∈ N(v) do

4.1 if search(v′, g + 1) then return ⊤
5 return ⊥

As a common optimisation, d can be started at d = h(v) instead of d = 0 to eliminate the first few useless
iterations. For bipartite graphs, we can replace step 2.2 with d← d+ 2 to ignore iterations that will not
land in the correct partition after setting up d to have the correct parity initially. Neither optimisation
has an effect on the asymptotic runtime of the algorithm and we do not consider them further.
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2.3 Statistical Definitions
For the analysis of IDA*, we need to introduce some statistical definitions. The equilibrium distribution
of a graph G = (V,E) is the distribution of vertices obtained by random walks through G of infinite
length. It is proportional to an eigenvector for the largest eigenvalue of the state transition matrix
corresponding to G [6]. We define the equilibrium distribution weight function w(v) : V → R+ as

w(v): = |V | P[ u = v ] with
∑
v∈V

w(v) = |V |. (2.3)

for an equilibrium-distributed random vertex u. This function assigns to each v ∈ V a weight proportional
to the probability of encountering it after an infinite random walk through the graph such that the average
weight of each vertex is 1.

Using w(v) we then define for h(v) the probability mass and distribution functions

p(i): = P[h(u) = i ] = 1
|V |

∑
h(v)=i

w(v) (2.4)

and P (i): = P[h(u) ≤ i ] = 1
|V |

∑
h(v)≤i

w(v) =
i∑

j=0
p(j). (2.5)

Lastly, we define the search front size Ni which is the number of paths of i steps starting in some
vertex v. In IDS or IDA* with a trivial heuristic h(v) = 0 for all v, this is equal to the number of vertices
encountered at depth i.
2.4 Time Complexity of IDA*
Predicting the number of nodes an IDA* search expands, that is, the number of vertices encountered
for which g(v) + h(v) ≤ d, was a long-standing problem. The currently best estimate is due to Korf
et al. [6] who show that in a search to depth d, the heuristic reduces the search front sizes Ni by a factor
of P (d−i) compared to uninformed IDS. Summed up over all i, the number of nodes E(v, d, P ) expanded
in one round of IDA* searching for the shortest path of up to d steps from v to z is then predicted as

E(v, d, P ) =
d∑

i=0
Ni P (d− i). (2.6)

This estimate holds in the limit of large d when the distribution of nodes at the fringe of the search tree
approaches the equilibrium distribution w(v) introduced above. A simple and intuitive proof is given:
Theorem 2.2 In the limit of large d, the number of expanded nodes E(v, d, P ) in one iteration of IDA*
searching for the shortest path from v to z up to a length of d using a heuristic with distribution P (v)
is as given by Eq. 2.6.
Proof (following [6]) Consider the search tree of an uninformed depth-first search from v to distance d.
By definition of Ni, this tree contains Ni nodes of distance i and for each such node u, we have g(u) = i.
Of these nodes, all those for which

g(u) + h(u) ≤ d, equally h(u) ≤ d− i (2.7)

holds are also expanded in the IDA* search tree to depth d: if u was not expanded in the IDA* search
tree, there must have been some ancestor w in the path from v to u that was not expanded, as u would
have been expanded had it been reached due to Eq. 2.7. Let w be the last such node and let w′ ∼ w be
its successor. We then have

g(w′) + h(w′) ≤ d but g(w) + h(w) > d (2.8)

with g(w′) = g(w) + 1 by construction. Subtracting the left inequation from the right one gives us

g(w)− g(w′) + h(w)− h(w′) > d− d and thus h(w)− h(w′) > 1, (2.9)

contradicting the consistency of our heuristic h. Hence, w cannot exist and all nodes on the path from v
to u are expanded in the IDA* search tree.

As i grows, the distribution of nodes at distance i approaches the equilibrium distribution as the
walk of i steps simulates a random walk. Therefore, the probability that Eq. 2.7 holds for any given
node at distance i approaches P (d− i) and the number of nodes at distance i that are part of the IDA*
search tree approaches Ni P (d− i). Summing over all distances then gives us Eq. 2.6 as desired. q. e. d.
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3 A Measure of Heuristic Quality
The formula by Korf et al. accurately predicts the number of expanded nodes but is specific to a particular
vertex v and search depth d and doesn’t tell us a lot about the heuristic’s impact on the number of
expanded nodes in general.

We can obtain a result more useful for this purpose by first following Korf’s observation [1] that
independently of v, the search front size Ni grows exponentially in i for many interesting search spaces.
The base b of this exponential growth is called the branching factor of the problem space. Setting

Ni: = bi, (3.1)
we can then manipulate equation (1.4) into a more useful form:

E(b, d, P ) =
d∑

i=0
bi P (d− i)

=
d∑

i=0
bd−i P (i)

= bd
d∑

i=0

P (i)
bi

= bd
∞∑
i=0

P (i)
bi
− bd

∞∑
i=d+1

P (i)
bi

.

(3.2)

Using 0 < P (i) ≤ 1 for i ≥ 0, bounds for the subtrahend obtain:

0 < bd
∞∑

i=d+1

P (i)
bi
≤ bd

∞∑
i=d+1

1
bi

= 1
b

∞∑
i=0

1
bi

= 1
b− 1

, (3.3)

and thus establish bounds for E(b, d, P ) that show how the number of expanded nodes is equal to bd

with the heuristic merely contributing a constant factor, regardless of what heuristic is used:

bd
∞∑
i=0

P (i)
bi
− 1

b− 1
≤ E(b, d, P ) < bd

∞∑
i=0

P (i)
bi

. (3.4)

For further use, it is useful to express (3.4) in terms of p(i) instead of P (i) as p(i) is often readily
available while P (i) needs to be computed by evaluating an extra sum. Using P (−1) = 0, we get:

b− 1
b

∞∑
i=0

P (i)
bi

=
∞∑
i=0

P (i)
bi
−

∞∑
i=0

P (i)
bi+1

=
∞∑
i=0

P (i)− P (i− 1)
bi

+ P (−1)
b0

=
∞∑
i=0

p(i)
bi

(3.5)

and define the heuristic quality η, the constant factor by which a given heuristic h reduces the number
of expanded nodes compared to an uninformed iterative deepening search, as

