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Abstract. In this paper we describe the semantic analysis of differen-
tial equations given in the ubiquitous formats MathML and OpenMath.
The analysis is integrated in a deployed Web indexing framework. Start-
ing from basic classifications for differential equations the proposed sys-
tem architecture is amenable to extensions for further reconstruction of
mathematical content on the Web. The syntactic analysis of mathemati-
cal formulae given in the considered formats must overcome ambiguities
that stem from the fact that formula particles may have different en-
codings, which are in principle completely arbitrary. However, it turns
out that the syntactic analysis can be done straightforward given some
natural heuristic assumptions.

1 Introduction

The motivation [15] for this work stems from several tasks we have
been dealing with during recent years. We are working in the field of
computer algebra, a community that has substantially contributed
to the definition of mathematical encodings like MathML [12] or
OpenMath [16]. We are also working in the Math-Net project [14],
which collects mathematical information worldwide and tries to pro-
vide mathematicians with high quality information on mathemati-
cal subjects. Beside information on the organizational structure of
the mathematical institutes, preprints and other papers on the Web
are collected and analyzed to extract relevant information. Since
MathML and OpenMath have gained wide acceptance by institu-
tions like W3C and software manufacturers, it can be expected that
documents will use these encodings for formulae to a larger extent.
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An important detail is that MathML comes in two different
styles, called Presentation Markup and Content Markup. The lat-
ter describes the mathematical content of an expression, whereas
the first defines the rendering of the expression. Hence this widely
used style does not contain rich information about the mathematical
meaning.

We have started to reconstruct mathematical content from for-
mulae given in MathML and OpenMath with the concrete problem
of analyzing differential equations.

Our current implementation supports the following orthogonal
classifications:

— order
ordinary vs. partial
— linear vs. non-linear

— homogeneous vs. non-homogeneous

Modeling with differential equations is common in science. There-
fore, if a researcher looks at a collection of mathematical papers the
information on the type of differential equations used therein is in-
teresting for him or her. The information may support the researcher
with respect to his or her own modeling and may lead to methods
for solving considered problems. A typical example is Drach’s dif-
ferential equation. This is not well-known even among researchers
in the field. An application for our approach could be to find all
occurrences of Drach’ equation in the mathematical literature.

The paper proceeds as follows. Sect. 2 discusses the problems
encountered in parsing MathML and OpenMath formulae. The sev-
eral classifications of differential equations are defined in a succinct
declarative pseudo code style in Sect. 3. The architecture of the pro-
posed implementation is described in Sect. 4. The paper finishes
with a discussion on further work, related work, and a conclusion in
Sects. 5, 6, and 7.

2 Parsing MathML and OpenMath

Problems arise in parsing formulae given in MathML and Open-
Math formats, because different amount of semantic clarification is
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needed for the several formats prior to semantic processing. MathML
comes along with two versions, i.e., MathML Content Markup and
MathML Presentation Markup. Whereas MathML Content Markup
and OpenMath are oriented towards meanings of formulae from the
outset, MathML Presentation Markup is designed for the task of
rendering formulae. Therefore, if targeting semantic analysis eventu-
ally, parsing MathML Presentation Markup poses significantly more
problems.

2.1 MathML Presentation Markup

In general the several possible particles of a formula have arbitrary

appropriate encodings in MathML Presentation Markup — an encod-

ing is appropriate as long as the intended visualization is achieved.

Fortunately, it is possible to assume that the vast majority of MathML
Presentation Markup documents found on the Web is not directly

written or edited by the authors, but produced with one of the

ubiquitous mathematical software tools, i.e. Maple [11], Mathemat-

ica [18], or WebEQ [4]. Therefore, the problem of ambiguity boils

down to a thorough analysis of the common tools’ encodings of
formula particles. Furthermore the MathML Presentation Markup

standard [12] makes a couple of recommendations on how to en-

code certain constructs and, fortunately, the common tools more or

less adhere to these recommendations. We delve into the topics of
encoding derivatives, characters, and operator and function applica-

tions. Table 1 summarizes the encodings yielded by the three leading

mathematical software tools.

