Takustr. 7
14195 Berlin
Germany

Zuse Institute Berlin

PEDRO MARISTANY DE LAS CASAS (9, RALF BORNDORFER (),
LUITGARD KRAUS), AND ANTONIO SEDENO-NODA

An FPTAS for Dynamic Multiobjective Shortest
Path Problems

Z1B Report 20-31 (December 2020)

https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0001-7223-9174
https://orcid.org/0000-0002-5735-9415
https://orcid.org/0000-0003-0681-4585

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +4930-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

An FPTAS for Dynamic Multiobjective Shortest Path
Problems

Pedro Maristany de las Casas* Ralf Borndorfer* Luitgard Kraus*
Antonio Sedefio-Noda'

Abstract

We propose in this paper the Dynamic Multiobjective Shortest Problem. It features mul-
tidimensional states that can depend on several variables and not only on time; this setting
is motivated by flight planning and electric vehicle routing applications. We give an exact
algorithm for the FIFO case and derive from it an FPTAS, which is computationally efficient.
It also features the best known complexity in the static case.

1 Introduction

We consider in this paper the solution of Dynamic Multiobjective Shortest Path (Dyn-MOSP)
problems. Our setting is motivated by Flight Planning Problems (FPP), in which efficient
aircraft routes have to be found in an airway network, considering multiple and dynamic opti-
mization criteria. Namely, the cost of an arc does not only depend on a single variable modeling
time, but also on the aircraft’s weight. Another application with similar dynamics is the rout-
ing of electric vehicles through mountainous terrains in which shorter routes consume more
battery.

MOSP problems, i.e., already the static case, are known to be intractable because of the
possibly exponential cardinality of the solution set of efficient paths. However, one can try to
polynomially bound the size of the solution set while minimizing the quality loss, an approach
that motivated the development of Fully Polynomial Time Approximation Schemes (FPTAS)
for MOSP problems in recent years.

We will prove that recently developed algorithms for MOSP problems can be generalized
to also solve Dyn-MOSP instances, given that the arc cost functions fulfill the FIFO property,
i.e., a worse arrival at an arc’s source node will never turn out to be beneficial. For ease of
exposition, we first consisder the static case and design a new FPTAS for MOSP problems. This
FPTAS features the best known time complexity bounds. We then show that our results carry
over to Dyn-MOSPs if a certain (realistic) assumption on the arc cost functions is made. As
usual under the FIFO assumption, the time complexity is the same. We also provide extensive
computational evidence of the efficiency of our approach. While existing FPTAS for MOSP
problems often do not perform well in practice, it is remarkable that the presented FPTAS
avoids the computation of a considerable amount of paths for FPP instances.

*Zuse Institute Berlin, Takustrafe 7, 14195, Berlin, Germany.
fDepartamento de Mateméticas, Estadistica e Investigaciéon Operativa, Universidad de La Laguna, 38271 Santa
Cruz de Tenerife, Espana.

1.1 Literature Review

Multiobjective optimization problems and, in particular, Multiobjective Shortest Path Prob-
lems, have been extensively investigated in the literature. Introductions to Multiobjective Com-
binatorial Optimization problems are provided by, e.g., Emmrich and Deutz [13|, Ehrgott [12],
or Ehrgott and Gandibleux [II]. The theoretical foundation and the algorithmic development of
MOSP problems are reviewed in Ulungu and Teghem [25], Current and Marsh [§], Skriver [22],
Tarapata [23], Climaco, or Pascoal [7].

In the 70s, Vincke [26] considered the MOSP for the first time, using two objective functions.
This Biobjective Shortest Path Problem (BOSP) was also considered by Hansen [I5], who
introduced the first label-setting algorithm for BOSP. Serafini [2I] showed that the MOSP
problem is N P-complete and Martins [I7] generalized Hansen’s algorithm for the multiobjective
case. Martin’s algorithm has served as state of the art MOSP algorithm since it was discovered.
Recently, Sedefio and Colebrook [20] and Maristany et. al [9] introduced the Biobjective and
Multiobjective Dijsktra algorithms (B/M DA): new label setting algorithms for MOSP problems
that were proved to have improved theoretical running time bounds as well as to be more
efficient in computational experiments.