η: =
∞∑
i=0

p(i)
bi

= b− 1
b

∞∑
i=0

P (i)
bi

= |V |−1
∑
v∈V

w(v)
bh(v) . (3.6)

We then restate equation (3.4) in terms of η:
b

b− 1
bdη − 1

b− 1
≤ E(b, d, P ) < b

b− 1
bdη. (3.7)

Intuitively, bd is the number of nodes at depth d of an uninformed depth-first search to depth d,
b

b−1 accounts for the inner nodes in the search tree and η is the constant factor by which the heuristic
reduces the number of expanded nodes. We decided to keep the factor b

b−1 separate from η to keep η
normalised in the sense that η = 1 for a trivial heuristic h with h(v) = 0 everywhere. Another way to
see η is obtained by viewing the heuristic h(v) as reducing the depth of the search problem from d to an
effective depth

d′ = d− logb(1/η). (3.8)
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3.1 General Properties

3.1.1 Sums of Heuristics Given two stochastically independent heuristics ha and hb with qualities ηa
and ηb, the quality ηa+b of their sum ha+b(v) = ha(v) + hb(v) can be derived using the Cauchy product.

ηa+b =
∞∑
i=0

pa+b(i)
bi

=
∞∑
i=0

i∑
j=0

pa(j) pb(i− j)
bi

=
( ∞∑

i=0

pa(i)
bi

)( ∞∑
i=0

pb(i)
bi

)
= ηaηb

(3.9)

Note that this identity is of limited use as the h values given by different heuristics for the same
configuration are generally far from independent. For example, the pattern databases forming partition-
ing (a) from Fig. 5.1, have qualities 2.164 × 10−6 (top left) and 1.871 × 10−6 (others). The product of
these four qualities is 1.417× 10−23, missing the actual quality η = 4.562× 10−22 by a factor of 32.2.

3.1.2 Maxima of Heuristics While the quality of a heuristic hmax(a,b)(v) = max
(
ha(v), hb(v)

)
defined

as the maximum of two stochastically independent heuristics ha and hb cannot be computed from just ηa
and ηb, we can observe that

Pmax(a,b) = P[ max
(
ha(v), hb(v)

)
≤ i ] = P[ha(v) ≤ i ∧ hb(v) ≤ i ] = Pa(i)Pb(i), (3.10)

allowing us to compute ηmax(a,b) using Eq. 3.6, knowing just Pa and Pb.

ηmax(a,b) = b− 1
b

∞∑
i=0

Pa(i)Pb(i)
bi

(3.11)

However, the same caveat as in §3.1.1 applies: heuristics are generally not statistically independent,
generally causing this formula to underestimate ηmax(a,b) significantly.

3.1.3 Partial Heuristics Some heuristics can be modelled as giving the value of some heuristic ĥ for
some part V̂ ⊂ V of the search space and a fixed value k everywhere else. Let η̂ be the quality of ĥ
computed on V̂ and α = |A|

/
|V | be the share of vertices in V̂ , then the quality of

h(v) =
{
ĥ(v) if v ∈ V̂
k otherwise (3.12)

is given by
η = αη̂ + (1− α)b−k. (3.13)

A useful example of such a partial heuristic is the heuristic

h(v) =
{
d(v, z) if d(v, z) ≤ k
k otherwise (3.14)

that returns the true distance to the goal z for a k-neighbourhood around it and k for every vertex
outside. If this neighborhood is very small compared to the size of the search space, we have η ≈ b−k,
showing that such a heuristic reduces the complexity of the search to that of an uninformed search of a
vertex k nodes closer to the target.
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8 9 10 11
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1 2 3

⃝ 5 6 7

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

1 2 3

5 6 7

15 puzzle non-additive PDB additive PDB

Figure 3.1 the solved configuration of the 15 puzzle as seen by the non-additive and the
additive {1, 2, 3, 5, 6, 7} pattern database. While the non-additive PDB admits 2 moves out of
this configuration, the additive PDB has 5 moves, reflecting its higher branching factor B > b.

3.2 The Quality of Pattern Databases
Of particular interest are pattern database or PDB heuristics [2][3]. The general idea behind PDBs is to
abstract the problem into a simpler problem by ignoring some parts of its state. This yields a problem
with a search space so small that the distance from each abstracted vertex v′ to the abstracted solved
configuration z′ can be tabulated. If the abstraction is chosen such that each legal move in the original
problem corresponds to a legal move in the abstracted problem, these distances form an admissible and
consistent heuristic.

As an example, consider Fig. 3.1 for two ways to abstract the 15 puzzle [9], a common benchmark
problem for heuristic search. On the left, you can see the solved state of the 15 puzzle. Following the
original Culberson/Schaeffer paper [2], the puzzle is abstracted by ignoring the identity of tiles 4 and 8–
15, reducing the search space by a factor of 9! This approach was improved by Korf and Felner [3] into an
additive PDB shown on the right, where we pretend the tiles 4 and 8–15 do not exist, allowing any moves
into the hatched space. While this generally leads to a worse heuristic quality, we gain additivity, the
ability to add the h values of PDBs for disjoint tile sets, leading to much better h values with acceptable
memory consumption through the combination of several small additive PDBs.

3.2.1 Definitions Glossing over the various kinds of pattern databases, we define a table-based heuristic
of size s as a pair of an index function idx(v) : V → {0, 1, . . . , s− 1} projecting the vertex set V to table
entries and a lookup table tbl[e] : {0, 1 . . . , s−1} → N such that h(v) = tbl[idx(v)] is a heuristic function.
We also define the inverse index function

idx−1(e) = { v | v ∈ V, idx(v) = e } (3.15)

mapping a table index back to the set of vertices it describes.

