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Abstract

In this paper, we present a novel approach to the congestion control
and resource allocation problem of elastic and real-time traffic in telecom-
munication networks. With the concept of utility functions, where each
source uses a utility function to evaluate the benefit from achieving a
transmission rate, we interpret the resource allocation problem as a global
optimization problem. The solution to this problem is characterized by
a new fairness criterion, utility proportional fairness. We argue that it is
an application level performance measure, i.e. the utility that should be
shared fairly among users. As a result of our analysis, we obtain conges-
tion control laws at links and sources that are globally stable and provide a
utility proportional fair resource allocation in equilibrium. We show that
a utility proportional fair resource allocation also ensures utility max-min
fairness for all users sharing a single path in the network. As a special case
of our framework, we incorporate utility max-min fairness for the entire
network. To implement our approach, neither per-flow state at the routers
nor explicit feedback beside ECN (Explicit Congestion Notification) from
the routers to the end-systems is required.

Keywords: Utility proportional fairness, resource allocation, congestion
control, optimization, real-time applications

1 Introduction

In this paper, we present a network architecture that considers an application-
layer performance measure, called wutility, in the context of bandwidth alloca-
tion schemes. In the last years, there have been several papers [1,5-10] that
interpreted congestion control of communication networks as a distributed al-
gorithm at sources and links in order to solve a global optimization problem.
Even though considerable progress has been made in this direction, the existing
work focusses on elastic traffic, such as file transfer (FTP, http) or electronic
mail (SMTP). In [2], elastic applications are characterized by their ability to
adapt the sending rates in presence of congestion and to tolerate packet delays
and losses rather gracefully. From a user perspective, common to all elastic
applications is the request to transfer data in a short time. To model these
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Figure 1: Utilities for elastic traffic and adaptive real-time traffic

characteristics, we resort to the concept of utility functions. Following [2] and
[5], traffic that leads to an increasing, strictly concave (decreasing marginal im-
provement) utility function is called elastic traffic. We call such a utility function
bandwidth utility since the utility function evaluates the benefit from achieving
a certain transmission rate. The proposed source and link algorithms are de-
signed to maximize the aggregate bandwidth utility (sum over all bandwidth
utilities) subject to capacity constraints at the links. Kelly introduced in [5]
the so called bandwidth proportional fair allocation, where bandwidth utilities
are logarithmic. The algorithms at the links are based on Lagrange multiplier
methods coming from optimization theory, so the concavity assumption seems
to be essential. As shown in [2], some applications, especially real-time ap-
plications have nonconcave bandwidth utility functions. A voice-over-1P flow,
for instance, receives no bandwidth utility, if the rate is below the minimum
encoding rate. Its bandwidth utility is at maximum, if the rate is above its
maximum encoding rate. Hence, its bandwidth utility can be approximated by
a step function. According to Shenker [2], the bandwidth utility of adaptive
real-time applications can be modeled as an S-shaped utility function (a convex
part at low rates followed by a concave part at higher rates) as shown in Figure
1. The paradigm of the work dealing with bandwidth utility functions of elastic
applications in the context of congestion control is to maximize the bandwidth
utilization of the network (bandwidth system optimum) under specific band-
width fairness aspects (bandwidth max-min, bandwidth proportional fair).

The central part of this work is to turn the focus on fairness of user-received
utility of different applications including nonelastic applications with noncon-
cave bandwidth utility functions. A user running an application does not care
about any fair bandwidth shares, as long as his application performs satisfactory.
Hence, we argue that it is an application performance measure, i.e. the utility
that should be shared fairly among users. To motivate this new paradigm, we
refer to the concept of utility max-min fairness introduced by Cao and Zegura in
[11]. Let us consider a network consisting of a single link of capacity one shared
by two users. One user transfers data according to an elastic application with
strictly increasing and concave bandwidth utility Uy (). The other user trans-
fers real-time video data with a nonconcave bandwidth utility function Us(-).
Figure 2 shows, how different bandwidth allocations affect the received utility.
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Figure 2: Utility max-min and bandwidth max-min fairness

If the bandwidth is shared equally, what is referred to as maz-min bandwidth
allocation in this example, user 1 receives a much larger utility than user 2.
Conversely, user 2 would not be satisfied since he does not receive the minimum
video encoding bandwidth. If we want to share utility equally, instead of band-
width, we would like to have a resource allocation, where the received utilities
are equal or utility maz-min fair, i.e. Uy(z1) = Uz(x2) = u*.