Papadimitriou and Yannakakis [I8] set a milestone in the field of approximation algorithms
for multiobjective optimization problems. They proved that a for a d-dimensional optimization
problem, a (1 4 ¢) pareto curve of size O ((%)dil) exists. Here, B is the number of bits
required to represent the values that the objective functions can take and is assumed to be
polynomially bounded. They also constructed the first general FPTAS for MOSP. Tsaggouris
and Zaroliagis [24] presented a new FPTAS for MOSP inspired by the classical Bellman Ford
algorithm for Shortest Path problems. Their main idea is to subdivide the space of possible
path costs into polynomially (in the size of the input and 1/e) many cells and admit just one
path per cell. The right choice of the subdivision guarantees that if a path is rejected because
its cell is occupied, the quality loss remains bounded, hence obtaining a (1 + €)-cover of the
exact set of efficient solutions. This idea was picked up by Breugem et al. [4] who managed
to use Martins’ algorithm paired with the subdivision of the outcome space introduced in [24].
The result was a new FPTAS for MOSP that is worse regarding the theoretical running time
but performs better computationally. Based on this work, Bokler and Chimani [5] recently
published an extensive comparison of different label ordering and selecting strategies.

Literature considering MOSP instances with dynamic, also called time-dependent, cost
functions is scarce. Kostreva and Lancaster [I6] presented an algorithm for non-monotone
increasing arc cost functions that does not reduce to Dynamic Programming. Disser et al
[I0] mention the necessity to tackle this kind of problems on train networks and use Martins’
algorithm to solve them without going into details.

1.2 Outline

In Section [2} we formulate the Dyn-MOSP problem and in Section [3} we explain how the MD
algorithm can be used to solve Dyn-MOSP instances if the arc cost functions fulfill the FIFO
property. The analysis of the algorithm’s asymptotic running time is done using a black-box
dominance check whose complexity varies depending on the number of objectives and the used
definition of dominance. We use this abstract representation in Section E| in which we explain
how to divide the outcome space of MOSP instances into polynomially many buckets, each of
them allowing the storage of at most one path. The correctness of the resulting FPTAS is first
proven for the case of dynamic arc costs. Then, we derive a condition on dynamic arc cost
functions that ensures that the new FPTAS also works for Dyn-MOSP instances. Finally, in
Section [5] we test our algorithms against a state of the art FPTAS for MOSP.

2 Multiobjective Shortest Path Problems

The d-dimensional Dyn-MOSP problem involves a directed graph D = (V, A) with n := |V]|
nodes and m := |A| arcs, a start node s € V, an initial state 79 € Ré, d € N, and d arc cost
functions

CiiAXR2—>RZ

(1)

(av Ti) = Ci (a7 Ti)7

fori =1,...,d. The second argument of ¢; models the dynamics of the problem and represents
a stat(ﬂ at the tail node of a. Note that each cost function c¢; depends only on the state 7,
i.e., we consider d independent dynamic cost functions. For ease of exposition, we denote by
c:= [ci}le the multidimensional cost function consisting of all d individual costs. This setting
applies to applications that involve an independent, but multidimensional "state flow". We
will discuss an application in flight planning in Section [5.1]

In the static case, we can drop the states to simplify notation. The arc cost function ¢ can
be extended to 2 to be well defined on paths in D. Given two nodes u, v € V, a (u, v)-path
p is a sequence (a1,...,ax), k € N, of arcs such that u is the source node of a1 and v is the
target node of ax. The costs of a (u,v)-path p with initial state 7 are recursively given by

cr(a1) :==c(a1, 1) (2)
c(p,7) = clar,c((a,...,an-1),7)) + c((a,...,ax-1),7). (3)

The extension of p along a (v, w)-path ¢ is po ¢ with cost c(pogq,7) := ¢(p,7) + ¢(q, c(p, 7)). In
the static case, the costs of p are ¢(p) := S5 ¢(a;).

