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KKT SYSTEMS IN OPERATIVE PLANNING FOR
GAS DISTRIBUTION NETWORKS

KLAUS EHRHARDT AND MARC C. STEINBACH

ABSTRACT. Operative planning in gas networks with prescribed binary decisions yields
large scale nonlinear programs defined on graphs. We study the structure of the KKT
systems arising in interior methods and present a customized direct solution algorithm.
Computational results indicate that the algorithm is suitable for optimization in small and
medium-sized gas networks.

0. INTRODUCTION

In [3] we have introduced a nonlinear programming model for short-term planning
in gas networks under prescribed combinatorial decisions (switching of compressors and
valves); for related work see, e.g., [2, 4, 5]. Our model is based on a directed graph whose
nodes (providers, customers, and junctions) are linked via active elements (compressors,
valves, control valves) and passive elements (pipes, connections); the arc directions indi-
cate the known direction of flow. Implicit Euler schemes in space and time yield a fully
discretized model of the hyperbolic PDE governing the gas flow. The objective is to min-
imize the total energy consumption of the compressors, which accounts for most of the
variable operating costs. Optimization results obtained withSNOPT have been presented
in [3]. The present paper aims at novel solution algorithms for the large-scale NLP based
on interior methods in combination with specialized KKT solvers. In what follows we
focus on the latter.

1. STRUCTURE AND SOLUTION OF KKT SYSTEMS

In the model [3] we distinguish state variablesz and (linearly entering) control variables
u. All inequalities are simple bounds. In a primal-dual interior method, the Newton step
KKT system forT time intervals then takes the general form

(1)


H(z, λ) + Φz A(z)∗ F∗

Φu B∗

A(z) B

F




∆z

∆u

−∆λ

−∆η

 = −


f(z, λ, η)
d(u, λ)
h(z, u)
e(z)


with (f, d, h, e) ∈ R(nz+nu+nz+1)T . Here the HessianH and control operatorB are
block-diagonal, andF corresponds to a single linear terminal constraint,

H = Diag(H1, . . . , HT ),(2)

B = Diag(B1, . . . , BT ),(3)

F = (0, . . . , 0, FT ).(4)
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The state operatorA is block-bidiagonal due to the implicit Euler scheme in time (with
fixed initial valuesz0 at t = 0),

(5) A =


A1

L2 A2

...
...
LT AT

 ,

whereAt, Lt possess a substructure whose block columns correspond to pressure, flow
rate, and density variables,zt = (pt, qt, ρt),

(6) (Lt, At, Bt) =

 · · ∗ ∗ ∗ ∗ · pipe flow,
· · · ∗ ∗ · ∗ other constraints,
· · · · ∗ · · node flow balances.


The sparsity pattern of the ‘∗’ blocks depends on the topology of the particular gas network.
This is also true for the Hessian blocksHt whose entries stem exclusively from pipes and
compressors; all other constraints and the objective are linear.

Two key observations permit a direct solution of the KKT system at reasonable cost:
(a) the invertible state operatorsAt admit inexpensive factorizations, and (b) the control
space dimensionnuT is independent of the space discretization and comparatively small.
As to (a), it can be shown that any effects of a space discretization can be pre-eliminated
with linear cost by a spatial condensing, which in effect reduces pipe sequences to single
pipe segments. Here, for simplicity and to avoid potential instabilities, we factorizeAt by
the public domain sparse solverMA28. Direct factorizations ofA andA∗ are then readily
constructed as forward and backward recursions in time.

Returning to system (1), the inverse state operatorA−1 and its adjointA−∗ are em-
ployed to eliminate∆z and∆λ; the resulting reduced KKT system is then solved for∆u

and∆η. That is, we use block pivots (3,1), (1,3), (2,2), and (4,4) in that order, where the
respective (symmetric) pivot blocks (2,2) and (4,4) obtained from the previous eliminations
are

S = Φu + B̄∗(H + Φz)B̄,(7)

M = FB̄S−1B̄∗F∗(8)

with

(9) B̄ = A−1B.