In [11], Cao and Zegura present a link algorithm that achieves a utility max-min
fair bandwidth allocation, where each for each link the utility functions of all
flows sharing that link is maintained. In [12], Cho and Song present a utility
max-min architecture, where each link communicates a supported utility value
to sources using that link. Then sources adapt their sending rates according to
the minimum of these utility values.

In this paper, we extend the utility max-min architecture and propose a new
fairness criterion, wutility proportional fairness, which includes the utility max-
min fair resource allocation as a special case. A utility proportional fair band-
width allocation is characterized by the solution of an associated optimization
problem. The benefit a user s gains when achieving a bandwidth utility value
Us(zs) is evaluated by a new second order utility Fs(x5) and the objective is to
maximize aggregate second order utility subject to capacity constraints. The
second order utilities are assumed to be strictly concave, whereas the bandwidth
utilities can be chosen arbitrarily. We only assume that the bandwidth utilities
are monotonic increasing in a given interval. This is a natural assumption since
any application will profit from receiving more bandwidth in a certain band-
width interval. We emphasize, that our distributed algorithm does not need
any per-flow information at the links. The feedback from links to sources does
not include overhead, such as explicit utility values as done in [12]. It merely
relies on the communication of Lagrange multipliers, called shadow prices, from
the links to the sources. This can be achieved by an Active Queue Management
(AQM) scheme, such as Random Early Marking (REM) [9] using Explicit Con-
gestion Notification (ECN) [4].

The rest of the paper is organized as follows. In the next section, we describe
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our model, the second order utility optimization problem and its dual based on
ideas of [1, 5, 8]. Given a specific bandwidth utility, we describe a constructive
method to find the second order utility function Fs(-). In Section 3, we present
a static primal algorithm at the sources and a dynamic dual algorithm at the
links solving the global optimization problem and its dual. We further present a
global stability result for the dual algorithm based on Lyapunov functions along
the lines of [13]. In Section 4, we define a new fairness criterion, utility propor-
tional fairness, and show that our algorithms achieve utility max-min fairness
in equilibrium for users sharing a single path in the network. We further incor-
porate utility max-min fairness for the entire network as a special case of our
framework. Finally, we conclude in Section 5 with remarks on open issues.

2 Analytical Model

Considerable progress has recently been made in bringing analytical models into
congestion control and resource allocation problems [1, 5, 6, 7, 8]. Key to these
works has been to explicitly model the congestion measure that is communi-
cated implicitly or explicitly back to the sources by the routers. It is assumed
that each link maintains a variable, called price, and the sources have informa-
tion about the aggregate price of links in their path. These assumptions are
implicitly present in current TCP protocols. TCP Reno uses loss as an indica-
tion of congestion, whereas Vegas uses queuing delay to measure the state of
congestion in the network. The equilibrium structure of TCP protocols can be
interpreted as the solution of a global optimization problem, where the objective
is to maximize the aggregate bandwidth utility over transmission rates. Since
TCP is designed for elastic traffic, the underlying bandwidth utility functions
are strictly concave [2].

In this section, we describe a fluid-flow model, similar to that in [1, 5, 8. We
interpret an equilibrium point as the unique solution of an associated optimiza-
tion problem. The resulting resource allocation is aimed to provide a fair share
of an application layer performance measure, i.e. the utility to users. In contrast
to [1,5-8], we do not pose any restrictions on the bandwidth utility functions,
except for monotonicity.