In Dyn-MOSP problems, we seek to find efficient (s,v)-paths with initial state 7o for every
v € V. The efficiency of paths in a multiobjective scenario is defined using a binary relation <
on the coimage R of ¢. Given two (s, v)-paths p and ¢ and a common initial state 7o, p is said
to <-dominate ¢ if and only if ¢(p, 70) < ¢(Q, 7). In this case, we write p < ¢. An (s, v)-path
is called <-efficient if it is not <-dominated by any other (s,v)-path p’ with initial state o.
We can now give a formal definition of the Dynamic Multiobjective Shortest Path Problem:

Definition 1 (Dynamic Multiobjective Shortest Path Problem.). Given a directed graph D =
(V, A), a start node s € V, an initial state 70 € R%, d € N, an arc cost function ¢ as defined
in , and a binary relation < on the coimage of ¢, the Dynamic Multiobjective Shortest Path
Problem is to find the <-efficient (s, v)-paths in D for all v € V.

We want to compute at most one efficient path p for every non-dominated point y € R‘é
such that c¢(p) = y. We achieve this using the following partial order:

Definition 2 (Dominance). Given two cost vectors z, y € Rdz, z is said to dominate y (x <p y),
if and only if z; <y, for all i € {1,...d}.

Note that the widely used Pareto order would enforce at least one of the inequalities in
Definition [2] to be strict. In this case, equal cost vectors do not dominate each other and the
MOSP problem is to find the maximum complete set of efficient paths of Z. Using <p, as
we will do for the remainder of the paper, we instead look for the minimum complete set of
efficient paths of Z.

It possibly encodes e.g., time, weight, state of charge...

3 The Multiobjective Dijkstra Algorithm for Dynamic
MOSP Problems

In this section we discuss how the Multiobjective Dijsktra (MD) algorithm (Algorithm
presented in [20] and [9] can be adapted to work with dynamic cost. We will see that for the
dynamics described in the latter section, the solvability of MOSP and Dyn-MOSP instances
mirrors the well known relationship from the single objective case: if arc cost functions fulfill
the FIFO property, label setting algorithms for the static case also solve the dynamic case.

3.1 Description of the Algorithm

Algorithm 1: Multiobjective Dijkstra Algorithm

S A W N -

o

10
11
12
13
14

Input : Directed Graph D = (V, A), Arc Costs ¢c: A x RZ = R%, Node s € V,
Initial state 7o € RY.

Input FPTAS: Vector of approximation ratios € € Riﬁl.

/* Exact: A minimum complete set. FPTAS: A (l+¢)-cover. (See Section

*/

Output : Labels L :=J,cy Lo-

Prio. Queue Q <« 0;

for v € V do Permanent labels L, < (;

for a € A do lastProcessedLabel[a] < 0 ;

Label l;pit < (8,70, NULL, pos (79));

Q + Q.insert(lingt);

Ls — Ls U {llﬂlf}ﬂ

while # () do

Label £ < Q.extract lexmin();

Node v < £} .node;

L, <« L,U{f};

e |nea:tC’andidateLabel|(v, last ProcessedLabel, Uy g5 (v) Lu, €);

if £7¢% 2 NULL then Q.insert(£I°V) ;

for w € 67 (v) do Q eé;,w,Q,Lw,s) ;

return L, for all v € V;

Paths, Labels, and Datastructures. In Algorithm [I} paths are considered in lexico-
graphically increasing order. A point x € R‘é is said to be lexicographically smaller than a
point y € RS (z <jex) if and only if z; < y; in the first dimension i € {1,...,d} in which
x; #yi. If c(_P, T0) <iex ¢(Q, 7o) for paths p, p’, we say that p is lexicographically smaller than
p’. Let P be an (s, v)-path whose last arc is (u,v) € A. We will store paths using labels, i.e., an
implicit representation. The label corresponding to p is a tuple £ = (v, c¢ := ¢(p, 70), lu), Where
£, is the label representing the (s, u)-subpath of p. For every node v € V the set L, contains
the labels corresponding to the efficient (s, v)-paths found during the algorithm. Additionally,
a <|eq -sorted priority queue () stores at most one tentative label per node. Tentative labels
correspond to paths that have been explored during the algorithm but are not yet known to

be efficient. For a node v, the label stored in @} corresponds to the lexicographically minimal
(s,v)-path that has not yet been made permanent and is not dominated by any label in L, (we
write L, Ap £y).