3.2.2 Computing the Quality of Table-Driven Heuristics Computing η is easy for table-based heuristics
as p(i) can be found by taking an appropriately weighted histogram over tbl. To do so, we first define
the index weight widx(e) which is the sum of the equilibrium-distribution weights of all v ∈ V for which
idx(v) = e is again normalised such that widx(e) for all e ∈ {0, 1, . . . , s− 1} sum to s.

widx(e) = s

|V |
∑

v∈idx−1(e)

w(v) with
s−1∑
e=0

widx(e) = s (3.16)

With this in hand, we can compute the probability mass function

p(i) = s−1
∑

tbl[e]=i

widx(e) (3.17)

or obtain η directly:

η = s−1
s−1∑
e=0

widx(e)
btbl[e] . (3.18)
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3.2.3 Non-additive PDBs In a performance analysis due to Korf [1], pattern database (PDB) heuristics
are modeled as subspaces of the problem space where each vertex in the subspace corresponds to an
equal number of vertices in the problem space. Furthermore, the subspace described by the PDB is
modeled as having the same branching factor b as the problem space such that the subspace is made up
of k + 1 classes of vertices with distances i = 0, 1, . . . , k and bi vertices each.

This accurately describes some kinds of non-additive PDBs like those for sliding tile puzzles described
by Culberson and Schaeffer [2] but fails for additive PDBs such as those for sliding tile puzzles [3] or
gained by operator partitioning [4] due to the differing branching factors.

Following this model, a pattern database with size

s =
k∑

i=0
bi = bk+1 − 1

b− 1
, (3.19)

k = logb

(
s(b− 1) + 1

)
− 1

= logb s + logb(b− 1)− 1 +O(s−1)
(3.20)

has probability mass function

p(i) =
{
bi/s if 0 ≤ i ≤ k
0 otherwise, (3.21)

and thus quality

η =
k∑

i=0

bi/s

bi
= k + 1

s

=
logb

(
s(b− 1) + 1

)
s

= logb s + logb(b− 1)
s

+O(s−2)

(3.22)

showing that the pruning power of a PDB following this model is proportional to its size by the logarithm
of its size. Korf’s paper gets the slightly different result

η = logb s + logb(b− 1) + (b− 1)−1

s
≈ logb s + 1

s
(3.23)

where the extra (b− 1)−1 term is an artifact of some coarser approximations in his derivation.

3.2.4 Additive PDBs As an extension to Korf’s model, it is useful to consider PDBs with a subspace
branching factor B strictly larger* than the search space branching factor b. This gives a heuristic with

s =
k∑

i=0
Bi = Bk+1 − 1

B − 1
, (3.24)

k = logB

(
s(B − 1) + 1

)
− 1

= logB s + logB(B − 1)− 1 +O(s−1),
(3.25)

and p(i) =
{
Bi/s if 0 ≤ i ≤ k
0 otherwise. (3.26)

* B < b cannot occur for admissible heuristics.
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The quality is somewhat messy to derive. Note that as B > b, we have logb B > 1.

η =
k∑

i=0

Bi/s

bi
= 1

s

k∑
i=0

(
B

b

)i

= (B/b)k+1 − 1
(B/b− 1)s

= b

(B − b)s

((
B

b

)k+1

− 1

)

= b

(B − b)s

((
B

b

)logB

(
(B − 1)s + 1

)
− 1

)

= b

(B − b)s

((
(B − 1)s + 1

)logB(B/b) − 1
)

= b

(B − b)s

((
(B − 1)s + 1

)1−1/ logb B − 1
)

= b

(B − b)s

(
(B − 1)s + 1

logb B
√

(B − 1)s + 1
− 1
)

= b

B − b

(
B − 1 + s−1

logb B
√

(B − 1)s + 1
− 1

s

)
= b(B − 1)

B − b

1
logb B

√
(B − 1)s + 1

−O(s−1)

(3.27)

Crucially, this shows that the pruning power of an additive PDB grows proportional to some root of
its size, giving us diminished returns when increasing the PDB size that become meagerer the larger B
grows.
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4 Sampling Heuristics
While counting table entries is a good choice for heuristics driven by a single table, we’d really like to
have a general method to estimate η for arbitrary heuristics. An obvious choice is to take a uniform
sample of the heuristic over the search space and then compute η using the measured p(i) values. If we
see η as the expected value

η = E[b−h(v)], (4.1)

of an equilibrium-distributed vertex v, we can estimate η by uniformly sampling random vertices from
the graph. Using this method η has variance

σ2 = 1
|V |

∑
v∈V

w(v) (b−h(v) − η)2

=
∞∑
i=0

p(i) (b−i − η)2

=
∞∑
i=0

p(i)
b2i − η2.

(4.2)

Plugging in p(i) as observed in our uniform random sample and corrected for the equilibrium distribution,
we can then compute the standard error

ση =
√
σ2/n (4.3)

for a random uniform sample with n samples, telling us if we gathered enough samples to estimate η to
a satisfying degree.

It turns out that for large search spaces such as the 24 puzzle’s with |V | = 7.76× 1024, no satisfying
estimate is gained even after taking more than a billion samples. For example, for the heuristic derived
from partitioning (a) of Fig. 5.1, we get η = 4.562×10−22 with a standard deviation of σ = 4.590×10−13.
To estimate that quality to just one significant digit (i. e. a relative error of less than 10 % at 95 %
confidence), one would need unreasonable 4σ2/(10 % · η)2 = 4.050 × 1020 samples, making a direct
uniform sample infeasible in practice.

Intuitively, this is because E[b−h(v)] is dominated by the necessarily small h values of the vertices
around z. A uniform sample is very unlikely to ever hit this region and thus gets a skewed result that
can be wrong by orders of magnitude.

4.1 Sphere Stratified Sampling
As a solution to this problem, we observe that h value strongly correlates with distance to z and estimate η
by means of a stratified sample where each stratum V0, V1, . . . , VL−1 is a sphere

Vk: = { v | v ∈ V, d(v, z) = k } = Nk(z) (4.4)

centered around z containg the vertices whose shortest path to z is k steps long. As the aforementioned
critical neighborhood around z is captured in the nearest few spheres, we can increase the sample size
for their strata to estimate η precisely.