2.1 Model

We model a packet switched network by a set of nodes (router) connected by a
set L of unidirectional links (output ports) with finite capacities ¢ = (¢;,1 € L).
The set of links are shared by a set S of sources indexed by s. A source s
represents an end-to-end connection and its route involves a subset L(s) C L of
links. Equivalently, each link is used by a subset S(I) C S of sources. The sets
L(s) or S(I) define a routing matrix

Ry, = 1 ifle L(s),
0 else.

A transmission rate xs in packets per second is associated with each source s.
We assume, that the rates x4, s € S lie in the interval X; = [0, 27*%*], where
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27 is the maximum sending rate of source s. This upper bound may differ

substantially for different applications. A subset of sources S, C S transferring
real-time data, for instance, may have a maximum encoding rate x7'**,s € S,
which can be much lower than the upper bound z7"** s € S\ S, of elastic ap-
plications, which are greedy for any available bandwidth in the network. Thus,
sending rates of elastic applications are constrained by bottleneck links in the
network.

Definition 2.1 A rate vector x = (x5,5 € S) is said to be feasible if it satisfies
the conditions:
rs € Xs Vs €S and Rx < c.

With each link [, a scalar positive congestion-measure p;, called price, is asso-
ciated. In current TCP implementations, the congestion measure or price is
based upon information about either loss (Drop Tail), queue length (RED), or
marks (REM), which requires an ECN bit [7]. Let

Yy = Z Ry

ses

be the aggregate transmission rate of link [, i.e. the sum over all rates using

that link, and let
qs = Z Rlspl
leL

be the end-to-end congestion measure of source s. Note that taking the sum of
congestion measures of a used path is essential to maintain the interpretation
of p; as dual variables [1]. Source s can observe its own rate z; and the end-to-
end congestion measure ¢, of its path. Link [ can observe its local congestion
measure p; and the aggregate transmission rate y;. When the transmission rate
of user s is x4, user s receives a benefit measured by the bandwidth utility
Us(xs), which is a scalar function and has the following form:

Us D Xy — Y

xs — Ug(xy),

where Yy = [U(0), Us(25°9%)] = [ug™™, ug***], Us(0) = uf™™, Us(a7) = uf*®®.

S S S

Assumption 2.2 The bandwidth utility functions Ug(-) are continuous, differ-
entiable, and strictly increasing, i.e. Ul(xs) >0 for all x5 € X5, s € S.

This assumption ensures the existence of the inverse function U;!(-) over the
range [u™" 4™]. Tt should be noted, that we do not assume the bandwidth
utilities to be strictly concave as done in [1, 7, 8, 9]. Thus the shape of feasi-
ble bandwidth utilities can be arbitrarily chosen, except for the nonnegativity
assumption on the first derivative. Before we present a constructive method to
generate second order utility functions, we briefly restate the overall paradigm.
An optimal operation point or equilibrium should result in almost equal utility
values for different applications. The exact definition of the proposed resource
allocation, i.e. wtility proportional fair resource allocation, will be given be-
low. If we want to follow this philosophy, we must translate a given congestion
level of a path, represented by ¢, into an appropriate utility value the network
can offer to source s. We model this utility value, called available utility, as
the transformation of the congestion measure g5 by a function fs(gs), called
transformation function. This function is assumed to be strictly decreasing.
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Assumption 2.3 The transformation function fs(-) describing the available
utility of a path used by sender s is assumed to be a continuous, differentiable,
and strictly decreasing function of the aggregate congestion measure qs, i.e.
fl(gs) <0 for allgs >0 and s € S.

This assumption is reasonable, since the more congested a path is, the smaller
will be the available utility of an application. The main idea is, that each user
s should send at data rates xs in order to match its own bandwidth utility with
the available utility of its path. This leads to the following equation:

max

Us(xs) = [fs(QS)]ZZpin75 S S, (1)
w, if a<w<b
where [w]? := min{maz{w,a},b} =< a, ifw<a
b, if w >0b.