Iterations. At the beginning, a label £ = (s,70, NULL) is inserted into Q. The main
loop of the algorithm ends once) becomes empty. Iterations start with the extraction of the
lexicographically minimal label £}, from @, which is added to the end of L, since it is guaranteed
to correspond to an efficient path. Since this is the only way labels are added to the lists L,
these sets are also sorted in lexicographically increasing order. After making ¢; permanent,
each iteration pursues two main tasks.

Algorithm 2: Algorithm 3: BLACK BOX_ DOM(L,, ;)
BLACK BOX_DOM(L,,{,) for MD for MD algorithm, d > 3.

algorithm, d = 2. 1 for f e L, do

1 return L,[|L,| — 1] <p 4, 2 ‘ if ¢ <p 1, then return TRUE;

3 return FALSE

The first is to find the label

1 = arglexmin o, ., {£ = (v, ce, + o((w,v), c2,), £u) | Lu £ £}, (4)
u€d ™ (v)
if it exists. [,°" is the lexicographically minimal and non-dominated label for v that can be

built out of the permanent labels in L., u € §~ (v) (see nextCandidateLabell) and the costs of
the connecting arc (u,v). It is not necessary to traverse the entirety of each list L, for every
attempt made to generate a new label for v. Instead, labels in any list L, whose extension
along (u,v) were already dominated at L, the last time a new label for v was built, do not
have to be considered. lastProcessedLabel(u,v) stores the last checked position in L, and
defines where a search for v’s next candidate label has to start. If a new label for v is found,
it is added to Q. The second task in each iteration is the propagation of £; along the outgoing
arcs of v. The algorithm builds the labels £, = (w, cgx + c((v,w), £;), £3) for every w € 67 (v)
and adds them to @ only if L, ﬁ D Y. If £y, is lexicographically smaller than w’s current label
in @, the latter is replaced by /.. In case there is no label for w in @, ¢, is just inserted into

Q (see propagatd).

3.2 Correctness

As noted in the beginning of the section, we require the arc cost function c¢ to fulfill the FIFO
property in every dimension: for an i € {1,...,d}, an arc a € A, and two states 7, 7’ such
that 7; < 7/, we have 7; + ¢;(a,7;) < 7] + ci(a, ;). The correctness of Algorithm [relies on
the Bellman-Principle [I] of optimality. In the context of MOSP problems, it states that an
efficient (s, v)-path contains only efficient subpaths. Given that the arc cost functions are FIFO,
Bellman’s principle holds for efficient solutions of the Dyn-MOSP problem. In particular, the
following statement holds.

Lemma 1. Given a Dyn-MOSP instance with FIFO arc cost, consider two (s,v)-paths p, p’
with equal initial state o such that c(p,70) <p c(p’,70). Then, for the extensions of p and p’
along a (v,w)-path q in D there holds c(p o q,70) =p c(p’ o q,70).

Procedure nextCandidateLabel
Blue lines only for the MD-FPTAS described in Section [4]

Input : Node v, Indices last ProcessedLabel, Permanent labels L.
Input FPTAS: Vector of approximation ratios € € R‘é‘l.
Output : New lex. min., non-dominated label for v, if one exists.

1 Label £;°% < (v, (00, ...,00), NULL);
2 for u € 57 (v) do

3 for k = lastProcessedLabel[(u,v)] to |L,| do
4 Ly + Lyk];
5 Cost Cpew ce, + c((u,v), ce,,);
6 Label £ < (v, cnew; lu, POS = (Cnew)));
/* Next time a label for v is searched in L, , the search starts where the
current one ends. */
7 lastProcessedLabel[(u, v)] < k;
8 if 'BLACK BOX DOM(L,, /) then
// ¢ is non-dominated. Additionally, it has to be lex. minimal.
9 if £ <jer €3°% then £, < ¢
10 break;
11 if Cpnew == 00 then return NULL;

12 return /;°;

Procedure propagate
Blue lines only for the MD-FPTAS described in Section

Input : Label £, Node v € 6§ (u), Prio. Queue @, Permanent labels L.
Input FPTAS: Vector of approximation ratios € € Ri_l.
Output : Updated Prio. Queue Q. B