4.1.1 Statistical Properties Let ηk be the expected value and σ2
k be the variance of E[b−h(v)] in stra-

tum Vk. We can find η and σ2 as

η =
L−1∑
k=0

|Vk|
|V |

ηk (4.5)

and σ2 =
L−1∑
k=0

|Vk|
|V |

(
σ2
k + (ηk − η)2). (4.6)

If we draw nk samples from each Vk, giving us n = n0 +n1 + . . .+nL−1 samples in total, the squared
standard error is then given by

σ2
η =

L−1∑
k=0

|Vk| − nk

|Vk| − 1

(
|Vk|
|V |

)2
σ2
k

nk
. (4.7)

Ideally, each sample size nk should thus be chosen in proportion to σ2
k.
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4.2 Sampling Spheres with Random Walks
For small k, samples can be taken from Vk by enumerating all vertices in Vk by means of a breadth-
first search and then taking a uniform random sample from those vertices. For larger k, this method
becomes first inconvenient and then quickly impossible as the size of Vk rapidly exceeds available storage.
Fortunately, a different approach allows us to take samples from Vk without having to enumerate the
vertices in the sphere.

4.2.1 Taking Samples To take a sample from Vk we first perform a random walk of k steps starting
out from v0 = z. At each step i of the random walk, we draw a uniform random vertex

v0: = z

vi: ∈ N ′(v0, v1, . . . , vi−1)
(4.8)

where N ′(v0, v1, . . . , vi−1) is the neighborhood of vi−1 pruned in some way such that at least one path
to each vi ∈ Vi remains. A detailed discussion of the pruning methods used is found in Appendix A.

Once the final vertex vk of the walk has been picked, we compute d(z, v) (e. g. using IDA*) and
accept v = vk as a sample if d(z, vk) = k. If at any point in the random walk N ′(v0, v1, . . . , vi) is empty
(i. e. we entered a cul-de-sac, making completion of the walk impossible) or if d(z, vk) < k, the sample is
instead rejected. We keep track of the yield

y: = P[ d(z, vk) = k ] = naccepted

nsamples
, (4.9)

which is the measured probability of a vertex vk being accepted as a sample, for future use. The yield
falls as k grows because at each vi, there is a chance to pick a vertex vi /∈ Vi causing rejection, and the
longer the walk is, the more likely it is for this to happen. This effect can be counteracted by an effective
pruning rule N ′(v0, . . . , vi), keeping the yield at an acceptable level.

4.2.2 Computing the Bias While this method allows us to rapidly generate samples, the samples are
far from being unbiased. Luckily, the exact bias of each sample can be determined by information we
already possess, allowing us to compensate for the bias when processing the samples.

Let S(v, k) ⊂ V k+1 be the set of all paths v0, v1, . . . , vk from v0 = z to some sample v = vk
with d(z, v) = k by which we could have reached v according to the method explained in the previous
section, i. e.

S(v, k) = { (v0, v1, . . . , vk) | v0 = z, vk = v, vi ∈ N ′(v0, . . . , vi−1) for i = 1, 2, . . . , k }. (4.10)

This set is obtained as a side effect of computing d(z, v) during the accepting step by taking the set of
all shortest paths from z to v computed by IDA* and removing all paths from it that would have been
pruned by N ′(v0, . . . , vi).

Using S(v, k), we first compute the a priori probability of having reached v in a random walk with
k steps from z as the sum of the probabilities of having reached v through any of the paths in S(v, k):

P[ vk = v ] =
∑

(v0,...,vk)
∈S(v,k)

k−1∏
i=0
|N ′(v0, . . . , vi)|−1. (4.11)

Then, we divide by y to get the probability pk(v) of having accepted v as a sample of Vk:

pk(v): = P[ vk = v | d(z, vk) = k ] = P[ vk = v ∩ d(z, vk) = k ]
P[ d(z, vk) = k ]

= P[ vk = v ]
y

. (4.12)

After computing the size of Vk as shown in the next section, we multiply with that size to find the
sampling bias weight β(v):

β(v): = |Vk| pk(v) = |Vk|
y

∑
(v0,...,vk)
∈S(v,k)

k−1∏
i=0
|N ′(v0, . . . , vi)|−1. (4.13)
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4.2.3 Estimating the Stratum/Sphere Size Both for computing β(v) and for weighting the individual
strata when computing the expected value of η, the number of elements in each Vk is needed. As with
sampling values from Vk, the size can only be computed for small k by enumerating all vertices. As k
grows, memory constraints rapidly render this method impossible.

Luckily, we can easily compute |Vk| using the random walks we sampled. Recall that as pk(v) is the
probability mass function of having chosen v out of Vk, its arithmetic mean

p̄k =
∑

v∈Vk
pk(v)

|Vk|
= 1
|Vk|

(4.14)

is equal to the reciprocal of the desired quantity. As our samples are biased, we cannot directly compute p̄k
by averaging pk(v) for the samples we drew. Instead, we observe that the bias β(v) is proportional to
the quantity pk(v) we are interested in, making our sample a size biased sample. Applying a theorem by
Cox [11], the expected value of the reciprocal of a size-biased quantity is equal to the reciprocal of the
arithmetic mean of the quantity. Thus we get

E[pk(v)−1] =
∑
v∈Vk

pk(v) pk(v)−1 =
∑
v∈Vk

1 = |Vk|, (4.15)

allowing us to estimate |Vk| as the expected value of pk(v)−1.

4.2.4 Estimating the Quality within a Stratum Given a biased sample of a stratum Ṽk ⊆ Vk with
known sampling bias β(v), we can estimate ηk and σk, the expected value and standard deviation of η
within Ṽk. To compensate for the sampling bias introduced by sampling from random walks, each
sample v ∈ Ṽk is weighted with β(v)−1:

ηk = 1
|Ṽk|

∑
v∈Ṽk

b−h(v)

β(v)
(4.16)

and σ2
k = 1
|Ṽk|

∑
v∈Ṽk

(
ηk − b−h(v))2

β(v)
. (4.17)

4.3 The Rest of the Graph
As k grows, drawing samples from Vk becomes more and more difficult due to the falling yields (cf. ap-
pendices A and B) and exponentially growing cost of finding the shortest paths from vk back to z. At
the same time, the influence of Vk on the value of η falls.

To avoid having to draw samples from these distant spheres, it has proven to be useful to use spheres
for the first L− 1 strata for some L with the last stratum VL−1 being the rest of the graph.