Here B̄ is block lower triangular andS is dense. The practical computation proceeds as
follows: letS(0) = Φu, evaluate

(B̄t1, . . . , B̄tt) = A−1
t

[
(0, . . . , 0, Bt) − Lt(B̄t−1,1, . . . , B̄t−1,t−1, 0)

]
,(10) 

S
(t)
11
...

...

S
(t)
t1 . . . S

(t)
tt

 =


S

(t−1)
11

...
...

S
(t−1)
t1 . . . S

(t−1)
tt

 +

 B̄∗
t1
...

B̄∗
tt

 Ht(B̄t1, . . . , B̄tt)(11)

in a forward recursiont = 1, . . . , T , then setS = S(T), calculate the Cholesky factorization
S = LL∗, and finally form

F̄ = FB̄ = FT (B̄T1, . . . , B̄TT ),(12)

F̃ = F̄L−∗,(13)

M = F̃F̃∗ ∈ R.(14)

Except for the implicit state equation,Lt∆zt−1 + At∆zt + Bt∆ut = −ht, this procedure
is similar to a classical condensing recursion [1].
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TABLE 1. Solution statistics for the test problem:T , number of time
steps;∆t, length of time steps (min);∆x, maximal pipe length (km);
nz, nu, dimensions ofzt, ut; neA, neH, neKKT , numbers of entries of
At, Ht, and entire system;t(. . .), CPU times (s) on a3 GHz PC.

T ∆t ∆x nz neA nzT neKKT t(A−1) t(S) t(S−1) ttotal

nu neH nuT

48 60 235 233 592 11184 39379 0.03 14.92 0.72 15.78
19 181 912

96 30 235 233 592 22368 78787 0.07 116.81 5.66 122.96
19 181 1824

144 20 235 233 592 33552 118195 0.10 383.89 18.26 403.25
19 181 2736

48 60 80 289 746 13872 50117 0.04 18.74 0.73 19.64
19 237 912

96 30 80 289 746 27744 100277 0.09 144.36 5.60 150.61
19 237 1824

144 20 80 289 746 41616 150437 0.14 478.46 18.14 497.91
19 237 2736

48 60 40 393 1032 18864 70059 0.07 25.80 0.70 26.76
19 341 912

96 30 40 393 1032 37728 140187 0.16 195.28 5.62 201.79
19 341 1824

144 20 40 393 1032 56592 210315 0.23 647.13 18.24 667.21
19 341 2736

2. COMPUTATIONAL RESULTS

The KKT solver just described has been implemented inC++ and tested on a medium-
sized network representing the backbone transport network of Ruhrgas AG. It consists of
13 compressor stations,6 regulators,4 valves and, for the chosen space discretizations,
between63 and103 nodes and between29 and69 pipe segments with a total length of
roughly2500 km. Table 2 gives solution statistics for the longest relevant planning horizon,
48 h, with selected space and time discretizations. Not surprisingly, the computational
effort is clearly dominated by assembling the reduced HessianS (with cubic complexity
in nuT ) whereas the Cholesky factorization ofS (also cubic innuT ) and the factorization
of A1, . . . , At are much cheaper. In particular, the CPU time increases only moderately
with the number of pipe segments. Since30-minute steps and40 km pipe segments suffice
for practical purposes, the solution algorithm can be considered suitable for networks up
to medium size.

3. CONCLUSION

We have presented a direct solution algorithm for KKT systems arising in gas manage-
ment, based on sparse factorizations of the state operatorsAt in combination with forward
and backward recursions in time. The performance is satisfactory up to a few thousand de-
grees of freedom (i.e., control variablesnuT ). Future research will be aimed at developing
preconditioned iterative methods suitable for real-time optimization in large networks.
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