Cost Crew + ce, + c((v,w), Ly);
Label £y < (w, cnew, bv, POS = (Crew));
if IBLACK BOX_DOM(L.,/.,) then
if !Q.contains(w) then
‘ Q.insert ({y);
else if ¢, <jcx Q.getLabel(w) then
| Q.update(Q.getLabel(w), £,);/* Replace current heap label with /.
return Q;

0 g0 A W N -

*/

Proof. Since c(p,m0) <p c(p’,70), we know that c;(p,70) < ¢;(p’,70) for any j € {1,...,d}.
Due to the FIFO property of the arc cost function, this implies that after ¢’s first arc, say
(v,v") € A, we will have

Cj(p ° ((va,))vﬂ)) = Cj(p7 TO) + Cj((’l), ’U/), C(p, TO)) <
¢i (0, 10) + ¢ ((v,0"),¢(p',10)) = ¢; (0" 0 ((v,v")), 70).

This argument can be repeated along every arc of ¢ until we reach the path’s end point, implying
that c¢(poq,m0) <p c(p’ o q,70). O

The consequence of Lemma [1|is that during Algorithm |1} dominated labels/paths can be
neglected since they will not become efficient later on. Hence, for a Dyn-MOSP instance whose
arc cost function has the FIFO property in every dimension, Algorithm [I] computes a minimal
complete set of efficient solutions. Moreover, the correctness can be proven as in the static case
(cf. 201, [@1)-

3.3 Complexity

The running time of Algorithm [I] is characterized by the running time of pextCandidateLa]
[be]] and both depending on the complexity of the function BLACK BOX DOM. This
abstract function contains the dominance check applied in the different versions of the MD
algorithm that we discuss throughout the paper. In the exact biobjective scenario, the domi-
nance check (see Algorithm is performed in constant time. The reason is that the sets L,
are sorted in lexicographically increasing order and contain only efficient labels. Thus, the first
cost component is sorted increasingly, while the second cost component is sorted decreasingly.
For a new tentative label that is lexicographically greater than all elements of L, it is enough to
be compared with the last element only. This observation is not very widespread in literature
but has a remarkable impact in theory and practice (cf. [6], [20], [9]). For d > 3 the complexity
is linear in the number of labels contained in L,, since in the worst case, the tentative label
has to be compared with all existing ones (see Algorithm . In our analysis, we will denote
the complexity of the dominance check, i.e., of the function BLACK BOX DOM, by C. We assume
that @ is a Fibonacci-Heap [14] to get constant running time for the update and the insertion
of labels. The label extraction is performed in O (logn), since the size of @ is at most n. We
set Mmax := maxyey |Ly| to be the maximal number of labels at a single node at the end of
the algorithm. N := 3" _, |L,| is the total number of computed efficient labels.

Complexity of nextCandidateLabell For a node v € V [nextCandidateLabell is called
every time a label for v is made permanent, i.e., | L,|+1 times. The use of the lastProcessedLabel
pointers for every arc (u,v) € A guarantees that the list L, of permanent labels at each prede-
cessor node u of v is traversed exactly once. During each call, a dominance check between the
extension along (u,v) of the considered predecessor labels and L, is performed. This results in

a running time of

o S Lul+ L +1)C,
ued— (v)

which summing over all nodes v € V, can be put as O (mMNmaxC).

Complexity of [propagatel In total, |L,| labels are propagated along an arc (u,v) € A.