Note that the utility a source can receive is bounded by the minimum and
maximum utility values """ and u}'**. Hence, the source rates x are adjusted

according to the available utility fs(gs) of their used path as follows:

a

2o = U ([fo(@)en ) 5 €S, (2)

A source s € S reacts to the congestion measure g5 in the following manner: if
the congestion measure g, is below a threshold g5 < ¢7" := f~!(u™*), then
the source transmits data at maximum rate 2™ := U} (u™%); if ¢4 is above
a threshold g5 > ¢ := f~1(u™™"), the source sends at minimum rate 27" :=

U7 (u™m); if g4 is in between these two thresholds ¢s € Qs := [¢7", ¢™%], the

S S

sending rate is adapted according to x5 = U7 (fs(gs))-

Lemma 2.4 The function G,(qs) = U;l([fs(qs)]zgmm) is positive, differen-

tiable, and strictly monotone decreasing, i.e. G;(qs) < 0 on the range qs € Qs,
and its inverse G 1(-) is well defined on X.

Proof: Since Us(+) is defined on X, U; !(+) is always nonnegative. Since f(:)
is differentiable over Qg, and U, () is differentiable over Y;, the composition
Gs(qs) = U;1(fs(qs)) is differentiable over Q5. We compute the derivative
using the chain rule: G,(qs) = U7V (fs(gs))f.(gs). The derivative of the inverse
U (fs(gs)) can be computed as

-1/ o 1
v e = e

With the inequality f;() < 0, we get G;(qs) < 0, gs € Q. Hence, G4(gs)
is strictly monotone decreasing in Qs, so its inverse G5 !(zs) exists on Xj.
[l

2.2 Equilibrium Structure and Second Order Utility Op-
timization

In this section we study the above model at equilibrium, i.e. we assume, that
rates and prices are at fixed equilibrium values z*, y*, p*, ¢*. From the above
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model, we immediately have the relationships:
q* — Rp*.
In equilibrium, the sending rates x5 € X, s € S satisfy:
oy = U7 ([fs(@)]ymin ) = Gs(a2)- (3)

Since ¢s represents the congestion in the path L(s), the sending rate will be
decreasing at higher g, and increasing at lower gs. Now we consider the inverse
G;1(zs) of the above function on the interval X, and construct the second
order utility Fs(zs) as the integral of G;!(x;s). Hence Fs(-) has the following
form and property:

Fe) = [ 6 @),

/

Fy(zs) = Gs_1($3)~

Lemma 2.5 The second order utility Fy(-) is a positive, continuous, strictly
increasing, and strictly concave function of x5 € Xs.
Proof: This follows directly from Lemma 2.4 and the relation

F.(z,) =GV (z,) = ﬁ <0. O

The construction of Fs(-) leads to the following property:

Lemma 2.6 The equilibrium rate (3) is the unique solution of the optimization
problem:
max Fy(zs) — qsxs. (5)

Ts2>

Proof: The first order necessary optimality condition to problem (5) is:

Fi(ws) = a4
Gy l(xS) = s
& a = UTM(la) i)
Due to the strict concavity of F(-) on X, the second order sufficient condition
is also satisfied completing the proof. O

The above optimization problem can be interpreted as follows. Fy(xg) is the
second order utility a source receives, when sending at rate x,, and gsxs is the
price per unit flow the network would charge. The solution to (5) is the maxi-
mization of individual utility profit at fixed cost ;.

Now we turn to the overall system utility optimization problem. The aggregate
prices ¢s ensure that individual optimality does not collide with social optimal-
ity. An appropriate choice of prices p;,l € L must guarantee that the solutions
of (5) also solve the system utility optimization problem:

max » Fg(xy) (6)

subject to Rz <c. (7)
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This problem is a convex program, similar to the convex programs in [1, 8, 10],
for which a unique optimal rate vector exist. For solving this problem directly
global knowledge about actions of all sources is required, since the rates are
coupled through the shared links. This problem can be solved by considering
its dual [10].