Vk: =
{
Nk(z) if k < L− 1
V≥k otherwise (4.18)

where V≥k: = V
\ k−1∪

i=0
Nk(z) (4.19)

Samples can be drawn from V≥k by uniformly drawing a sample v from all of V and then proving
that its distance to z is no less than k by running a partial IDA* search on v until f ≥ k, proving that
no solution with a length of less than f ≥ k exists. The size of V≥k is simply determined by

|V≥k| = |V | −
k−1∑
i=0
|Nk(z)|. (4.20)
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4.4 Algorithm Summary
From the ideas outlined in the previous sections, we distill an algorithm for estimating η.

First, samples are drawn from the graph according to the methods outlined in §4. For the first few
strata, the entire stratum is enumerated using a breadth-first search and samples are drawn using an
inside-out Fisher-Yates algorithm [12]. Samples for the next strata til the penultimate one are drawn
using the random walk approach from §4.2. This sampling method is summarised in Algorithm 4.1.
Finally, samples for VL−1, the rest of the graph, are drawn uniformly from the entire graph as explained
in §4.3, rejecting those that would fall into earlier strata. Being uniform samples, each sample drawn by
the breadth-first search method and the method from §4.3 within a stratum Vk has the same sampling
probability pk(v) = |Vk|−1.

Algorithm 4.1 Using a pruning function N ′(v0, . . . , vk), sample n vertices from Vk with known bias
values β(v). Return a multiset of samples Ṽk with n elements, a bias function β : Ṽk → R+ and an
estimation |̃Vk| of |Vk|.

1 Ṽk ← {}, v0 ← z
2 do n times

2.1 for i = 1, . . . , k do uniformly pick vi ∈ N ′(v0, . . . , vi−1) see §4.2.1
2.2 find all shortest paths from v0 to vk
2.3 if d(v0, vk) ̸= k then continue with the next iteration reject vk /∈ Vk

2.4 compute S(vk, k) by pruning the shortest paths
from step 2.2 with N ′(v0, . . . , vi) see Eq. 4.10

2.5 Ṽk ← Ṽk ∪ {vk}
2.6 P (vk)←

∑
(v0,...,vk)∈S(vk,k)

∏k−1
i=0
∣∣N ′(v0, . . . , vi)

∣∣−1 see Eq. 4.11
3 |̃Vk| ← n−1∑

v∈Ṽk
P (v)−1 see Eq. 4.15

4 y ← |Ṽk|
/
n see Eq. 4.9

5 for each v ∈ Ṽk do
5.1 pk(v)← P (v)/y see Eq. 4.12
5.2 β(v)← |̃Vk| pk(v) see Eq. 4.13

6 return (Ṽk, β(v), |̃Vk|)

Once a set of samples are computed, we can compute η for any heuristic h(v). The stratum quality ηk
and its corresponding standard deviations σk are evaluated for each stratum k = 0, 1, . . . , L−1 according
to Eq. 4.16 and Eq. 4.17. These values are then combined according to Eq. 4.5, Eq. 4.6, and Eq. 4.7
to find the quality η, the standard deviation σ and the standard error ση, allowing us to ascertain the
precision of the estimate.
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5 Results
In this section, the heuristic quality η and the sphere sampling process are illustrated using the 24 puz-
zle [9] as a model problem and heuristics based on ZPDB heuristics [7], an improved variant of additive
pattern databases [3] as model heuristics.

(a) Korf et al. (b) Clausecker (c) Döbbelin et al.
Figure 5.1 Three partitonings of the 24 puzzle’s tiles into pattern databases.

(a) from Korf et al. [3], (b) from my previous work [7], and (c) from Döbbelin et al. [14].

5.1 Examples
To illustrate the effectiveness of various heuristic schemes, Table 5.1 shows the quality η of some in-
teresting heuristics for the 24 puzzle. The heuristics shown are the Manhattan heuristic [8], ZPDB
heuristics [7] based on two 6-6-6-6 partitionings [3][7] and one 8-8-8 partitioning [14] as well as the two
ZPDB catalogues (from [7], reproduced in Appendix C). Where applicable, the effectiveness of trans-
position on the quality of the heuristic is shown as well. With transposition, a heuristic is computed
both for the configuration and its transposition along the main diagonal, taking the maximum of the
two values.

The quality was determined using the sphere stratified sampling procedure from §4.1 with up to
107 samples for each of the spheres V0 to V64 and 108 samples for sphere V≥65, representing the rest
of the graph. For the Manhattan heuristic, sphere V≥65 is covered by 109 samples instead. As seen in
Fig. 5.3, this is needed to reduce the error from about 20 % to 9.08 % because our sphere samples don’t
go far enough to capture the entire critical region of this heuristic, leaving a large part of η to V≥65.

These results give a number of interesting insights into the various heuristics. First, it shows how
the Manhattan heuristic’s quality is 220 times worse than that of partitioning (a), the next best heuristic
considered. Thus, we can expect partitioning (a) to expand on average 220 times less vertices than the
Manhattan heuristic when solving difficult problem instances.

We also see how use of transposition generally improves the quality by more than a factor of 2,
offsetting the need for the double lookup. An exception to this is partitioning (c) whose almost sym-
metrical structure likely causes the transposed puzzle’s h-value to be very close to the original puzzle’s
h-value.

Lastly, we can see how the small catalogue of 7 partitionings and 14 ZPDBs outperforms the 8-
8-8 partitioning slightly without transposition and much more strongly with transposition. This is
contrasted with the large catalogue of 14 partitionings made of 20 ZPDBs which doesn’t manage to be all
that better than the small catalogue, highlighting the diminished returns from adding more partitionings
to a catalogue.

heuristic without transposition with transposition
Manhattan 9.926× 10−20 ± 9.013× 10−21 (9.08 %) —

partitioning (a) 4.562× 10−22 ± 3.335× 10−24 (0.73 %) 1.359× 10−22 ± 5.342× 10−25 (0.39 %)
partitioning (b) 4.391× 10−22 ± 9.346× 10−24 (2.13 %) 1.611× 10−22 ± 9.133× 10−25 (0.57 %)
partitioning (c) 1.097× 10−22 ± 5.430× 10−25 (0.49 %) 6.780× 10−23 ± 2.260× 10−25 (0.33 %)
small catalogue 8.548× 10−23 ± 4.254× 10−25 (0.50 %) 3.787× 10−23 ± 1.316× 10−25 (0.35 %)
large catalogue 6.751× 10−23 ± 4.768× 10−25 (0.71 %) 3.208× 10−23 ± 7.784× 10−26 (0.24 %)

Table 5.1 The quality of some interesting heuristics, determined with and without
transposition search. For each heuristic, a 95% confidence interval is given.
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5.2 Heuristic Quality By Sphere
In their 2004 paper Multiple Pattern Databases, Holte et al. propose that eliminating small h values is
most important in improving the quality of heuristics and that using the maximum of many small pattern
databases is more effective than using few large ones because while large PDBs provide higher h values
for difficult configurations, collections of small PDBs are able to provide consistently good h values for
easy configurations [13].