Every time a label is propagated from u along (u,v), we have to check if the resulting label is

Table 1: Complexity C of the dominance checks
Exact MD-A (Sec. MD-FPTAS (Sec. [4.1) MD-FPTAS_T (Sec. [4.1.1)

d=2 0O(1) 0(1) 0(1)
d>3 O(Ly) <€ O(Nmnaz) O(T) o)

dominated by any label in L,. Summing over all nodes, we get an overall complexity of

(ZW 1L |c> O (MNonarC)

ueV

Note that since @ contains at most one label per node, we can have constant time access (e.g.,
via a pointer) to a node’s heap label. We make use of it in Lines [4] and [] of [propagate]

Algorithm [I] performs one iteration per permanent label, i.e., A iterations in total. In
addition to [propagate] and mextCandidateLabell a label is extracted in every iteration. All in
all, the running time of Algorithm [1]is

N<nNmax
~~
c

O (Nlogn + 2mNimaC) = O (Nlogn + mNimazC) O (Nmaz(nlog(n) + mC)). (5)

In Table [1} we list the complexity C of the dominance check for the different variants of
the MD algorithm that we consider during the paper. It is clear that the space consumption
of Algorithm [Ifis O (N + m) if we assume that d is fixed. More in depth discussions of these
running time bounds for the exact versions of Algorithm [1| can be found in [20] and [9].

4 A new FPTAS for the Multiobjective Shortest Path
Problem

In this section we introduce a new FPTAS for MOSP problems. The FPTAS is based on
Algorithm [1] and the idea presented in [24] of dividing the outcome space into a polynomial
number of cells, each of them holding at most one path’s cost vector.

Consider a vector a € R>1 and two (s,v)-paths p, g. We say that p a-covers ¢ if ¢;(p) <
ajc;(q) for all j € {1,...,d}. Let X be the set of all feasible solutions of a (Dyn-)MOSP
instance. A subset X C X is an a-cover of X if and only if for any = € X there is a & € X
that a-covers z. A fully polynomial time approximation scheme (FPTAS) for the (Dyn)-MOSP
problem is a family of algorithms such that for any & € R there is an algorithm whose running
time is polynomial in the size of the used instance as well as in = e L that computes a (1 + &)-cover
of X. The size of the computed cover is also required to be polynomlal in the input size and in
1/e. As in the FPTAS presented in [24] and in [4], ours is exact in one dimension. We choose
this dimension to be the first one and hence, compute an a-cover with a = [1, T+ gl e RL,
In this section, we assume w.l.o.g. that & = & for all i, j € {1,...,d} and speak of a (1 +¢)-
cover, ¢ € Rs. Additionally, we assume that ¢ < 1 such that In(1 +¢) = O(e). We set

™™ = mingeaci(a), " = mazacaci(a), and C; = S for i € {1,...,d}.

The new MD-FPTAS is based on Algorithm [I] but we need to get rid of the exponential
number of efficient paths that a (Dyn)-MOSP instance can have. Let ¥ € RZ, be a vector of
approximation ratios with 71 = 1. The MD-FPTAS assigns a (d — 1) dimensional tensor 7T,
to each node v € V. The entries of each tensor in the (j — 1) dimension, j € {2,...d}, are
indexed from 0 to |log 7 (nCj)]. As with &, we assume w.l.o.g. that all entries of " are equal

100[100 100]100 100]100

1 1 1
\9 \9 \9
%, %, 120120 %, 120[120 80[131
\T)” 120 80131 W 80131 W e
V3 10[10 ———— v4 V3 10[10 ———— v4 V3 10]10 ——— 4
% % ®
N & v
/59\ /“‘Q\ /”’Q\
v2 V2 V2
100/101 100[101 100[101

Figure 1: Three consecutive iterations of the MD-FPTAS. The extracted label £* in every iteration
is marked in red, the permanent labels £ € L, in black, and the tentative labels generated in
[propagate| or mextCandidateLabell in grey.

and use r as the approximation ratio in what follows. To obtain a runtime that is polynomial
in the input size and in 1/e, we will set » = (1 + 5)ﬁ and store at most one path per tensor
entry. With this choice of r, the length of T, ; becomes L% log(nC’j)J for any node v € V and
j € {2,...,d} such that, in total, T, stores at most HLQ |Ty,;], which is a polynomial upper
bound on the number of computed permanent paths. The position of a (s,v)-path p € X' in
T, is computed using the function pos : RZ — Ngfl which is defined component wise as

0 ;if ej(p) =0
1+ \‘logr Zjn(f,zJ , else.