3 Dual Problem and Global Stability

In accordance with the approach in [1], we introduce the Lagrangian and con-
sider prices p;,l € L as Lagrange multipliers for (6),(7). Let

L(:E7p) = ZFs(xs) - Zpl(yl - Cl) = ZFs(xs) —(QsTs + Zplcl

seS leL sesS leL

be the Lagrangian of (6) and (7). The dual problem can be formulated as:

i Vs(gs ) 8
min (a) + D _ma (8)
ses leL
where
Vs(xs) = m%)éFs(xs) — (sTs, Ts € Xs- (9)

Due to the strict concavity of the objective and the linear constraints, at optimal
prices p*, the corresponding optimal 2* solving (9) is exactly the unique solution
of the primal problem (6),(7). Note that (5) has the same structure as (9), so
we only need to assure that the prices g5 given in (5) correspond to Lagrange
multipliers ¢ given in (9).

As shown in [10], a straightforward method to guarantee that equilibrium prices
are Lagrange multipliers is the gradient projection method applied to the dual
problem (8):

"D = ) ) — et i) =0, Y

d {%(pz(t))(yz(t) —a)  ifp() >0
where [z] = max{0,z} and 7;(p;) > 0 is a nondecreasing continuous function.
A discrete time version of (10) is:

o) ) (i) — ) if pi(t) >0
=)= {pxt) FupOnt) —alt it pt) =0

This algorithm can be implemented in a distributed environment. The informa-
tion needed at the links is the link bandwidth ¢; and the aggregate transmission
rate y;(t), both of which are available. In equilibrium, the prices satisfy the
complementary slackness condition, i.e. p;(t) are zero for non-saturated links
and non-zero for bottleneck links. In this section, we state the global conver-
gence of the dual algorithm (8) combined with the static source law (5) using
Lyapunov techniques along the lines of [13]. We only assume that the routing
matrix R is nonsingular. This guarantees that for any given ¢; € S there exists
a unique vector (p;,l € L) such that gs = > ,c; pr-
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Theorem 3.1 Assume the routing matriz R is nonsingular. Then the dual
algorithm (10) starting from any initial state converges asymptotically to the
unique solution of (6) and (7).

The proof of this theorem can be found in Appendix A. For further analysis of
the speed of convergence, we refer to [1].

4 Utility Proportional Fairness

Kelly et al. [8] introduced the concept of proportional fairness. They consider
elastic flows with corresponding strictly concave logarithmic bandwidth utility
functions. A proportional fair rate vector (z,,s € S) is defined such that for
any other feasible rate vector (ys,s € S) the aggregate of proportional change

is nonpositive:
-
Z Ys — Ts <0.
seS Ts

This definition is motivated by the assumption that all users have the same
logarithmic bandwidth utility function Ug(xs) = log(zs). By this assumption,
a first order necessary and sufficient optimality condition for the system band-
width optimization problem

iy 2 Uele)
T x>0

subject to Rx <0

is

8[Js s g
> S —w) = S P <o

sES sES s

This condition is known as the variational inequality and it corresponds to the
definition of proportional fairness.

Before we come to our new fairness definition, we restate the concept of utility
max-min fairness. It is simply the translation of the well known bandwidth
max-min fairness applied to utility values.

Definition 4.1 A set of rates (xs,s € S) is said to be utility max-min fair, if
it is feasible, and for any other feasible set of rates (ys,s € S), the following
condition hold: if Us(ys) > Us(xs) for some s € S, then there exists k € S such
that Uy (yx) < Uk(zy) and Ug(zy) < Us(xs).

Suppose we have a utility max-min fair rate allocation. Then, a user cannot
increase its utility, without decreasing the utility of another user, which receives
already a smaller utility. We further apply the above definition to a utility
allocation of a single path.

Definition 4.2 Consider a single path in the network denoted by a set of ad-
jacent links (I € Ly). Assume a set of users Sy, C S share this path, i.e.
L(s) = Ly, for s € Sg,. Then, the set of rates x,,s € S is said to be path utility
max-min fair if the rate allocation on such a path is utility maz-min fair.