Encoding of Derivatives There are two well-known presentations
for derivatives in mathematical ad-hoc notation. Accordingly, the
MathML standard proposes two different Presentation Markup en-
codings of derivatives. For example, the non-partial derivative of a
function f can be written in the following two ways:

f (1)

d

— 2

o (2)
The MathML Presentation Markup encoding for (1) is the following:
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<mrow>
<msup>
<mi> f </mi>
<mo> &#8242; </mo>
</msup>
</mrow>

The MathML Presentation Markup encoding for (2) is the following:

<mrow>
<mfrac>
<mo> &DifferentialD; </mo>
<mrow>
<mo> &DifferentialD; </mo>
<mi> x </mi>
</mrow>
</mfrac>
<mi> f </mi>
</mrow>

Character Encoding Unicode characters or entities can be used
to encode the same character. For example, the prime character in
(1) is encoded by a Unicode character:

<mo> &#8242; </mo>

However, an alternative encoding for this is the following:

<mo> °’ </mo>

The problem to deal with many encodings for the same symbol is
not difficult. The various encodings just have to be reflected by the
grammar. The problem is rather to be aware of all possible encodings
of a symbol. An allied problem is described in Sect. 4.1: a symbol
with a predefined meaning may give rise to unsolvable ambiguity if
it is not used with the intended meaning by the formula’s author.

Operator and Function Application It makes a difference whether
the produced MathML code contains invisible operators or not. In-
visible elements can affect the appearance of the formula in browsers
and may prevent ambiguity. Consider the following MathML code
fragment:

<mi>x</mi>
<mi>y</mi>
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Tools may visualize this code fragment as zy. However, it is not
clear which of the following meanings the author has had in mind in
writing this fragment:

- T XY
—TAY
- z(y)

The ambiguity of just sequencing the variables x and y can be
overcome, if the MathML invisible operators InvisibleTimes or ap-
plyFunction are utilized. Inserting one of these elements explicitly
between the identifiers + and y makes the meaning obvious. Even
bracketing for function application cannot always adequately replace
the utilization of invisible elements. Though f(z,y) is unlikely to en-
code something different than the application of f to x and y, the
formula f(z+1) still can have two different meanings, i.e. the appli-
cation of f to 2 + 1 or otherwise the multiplication f x (z+1). Un-
fortunately, the tools Mathematica [18] and WebEQ do not enforce
the production of necessary invisible operators. Therefore heuristics
must be employed in parsing operator and function application, e.g.
based on the assumption that certain names are rather used as func-
tion names than basic variable names and vice versa.

Table 1. Different encodings of formula particles by different formulae editing tools.

Encoding Maple Mathematica WebEQ

derivatives mfrac mfrac/msup mfrac/msup

character encoding || entity Unicode Unicode/entity
multiplication explicitly |explicitly /sequencing sequencing

function application||explicitly|explicitly /bracketing |explicitly /sequencing/bracketing

2.2 MathML Content Markup and OpenMath

MathML Content Markup focuses on the mathematical semantics of
formulae. With Content Markup it is easy to distinguish whether fx
means f(z) or f*x, which makes the analysis of the formula much
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easier for our purposes. However, it is common sense that only a
too limited subset of mathematical notation is covered by MathML
Content Markup by itself. Therefore the csymbol element, which
is available since the MathML version 2.0, allows Content Markup
to embed elements from other notations, e.g. from OpenMath or
Mathematica. In such a case heuristics must be used to find out
which element is actually meant. Another problem is that MathML
Presentation Markup and Content Markup are often connected in so-
called mixed or parallel markup. This way both rendering aspects
and mathematical content are included in the representation of a
formula. Again MathML Content Markup comes in different dialects
depending on the producing tool.

OpenMath is an alternative for the encoding of mathematical for-
mulae that is older than MathML and attempts to solve the problem
in a much more rigorous way than MathML. OpenMath is strictly
content oriented and enables semantically rich encodings. Each ob-
ject that is used in an OpenMath encoding includes a reference to a
content dictionary, which is a mathematical definition of the object.
For example, the operator plus used in different rings refers to dif-
ferent objects in separate OpenMath content dictionaries. Thus we
have to integrate content dictionaries into the parsing process. Con-
tent dictionaries are created and collected by the OpenMath Society.

3 Supported Classifications of Differential
Equations

The supported classifications of differential equations encompass the
order of an equation, the question whether an equation is ordinary
or partial, whether it is linear, and whether it is homogeneous. A
succinct definition of these classifications is provided in Fig. 1. Ad-
hoc abstract syntax notation and declarative notation is used for
this purpose. In the abstract syntax definitions all items are non-
terminals. In particular, we do not specify the set of variables var
and the set of operations op.