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0.0E+00

2.0E-26

4.0E-26

6.0E-26

8.0E-26

1.0E-25

1.2E-25

1.4E-25

Figure 5.2 Quality histogram of contribution to the perfect heuristic hperfect by distance from
the solved configuration; lowest achievable values.

Sphere stratified sampling provides us with the tools needed to test and expand this idea. By
plotting how much each sphere of the search space contributes to η, we obtain a quality histogram that
tells us which parts of the search space contribute how much to the total number of expanded vertices.
As a baseline, we use the quality of the hypothetical perfect heuristic hperfect(v) = d(v, z) given by

ηperfect =
∞∑
i=0

p(i)
bi

=
∞∑
i=0

|Vi|
/
|V |

bi

= 2.5063× 10−24.

(5.1)

Fig. 5.2 shows ηperfect plotted by the contribution of each sphere. As no consistent heuristic can surpass
hperfect in accuracy, no heuristic’s histogram can dip below the baseline given by Fig. 5.2, making it a
useful reference for possible room of improvement.

The shape of this curve can be explained by |Vi| growing slower than bi as not all moves possible in
a given configuration bring us further away from z. The initial spike in the graph is the consequence of
the solved configuration being a single state with the blank tile in the corner and thus starting with a
lower than average branching factor. As the distribution of states within a sphere gradually approaches
the equilibrium distribution, the curve becomes smooth.

In Fig. 5.3, 5.4, and 5.5, the quality histograms of some of the heuristics listed in Tbl. 5.1 are shown.
For sufficiently good heuristics, it can be seen how the critical region between V30 and V60 accounts
for most of the value of η. Intuitively, this can be explained through the interaction of two behaviours:
(a) the closer we are to z, (i. e. the lower the sphere number is), the better our heuristic is able to
approximate hperfect. Hence, the contribution to η rises as the sphere number rises. (b) the farther we
are from z, the more does the b−i weighting pull down our curve. As bi grows faster than the sphere
size |Vi| (cf. Fig. 5.2), more so once the sphere size growth stagnates as we move towards the middle of
the graph, the contribution to η falls as the sphere number rises. Between these two processes, there is
an interval where the contribution peaks, falling off to both sides.

From this insight, we conclude that when optimising heuristics under memory usage or other con-
straints, particular attention should be paid to the h values of vertices in this critical region. For example,
one could build pattern databases that provide large tables for partial configurations likely to belong to
vertices in the critical region and small tables for configurations that are likely too strongly permuted to
lie in the critical region.
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Figure 5.3 Manhattan heuristic quality histogram. η≥65 = 2.364× 10−20
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Figure 5.4 Partitioning (a) quality histogram without (solid line, η≥65 = 1.098× 10−23) and
with (dashed line, η≥65 = 2.573× 10−24) transposition.
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Figure 5.5 Small catalogue quality histogram without (solid line, η≥65 = 2.008× 10−24) and
with (dashed line, η≥65 = 2.623× 10−25) transposition.
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5.3 Predicted vs. Actual Expanded Nodes
As with Korf’s formula Eq. 2.6, the definition η is based on, care must be taken to understand what it
actually measures. Correct predictions are only obtained when the distribution of start states follows
the equilibrium distribution. Zahavi et al. [15] illustrate this problem by showing how restricting the
selection of start states for an IDA* search to some distance n to vertices with d(v, z) ≥ n, i. e. vertices
for which an IDA* search to distance n does not overshoot the goal, is already sufficient to render Eq. 2.6
inaccurate. They address this problem by introducing a more sophisticated prediction formula that uses
conditional distributions to take the location of the start state into account.

Even accounting for this, measurement proved to be more challenging than the author assumed. Up
to 106 solvable puzzle configurations have been chosen uniformly at random. On each of these, IDA* was
then ran to a distance of up to 80 regardless of the actual difficulty of the problem and the number of
vertices expanded at each distance were noted. A high fluctuation of expanded nodes by up to a factor
of 24 was observed between different test runs. Similar to the estimation of η by uniform random sample,
this is due to the high variation between individual puzzle instances, causing the number of expanded
nodes to be dominated by outliers. A bigger sample or an adaption of the sphere sampling scheme could
have been able to alleviate these issues, but was not attempted due to a lack of time.

5.4 Distribution of Vertices in the Search Space
Apart from generating samples for the computation of the heuristic quality, the sampling procedure
developed in §4.2 also allows us to empirically determine the distribution of vertices with respect to their
distances from the solved configuration (or any arbitrary configuration) in arbitrary search spaces.

This method is limited by the necessity to determine if the random walk did indeed reach the desired
distance and thus by the computation time needed to solve the many configurations encountered, with
computation time generally growing exponentially with distance. It is therefore a feasible method to
map the size of the first few spheres, but it breaks down as distance advances. For example, computing
the size of sphere V64 to a relative error of about 3.15 % (95 % confidence) took about 2.5 days of wall
clock time, keeping all 80 threads of a compute server* busy.

A plot of the 24 puzzle’s measured vertex distribution can be found in Appendix B.

5.5 Conclusion
The heuristic quality η allows us to determine the influence of the heuristic function on an IDA* search
as a constant factor and is a convenient tool to compare different heuristic functions for pruning power.
Its elegant mathematical definition allows us to derive interesting theoretical results about the pruning
power of classes of heuristics, both making the proof of well-known result easier and enabling us to
estimate to find new ones.