Now we come to our proposed new fairness criterion, based on the second order
utility optimization framework.
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Definition 4.3 Assume, all second order utilities Fs(-) are of the form (4). A
rate vector (x4, s € S) is called utility proportional fair if for any other feasible
rate vector (ys,s € S) the following optimality condition is satisfied:

Zg—i(ms)(ys_xs) ZGs_l(‘/Bs)(yS_l‘s)

ses seS

= N SN Usz) (s — ) (11)
seS
0

IN

The above definition ensures, that any proportional utility fair rate vector will
solve the utility optimization problem (6), (7). If we further assume, all users
have the same transformation function f(-) = fs(-),s € S, then we have the
following properties of a utility proportional fair rate allocation.

Theorem 4.1 Suppose all users have a common transformation function f(-)
and all second order utility functions are defined by (4). Let the rate vector
(x, € Xs, s € S) be proportional utility fair, i.e. the unique solution of (6).
Then the following properties hold:

(i) The rate vector (xy € X5, s € S) is path utility maz-min fair.

(i) If qs, € Qs,, s, € Qs, and qs, < qs, for sources sy, sa, then
U91 (xsl) Z US2(3332)'

(iii) If source s1 uses a subset of links that sy uses, i.e. L(s1) C L(s3), and
U51 (xsl) < U‘Z}az’ then Usl(xsl) Z U52 (:1:5'2)'

Proof: To (i): if sources s € Sy, share the same path, they receive the same
aggregate congestion feedback in equilibrium ¢, = ¢4, s € Sp,. Two cases are
of interest.
(a) Suppose for all sources the following inequality holds: f(g,) < u***, s €
Sr,- Hence, all sources adapt their sending rates according to the available
utility f(q,) = Us(x,). This corresponds to the trivial case of path utility max-
min fairness, since all sources receive equal utility.
(b) Suppose a set s € QQ C Sg, receives utility Us(xy) = ug*® < f(q,), s €Q
in equilibrium. We prove the theorem by contradiction. Assume the utility
proportional fair rate vector (x4, s € S) is not path utility max-min fair with
respect to the path L,. By definition, there exists a feasible rate vector ys,s € S
with

Ujly;) > Uj(x;) for j € Sp,\Q (12)

such that for all k € Sz, \ (Q U {j}) with Up(xx) < Uj(x;) the inequality

Uk (yx) > Uk () (13)

holds. In other words, we can increase the utility of a single source rate Uj(x;)
to U, (y;) by increasing the rate x; to y; without decreasing utilities Uy (yx ), k €
Sr, \ (QU {j}) which are already smaller. We represent the rate increase of
source j by y; = x; + &;, where £; > 0 will be chosen later on. Here again, we
have to consider two cases:
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(b1) Suppose, there exists a sufficiently small £; > 0 that we do not have to
decrease any source rate of the set

{yr, k€ S, \ (QU{j})} to maintain feasibility. Hence, the rate vector

Y= (21,%2,...,Tj1,Y5, Tj11, ..., T|g|) is feasible and with (12) the difference of
aggregate second order utility > o Fi(ys)—>_,cq Fs(xs) = Fj(y;)—Fj(x;) >0
is positive. Therefore x is not optimal to problem (6) contradicting the utility
proportional fairness property of x.

(b2) Suppose, we have to decrease a set of utilities (Ux(yx), k € K), which are
higher then Uj(xj), ie. Ug(yr) < Ug(zr) with Ug(yr) > Uj(xj),k: c K C
Sr, \ (QU{j}). This correspond to decreasing the set of rates yp = 2 — &,
ke K with ), i & < €. Due to the strict concavity of the objective functions
of (6), we get the following inequalities:

Fi(a;) = 71 U;(x5)) > 7 (Uk(yr)) = Frlyr), k € K € Sp, \ (QU{j}).

Due to the continuity of F.(-),s € S, we can choose &; with y; = z; + &; such
that

Fi(z; +v;&) > Fi(yr) forall ke K C Sp, \ (QU{j}) and v; € (0,1).