Note that the actual LISP code for the classification used in the
implementation of our approach — see Sect. 4 — is, in effect not more
complex than the declarative definitions given in Fig. 1. For the
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derivative ::= var varx
equation ::= var
| derivative
| op equation; ... equation,

order : equation — N

0 , eq € var
ordereqg = { M , eq = fui...v, € derivative
maz |J ordereqi ,eq=opeq...eqn
1<i<n
derivations : equation — 2¥%"
0 , eq € var
derivations eq = { {vi-..vn} , eq = f v1,...vp, € derivative
U derivationseq; ,eq=opeq...eqn
1<i<n

ordinary : equation — B
partial : equation — B

ordinary eq = |derivations eq|=1

partial eq ER ordinary eq

normalized ::= (equation? derivative?)x*

linear : normalized — B

linear eq1 (f varsi)...eqn (f varsy) By f €eaq

homogeneous ::= (equation? derivative)x

Fig. 1. Definition of the supported classification of differential equations. Non-terminals
of the abstract syntax are used in the declarative definitions in bold face in order to
denote the respective syntactic categories.
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purpose of analyzing a differential equation an equation is simply a
term composed of variables, operations, and derivatives. A deriva-
tive consists of the target function name and the derivate variables.
The list of derivate variables may be empty, this way representing
the genuine occurrence of the equation’s target function. For the def-
inition of linearity it can be assumed that the differential equation
adheres to the common sum-of-product normal form, expressed by
the abstract syntax notation normalized. Furthermore it can be as-
sumed that the differential equation’s target function is unique. In
our implementation these assumptions hold because of the employed
computer algebra stage and verifier stage. The homogeneity of a dif-
ferential equation can be specified syntactically without detouring.

4 Solution System Architecture

Separation of concerns leads to a straightforward compiler stage ar-
chitecture for the solution system, see Fig. 2. After finding a formula
encoded in MathML or OpenMath it is parsed and an abstract syn-
tax tree is built. We have used ANTLR [17] to build the parser.
Printing the abstract syntax tree yields the formula in LISP for-
mat. If the formula represents a supported differential equation it is
further processed by the REDUCE [8] computer algebra system and
the formula is transformed into a normal form. Afterwards LISP pro-
grams classify the formula. The result of the classification is printed
out in Summary Object Interchange Format (SOIF) because the
classification is embedded into the Harvest system [1, 13], which uses
SOIF data for its internal information storage and exchange.

The proposed solution is scalable with respect to functionality in
several means. Future formats can be integrated easily — the abstract
syntax serves as a mediator between different formats. Because of the
computer algebra stage the software system is prepared for projected
advanced semantic analysis.

4.1 Parsing Problems

First of all we assume that the MathML and OpenMath code un-
der consideration are syntactically correct. Thus we specified non-
validating grammars to reconstruct the content of the represented
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formulae. Parsing is aborted if it can be recognized lexically that the
considered formula is actually no differential equation, for example,
because it encompasses elements for encoding integrals or matrices.
We cannot assume that the rules for the so-called proper grouping
in Sect. 3.3 of [12] are always followed. Thus unnecessary mrow ele-
ments are escaped. Unnecessary mrow elements are those which are
not nested within other elements, e.g., mfrac or msup elements. Only
attributes relevant to differential equations are recognized.

The Presentation Markup grammar needs to distinguish between
two kinds of identifiers, i.e., monad operators and simple variables.
If an ambiguity occurs our heuristic solution decides in favor of the
monad operator. For example, <mi> sin </mi> always represents
the sinus function even if there is no applyFunction element next to
it.

A differential equation consists of variables, numbers, differential
quotients, and functions, which are bound by operators. In MathML
Content Markup and OpenMath the grammar has just to follow the
apply structure of the formula in order to reconstruct it. However,
with respect to the actual operator structure parsing a formula en-
coded in MathML Presentation Markup is more complicated because
the grammar has to define several internal levels to correctly obtain
the priority of arithmetical operations.

4.2 Further Processing

After parsing a verifier checks whether a given formula actually
can be considered a proper differential equation. For example, it
is checked whether the target function is unique across all the equa-
tion’s derivatives. If the target function is not unique the equation
stems perhaps from a differential equation system, may be interest-
ing, but not amenable to the classifications examined in this paper.

For the purpose to store the result in a unified format, the inter-
mediate result is processed with computer algebra methods. Simpli-
fication rules are applied and a normal form is achieved. The process-
ing identifies dependent and independent variables. As a result the
derivatives and the target function are factored out so that the anal-
ysis of linearity and degree are simplified. REDUCE has been the
computer algebra system of choice because it is a proven system and



10 Dirk Draheim, Winfried Neun, and Dima Suliman

because REDUCE formulae can be denoted by LISP S-expressions.
ANTLR generated parsers build abstract syntax trees as two dimen-
sional presentation of the formula that can be printed out as LISP
S-expressions and can be forwarded directly to REDUCE.

MathMI Presentation MathML Content OpenMath
N [y

I Heuristic ANTLR Parser I

Abstract Syntax Tree

| |i> SOFF classification

| REDUCE |

I @e@‘@

;

LISP normalized formula

‘

I LISP classifier I

SOIF classification

I

Fig. 2. The compiler stages of the differential equation classifier.