By means of random walks, we can effectively draw samples from spheres of vertices equidistant to
a given vertex z. As a side product, this method gives us a powerful tool to estimate the sphere sizes,
i. e. the number of vertices at each such distance.

Using the samples drawn from random walks, we can effectively estimate η for arbitrary heuristics
without having to know any details about the heuristic’s construction. Plotting η by contribution of
each sphere, we can see how the h values of a critical region in the search space contribute most to the
number of expanded nodes.

* 2× Intel Xeon Gold 6138 CPU @ 2.00 GHz
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A Effective Pruning
The pruning method used in this thesis is based on finite state machine pruning [5]. In this method, a
finite state machine (FSM) is used to record path segments that can be replaced by other path segments
of equal or shorter length. If the step we want to take next would cause any such segment to appear
in the path we took, we know that there is another path of equal or shorter length leading to the same
vertex and perform a different step instead; i. e. not include that vertex in N ′(v0, . . . , vi).

Modelling the state space of the 24 puzzle as a groupoid with generators of the form mi,j for adjacent
grid locations i and j, meaning move the blank from location i to location j, we can easily match path
segments as sequences of generators in the FSM. For example, we can use the simple pruning rule of
rejecting all path segments that undo the previous move, in other words rejecting all segments of the
form mi,jmj,i as mj,i is the inverse of mi,j . This yields the simple pruning rule

N ′(v0): = N(v0)
N ′(v0, . . . , vi−1, vi): = N(vi) \ {vi−1}.

(A.1)

In the actual sampling process, finite state machines are used that contain all path segments up to
a certain length n such that for any pair of vertices u, v ∈ V with d(u, v) ≤ n, out of all paths of length
at most k, exactly one path from u to v of length d(u, v) is not matched by the finite state machine.

We furthermore keep track of moribund states. A FSM state is 0-moribund if it is matching and
k + 1-moribund if all outgoing edges lead to states that are k or less moribund. Thus, a k-moribund
state is one from which no random walk of k of more steps would escape being matched by the FSM;
ending in a cul-de-sac is inevitable (hence the name “moribund state”).

Using this information, we omit moves leading to k-moribund states from N ′(v0, . . . , vi) when there
are k or more steps left to go. This way N ′(v0, . . . , vi) being inhabited is guaranteed and no random
walk is rejected because it cannot be finished, further improving the yield.

To illustrate the effectiveness of a good pruning rule, Fig. A.1 shows the yield y for random walks of
lengths up to 59, comparing the simple pruning rule from Eq. A.1 with a finite state machine matching
paths up to length n = 20 with and without tracking moribund states. Tracking moribund states
improved the yield by up to 58 % compared to conventional FSM pruning and up to 457 % compared to
the pruning rule from Eq. A.1. This shows the considerable effect on sampling yield coming from the
application of finite state machine pruning.
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Figure A.1 Sampling yield by distance using Eq. A.1 (dashed and dotted line) and a finite
state machine for n = 20 without (dashed line) and with (solid line) moribund state tracking.
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B Sphere Sizes
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Figure B.1 Number of vertices of the 24 puzzle’s state space by distance from the solved
configuration as measured using the sphere sampling method from Sec. 4.2.

Number of vertices of the 24 puzzle’s state space at distance d from the solved configuration. Reference
sizes taken from OEIS sequence A090031 [10] are compared with the sizes determined using the sampling
procedure from §4. For spheres V0 to V62, 108 attempted samples and a finite state machine with
moribund state tracking containing paths up the length n = 22 was used. For spheres V63 and V64,
5 × 107 attempted samples and a FSM with moribund state tracking up to length n = 24 were used
instead.

Plotting these measured sphere sizes (cf. Fig. B.1) shows how at 64 steps from the solved configura-
tion, we are far from having reached the largest spheres. At 3.0484× 1019 vertices, even sphere 64, the
largest one measured so far, only accounts for a fraction of about 1 : 250 000 of the 25!/2 = 7.7556×1024

vertices found in the 24 puzzle’s search space.