Comparing the aggregate second order utilities of the rate vectors x and y using
the mean value theorem, we get:

S Fu(z) =Y Fulys) = Y (Frlar) — Felyr)) + Fj(x;) — Fj(y;)

s€S s€s keK
= > (Felyr + &) — Frlur) + Fj(a;) — Fy(z; + &)
keK
= Z(Fk(yk)+Fl;(yk+Uk€k)§k*Fk(yk))
kK

+Fj () — (Fj(x;) + Fj (2 + v6)€5
= > Fulye +vnée)& — Fj (2 +v,6)¢

ke
< kZK&c I&%(Fk(yk + kb)) — F (x5 +v;5);
S

< §j(gcrlea[>(<(F;;(yk +Urgr)) — Fj (z; + v;€5))
< 0, v;€ (0,1), (O S (0,1),k e K.

The last inequality shows that x is not the optimal solution to (6). Thus, x
cannot be utility proportional fair. This contradicts the assumption and proves
that x is path utility max-min fair.

To (ii):Assume g5, € Qs,, ¢s, € Qs, and g5, < ¢s, for sources s1,s2. Ap-

plying (1) to given gs,,qs,, we have f(gs,) = Us,(2,,) > f(gs,) = Us,(2s,)
because of the monotonicity of f(-).

To (iii): From L(s1) C L(s2) it follows, that gs, < gs,. Since the available utility
f(-) is monotone decreasing in gs and the bandwidth utility Uy, (x,, ) < u**
of user s; is not bounded by its maximum value, it follows, that f(gs,) =

USl (Isl) 2 [f(qsz)}uzvzm = USz (xSQ)' U
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It is a well-known property of the concept of proportional fairness that flows
traversing several links on a route receive a lower share of available resources
than flows traversing a part of this route provided all utilities are equal. The
rationale behind this is that these flows use more resources, hence short con-
nections should be favored to increase system utility. Transferring this idea to
utility proportional fairness, we get a similar result. Flows traversing several
links receive less utility compared to shorter flows, provided a common trans-
formation function is used. If this feature is undesirable, since the path a flow
takes is chosen by the routing protocol and beyond the reach of the single user,
the second order utilities can be modified to compensate this effect. We show
that an appropriate choice of the transformation functions fq(-) will assure a
utility max-min bandwidth allocation in equilibrium.

Theorem 4.2 Suppose all users have the same parameter dependent trans-

formation function fs(qs,k) = qs_%, s € 8, k > 0. The second order util-
ities Fs(xs,k), s € S are defined by (4). Let the sequence of rate wvectors
x(k) = (x,(k) € Xy, s €85) be utility proportional fair. Then x(k) approaches
the utility max-min fair rate allocation as k — .

Proof: Since all elements of the sequence z(x) solve (6) subject to (7), the
sequence is bounded. Hence, we find a subsequence z(k,),p € N*, such that
lim,, 0o = x. We show, that this limit point z is utility max-min fair. The
uniqueness of the utility max-min fair rate vector x will ensure that every limit
point of (k) is equal . This proves the convergence of x(k) to x.

-

Since all users s € S use the same transformation function fs(gs) = qs *, s € S,
the second order utility and its derivative applied to the rate vector z(x) have
the following form:

F(za(r) = / U (s (1))~ ()

OF;
Oz (k)

We assume that the limit point z = (z, € X,, s € S) is not utility max-min
fair. Then we can increase the bandwidth utility of a user j while decreasing
the utilities of other users k € K C S\ {j} which are larger than U;(z;). More
formal, it exists a rate vector y = (y, € X5, s € S) and an index j € S
with U;(y;) > Uj(z;), j € S and Up(yx) < Uk(xy) with Ug(yr) > Uj(x;) for
asubset k € K C S\ {j}. We choose kg so large that for all elements of the
subsequence z(k,) with £, > kg the inequalities U;(y;) > Uj;(z;(kp), j € S, and
Uk(yr) < Uk(xk(kp)) with Ug(yk) > Uj(xj(kp)) for a subset k € K C S\ {j}
hold. With the inequality U,(z;(kp)) < Uk(ak(kp)), k € K, we can choose
K1 > Kq large enough such that