4.3 Integration into Harvest

The resulting classifier is embedded into an instance of the Harvest
system — see Fig. 3 — that is hosted by the Math-Net project. Harvest
is a distributed search system; the main components of Harvest are
the gatherer and the broker. The gatherer collects and summarizes
the resources on the Web. The broker indexes the collected informa-
tion and answers queries via a Web interface. Gatherer and broker
communicate using an attribute-value stream protocol, the propri-
etary SOIF. The gatherer triggers different summarizers for different
kinds of documents. The available set of summarizers neither sup-
ports MathML nor OpenMath resources. We provided appropriate
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new summarizers for these resources — MathML can be found on
the Web in XML files explicitly tagged as MathML or in XML files;
OpenMath can be found in XML files.

I Summarizer1 I
l / I Summarizer2 I

Gatherer

QI MathML Differential Equation Summarizer I

S

SOIF I XML Differential Equation Summarizer I
I Collector I—I Query Manager i Client
Broker

Fig. 3. Integration of the differential equation classifier as a summarizer into the Har-
vest system.

5 Further Work

Currently we are working on the integration of a general formula
search facility into our system. The problem of searching formulae,
i.e., querying for formulae that match a given target formula, is differ-
ent from querying formulae that match given classification options.
A merely textual approach for searching formulae is obviously not
sufficient. Therefore each approach for searching formulae must fix a
notion of similarity between formulae. Different degrees of similarity
are conceivable. At a very basic level one wants to consider equiva-
lent formulae as equal. Similarly formulae should be considered equal
up to renaming of variables. However, more sophisticated similarities
between formulae might be of interest. For example, two formulae
are similar, if they can be constructed from each other by general
term rewriting. However, subtle pragmatic questions now arise that
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can only be resolved by heuristic decisions: What is the appropriate
granularity of term substitutions ? Should it be possible to search
for instances of a target formula ? Or should it rather be possible to
search for generalizations of a target formula ?

A great deal of work with respect to questions like these has been
done in the SearchFor project [3] at the INRIA Sophia-Antipolis
Research Center. We are trying to utilize the results of the SearchFor
system in our project. In principle, there are two basic approaches to
this. In the brute force approach a converter from the S-expression
format to the CAML data structure format is developed so that the
SearchFor code can be reused operatively. In the reverse engineering
approach the CAML code of the SearchFor system is investigated
and reimplemented in LISP code.

Furthermore it would be interesting to fix formal semantics for
notions of similarity between formulae. Again the knowledge about
formula similarity construction that is encapsulated in the SearchFor
system could serve as a cornerstone for this work.

Based on a facility for searching formulae it would be neat to
offer search options for well-known differential equations or differen-
tial equation patterns, like Abel’s differential equation, the Bernoulli
differential equation etc.

6 Related Work

In [9] a PROLOG-based document object model for XML documents
is proposed. Transforming XML data into the so-called field notation
results in an expert system against which rule-based queries can be
executed. The approach is elaborated for XML documents in general
and is applied to the concrete formats MathML Content Markup and
OpenMath in particular. Furthermore [9] outlines the application of
the approach to the classification of ordinary differential equations
with respect to Kamke’s list [10]. The notion of rule-based expert sys-
tem has gained remarkable consideration in the eighties for building
and exploiting knowledge bases — today’s working knowledge base
mining relies on statistical modeling methods rather than on proof
theory. However, in the case of processing mathematical knowledge
it is promising to employ a logical programming language, because
term rewriting problems that typically occur can be tackled by the
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logical programming languages’ unification mechanisms. Other ap-
proaches that employ logic programming language techniques for
mathematical knowledge bases are described in [2] and [6, 7].

A similar approach was used in the TILU [5] project by Ein-
wohner and Fateman. This project provides an alternative to al-
gorithmic integration algorithms by integral table lookup. Special
conditions which arise often in integration problems, e.g., special
functions in the integrand, can be used to optimize the search of the
formulae.

7 Conclusion

We expose the following assumptions and observations:

— The Web is a huge repository; this is particularly true for math-

ematical knowledge.

Sophisticated search capabilities for mathematical Web resources

are required by research and education.

— MathML and OpenMath can be expected to become de-facto
standards for mathematical Web resources.

— Subtle notation issues arise in handling MathML and OpenMath.

We have undertaken the following steps:

— We have chosen the classification of differential equations as a
challenging starting point of our project.

— Due to its separation of concerns, the chosen system architecture
is scalable with respect to further formats and further classifica-
tions.

— The implementation is used in a working instance of the Web
indexing framework Harvest.

It is further work to integrate a general formula search facility into
our approach.
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