sphere size margin of error
d reference measured yield 95 % confidence actual error
0 1 1.0000× 10+00 100.00 % 0.0000× 10+00 (0.000 %) +0.0000× 10+00 (0.000 %)
1 2 2.0000× 10+00 100.00 % 0.0000× 10+00 (0.000 %) +0.0000× 10+00 (0.000 %)
2 4 4.0000× 10+00 100.00 % 0.0000× 10+00 (0.000 %) +0.0000× 10+00 (0.000 %)
3 10 1.0000× 10+01 100.00 % 4.0000× 10−04 (0.004 %) +1.9480× 10−04 (0.002 %)
4 26 2.6000× 10+01 100.00 % 1.5493× 10−03 (0.006 %) −3.2584× 10−04 (0.001 %)
5 64 6.3999× 10+01 100.00 % 6.0929× 10−03 (0.010 %) −8.2864× 10−04 (0.001 %)
6 159 1.5900× 10+02 100.00 % 1.8353× 10−02 (0.012 %) +3.7296× 10−03 (0.002 %)
7 366 3.6599× 10+02 100.00 % 5.5504× 10−02 (0.015 %) −1.0015× 10−02 (0.003 %)
8 862 8.6191× 10+02 100.00 % 1.3961× 10−01 (0.016 %) −9.3560× 10−02 (0.011 %)
9 1 904 1.9039× 10+03 100.00 % 3.6063× 10−01 (0.019 %) −1.1341× 10−01 (0.006 %)
10 4 538 4.5382× 10+03 100.00 % 9.1175× 10−01 (0.020 %) +1.5343× 10−01 (0.003 %)
11 10 238 1.0238× 10+04 100.00 % 2.3368× 10+00 (0.023 %) +4.3100× 10−01 (0.004 %)
12 24 098 2.4098× 10+04 100.00 % 5.7659× 10+00 (0.024 %) +3.8775× 10−01 (0.002 %)
13 53 186 5.3192× 10+04 100.00 % 1.4238× 10+01 (0.027 %) +6.0750× 10+00 (0.011 %)
14 123 435 1.2346× 10+05 100.00 % 3.4538× 10+01 (0.028 %) +2.3241× 10+01 (0.019 %)
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15 268 416 2.6840× 10+05 100.00 % 8.3440× 10+01 (0.031 %) −1.5232× 10+01 (0.006 %)
16 616 374 6.1634× 10+05 100.00 % 1.9992× 10+02 (0.032 %) −3.1437× 10+01 (0.005 %)
17 1 326 882 1.3270× 10+06 100.00 % 4.7516× 10+02 (0.036 %) +1.5190× 10+02 (0.011 %)
18 3 021 126 3.0207× 10+06 100.00 % 1.1280× 10+03 (0.037 %) −4.6398× 10+02 (0.015 %)
19 6 438 828 6.4382× 10+06 100.00 % 2.6455× 10+03 (0.041 %) −6.1112× 10+02 (0.009 %)
20 14 524 718 1.4525× 10+07 100.00 % 6.2194× 10+03 (0.043 %) −5.9454× 10+01 (0.000 %)
21 30 633 586 3.0641× 10+07 100.00 % 1.4391× 10+04 (0.047 %) +7.6315× 10+03 (0.025 %)
22 68 513 713 6.8535× 10+07 100.00 % 3.3540× 10+04 (0.049 %) +2.1325× 10+04 (0.031 %)
23 143 106 496 1.4304× 10+08 100.00 % 7.6445× 10+04 (0.053 %) −6.5172× 10+04 (0.046 %)
24 317 305 688 3.1732× 10+08 99.81 % 1.7652× 10+05 (0.056 %) +1.8061× 10+04 (0.006 %)
25 656 178 756 6.5596× 10+08 98.97 % 3.9887× 10+05 (0.061 %) −2.1555× 10+05 (0.033 %)
26 1 442 068 376 1.4422× 10+09 98.08 % 9.1407× 10+05 (0.063 %) +1.7247× 10+05 (0.012 %)
27 2 951 523 620 2.9517× 10+09 96.46 % 2.0496× 10+06 (0.069 %) +1.6952× 10+05 (0.006 %)
28 6 427 133 737 6.4284× 10+09 94.83 % 4.6668× 10+06 (0.073 %) +1.2967× 10+06 (0.020 %)
29 13 014 920 506 1.3013× 10+10 92.57 % 1.0325× 10+07 (0.079 %) −1.6665× 10+06 (0.013 %)
30 28 070 588 413 2.8075× 10+10 90.34 % 2.3242× 10+07 (0.083 %) +4.9061× 10+06 (0.017 %)
31 5.6194× 10+10 87.57 % 5.0987× 10+07 (0.091 %)
32 1.1994× 10+11 84.80 % 1.1398× 10+08 (0.095 %)
33 2.3783× 10+11 81.59 % 2.4949× 10+08 (0.105 %)
34 5.0202× 10+11 78.35 % 5.5019× 10+08 (0.110 %)
35 9.8134× 10+11 74.74 % 1.1814× 10+09 (0.120 %)
36 2.0533× 10+12 71.17 % 2.6354× 10+09 (0.128 %)
37 3.9619× 10+12 67.29 % 5.5501× 10+09 (0.140 %)
38 8.1914× 10+12 63.49 % 1.2294× 10+10 (0.150 %)
39 1.5588× 10+13 59.45 % 2.5680× 10+10 (0.165 %)
40 3.1794× 10+13 55.53 % 5.6281× 10+10 (0.177 %)
41 5.9655× 10+13 51.49 % 1.1969× 10+11 (0.201 %)
42 1.2043× 10+14 47.57 % 2.5754× 10+11 (0.214 %)
43 2.2266× 10+14 43.60 % 5.3400× 10+11 (0.240 %)
44 4.4187× 10+14 39.82 % 1.1006× 10+12 (0.249 %)
45 8.0513× 10+14 36.07 % 2.2633× 10+12 (0.281 %)
46 1.5792× 10+15 32.54 % 4.8039× 10+12 (0.304 %)
47 2.8374× 10+15 29.09 % 1.0092× 10+13 (0.356 %)
48 5.4745× 10+15 25.91 % 2.0849× 10+13 (0.381 %)
49 9.6311× 10+15 22.82 % 4.0923× 10+13 (0.425 %)
50 1.8397× 10+16 20.03 % 9.0825× 10+13 (0.494 %)
51 3.1874× 10+16 17.38 % 2.0741× 10+14 (0.651 %)
52 5.9307× 10+16 15.02 % 3.4683× 10+14 (0.585 %)
53 1.0118× 10+17 12.82 % 7.6011× 10+14 (0.751 %)
54 1.8691× 10+17 10.90 % 1.5711× 10+15 (0.841 %)
55 3.1078× 10+17 9.14 % 3.2689× 10+15 (1.052 %)
56 5.6396× 10+17 7.63 % 5.7434× 10+15 (1.018 %)
57 9.2789× 10+17 6.28 % 1.2099× 10+16 (1.304 %)
58 1.6497× 10+18 5.14 % 2.0824× 10+16 (1.262 %)
59 2.6358× 10+18 4.15 % 3.7463× 10+16 (1.421 %)
60 4.5888× 10+18 3.33 % 9.4220× 10+16 (2.053 %)
61 7.1572× 10+18 2.63 % 1.8081× 10+17 (2.526 %)
62 1.2410× 10+19 2.07 % 2.8819× 10+17 (2.322 %)
63 1.9020× 10+19 1.91 % 8.4975× 10+17 (4.468 %)
64 3.0484× 10+19 1.47 % 9.5922× 10+17 (3.147 %)
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C PDB Catalogues
These two PDB catalogues were developed in my previous work [7] using an empirical method described
therein. Provided are a large catalogue of 20 pattern databases forming 14 partitionings and as a subset,
a small catalogue of 14 pattern databases forming just 7 partitionings. For easier identification, a number
is assigned to each partitioning and a capital letter to each pattern database. Partitionings 1 and 2 are
identical to (a) and (b) from Fig. 5.1.

Despite having only half the number of partitionings, Tbl. 5.1 shows that the large catalogue’s quality
is only slightly better than the small catalogue’s. This illustrates the diminished returns obtained from
using catalogues comprising too many pattern databases.
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