Uj(xj(rp))~"" > C - Uk (rp)) ™", (14)

for all k € K, Kk, > k1, and C > 0 an arbitrary constant. Hence, there exists a
k1 large enough that the following inequality holds:

Uj(zj(kp)) " > Z (xg(kp) yk)maxUk(ack(/ip)) e kp > K. (15)
~—————Fk

keK <0
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We evaluate the variational inequality (11) given in the definition of utility
proportion fairness for the candidate rate vector (y, € X5, s € ) and £, > k;.

OF
ses axs(np)

(s (Kp)) (ys — z5(Kp)) = Z Us(@s(kp)) ™" (ys — s(kp))

ses
= Uy (5p) " (5 — (k) + > Ui (rp)) " (g — @ (rp))

keK

= Uj(a;(rp) " (yj — (k) = > Uk(zn(rp)) " (2k(55p) — yr)
keK

> Uyl ()™ (97 — () — max Ui (e ()) ™ D () — i)

keK
> 0, using (15).

Hence, the variational inequality is not valid contradicting the utility propor-
tional fairness property of x(x,). O

5 Conclusion

We have obtained decentralized flow control laws at links and sources, which
are globally stable and provide a utility proportional fair resource allocation in
equilibrium. This new fairness criterion ensures that bandwidth utility values
of users (applications), rather than rates, are proportional fair in equilibrium.
We further showed that a utility proportional fair resource allocation also en-
sures utility max-min fairness for all users sharing a single path in the network.
As a special case of our model, we incorporate utility max-min fairness for all
users sharing the network. To the best of our knowledge, this is the first paper
dealing with resource allocation problems in the context of global optimization,
that includes non-concave bandwidth utility functions. We believe that this
framework has a great potential in providing real-time services for a growing
number of multimedia applications in future networks.

An open issue and challenge is to design bandwidth utility functions that ac-
curately map the bandwidth allocated for any application into user-perceived
satisfaction. Furthermore, pricing issues must be considered when designing
such a network architecture. For example, a selfish user can choose a too slowly
increasing bandwidth utility function for his application, and will get a higher
unfair bandwidth share from the network.

Appendix A

Proof of Theorem 3.1:

Let * be the unique set of optimal rates solving (6). With the equation
¢ = G;Y(at) = f~Y(Us(x?)), we also have the uniqueness of ¢*. Further
the nonsingularity assumption of R ensures that the vector p* is also unique.
Let x = (25,5 € S) be the rate vector with x = G(q), where ¢ = (¢, s € S) and
G = (Gs,s € S) are in vector form. If we apply the Karush-Kuhn-Tucker opti-
mality conditions to problem (6), we get the following complementary slackness
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condition at the links [ € L:

S b (i — )

leL

Il
o

p; > 0.
Hence, we have the following condition at each link:
(yi =) or (yi <a and p; =0).
Next we consider the following Lyapunov function
as(t)
Vo) = Y- im®+ Y [ @ - Guw)du.
leL ses

Differentiating with respect to time ¢ yields:

% = Y (a—y)p+ Y (@ = Galgs))ds

leL seS

= (c—y)p+ @ —2)7q

= (c=y) TP+ @ —2)" (D Pi)ses
leL

= (c—y)'p+ @@ —x)"R"p

= (c—y)p+ W -y

= (c—y'p

= ((c=y»)'T)(y—o)f

< 0,

z, if p>0
2T, if p=0.
The dynamics of V() becomes zero, i.e. V = 0 only when each link satisfies the

conditions (y; = ¢;) or (y; < ¢; and p; = 0). Thus, the complementary slackness

condition is satisfied and the system converges to the unique optimal solution
of (6), (7). O

where I'(p) = diag(v(pi)) is a diagonal matrix and 2z, := {
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