J

pos j(c(p)) == , 7 €{2,...d}. (6)

The size of the tensors is well defined since efficient (elemental) paths have at most (n—1) arcs
and hence, ¢;(p) < (n—1)c;™

For the MD-FPTAS we extend the label ¢ representing a path p by pos(c(p)) = pos(ce).
Labels continue to be sorted lexicographically in the priority queue @ but the dominance checks
are done using the labels’ pos values: if two distinct labels ¢, £’ at anode v € V fulfill ¢o,1 < ¢pr 4
and pos ;(ce) < pos (e) for j € {2,...d}, we say that £ pos -dominates ¢’ and write £ <pos £'.
No further modifications w.r.t. Algorithm [I| are needed. Hence, the MD-FPTAS makes labels
permanent after extracting them from the heap. It is guaranteed that at the moment of ex-
traction of a label £, at a node v € V, there is no label £, in L, such that £, =pos v and thus,
no two labels with the same pos values will be stored. The MD-FPTAS computes at most one
path per entry in 7. Algorithms [4] and [5] show the pos-dominance tests to be embedded in

[propagate] and mextCandidateLabell

Algorithm 4: BLACK BOX DOM(L,,,) Algorithm 5: BLACK BOX DOM(L,,1,)
for MD-FPTAS, d = 2 for MD-FPTAS, d > 3
1 return L,[|Ly| — 1] <pos lv 1 forle L, do

2 ‘ if | < posl, then return TRUE;
3 return FALSE

The following example shows how efficient labels can be rejected by the MD-FPTAS if they
are pos-dominated by permanent labels.

Example 1. Figure[]] visualizes the situation at the end of each of three subsequent iterations

of the MD-FPTAS. The shown graph is a subgraph of a larger graph with n = 10 nodes and we
set € = 0.5. Labels are represented only by their cost; their correspondence to nodes is made
clear by their positioning. The example starts with a permanent label at node v and labels for
v2 (100[101) and vy (100]100) in Q.

In the first iteration, the latter is extracted and no new candidate label for vi is found.
Then, the label (100]100) is propagated to node vs and the resulting label (120|120) is inserted
into Q. In the second iteration, the label (101]100) is extracted from the heap and again, no
new candidate label for vy is found. This label is then propagated to node vs, where the resulting
tentative label (140|119) is rejected, as vs’s current heap label, (120|120), is lexicographically
smaller. In the third iteration, the label (120|120) at node vs is extracted from the heap.
When [nextCandidateLabel is called, the extension (140/119) of v2’s permanent label would be
efficient in the exact scenario but is rejected yet again by the MD-FPTAS, since 120 < 140
and pos(120) = 107 = pos(119). The tentative label (130|130) at vs is then generated by
propagation along the arc (vs,v4) but also rejected despite being efficient, since 80 < 130 and
pos(130) = 109 = pos(131).

The following Lemma holds for any version of Algorithm [I] presented so far. We need it
to prove the correctness of the MD-FPTAS. We denote the set of permanent labels at node v
found until iteration i € {1,..., N} (including the i'" iteration) by L}. Thus, L, = L2 is used
only for the final set of permanent labels at v.

Lemma 2. A label £, for a node v € V is considered at most |L,| + 1 times before it is
made permanent or finally discarded. If it is discarded, there is a permanent label in L, that
(pos-)dominates £y .

Proof. Let £, be the permanent predecessor label of ¢, at node u € 6~ (v). ¢, is considered for
the first time during a call to in the iteration i € {1,..., N} in which £, is extracted
from H and added to L. Let k € {i +1,..., N} be the next iteration wherein a label £, for
node v is extracted from Q. If £, = £,, we are done since £, was considered just once before
it is made permanent. In case £, # /,, £, was either rejected in iteration i because a lex.
smaller label for v existed in @ or ¢, was replaced in @ by a lex. smaller label for v (Line m
of that was not (pos-)dominated by any permanent label at v. Note that multiple
such updates to v’s heap label could have happened until ¢, is extracted and made permanent.
The k'" iteration proceeds with a call to [nextCandidateLabel, where at least one permanent
label per predecessor node of v is considered. Since the current iteration is the first time that
[nextCandidateLabell is called for v since l,,’s insertion, lastProcessedLabel(u,v) points at a
label in L% that is not after I,. We want to prove an upper bound on the number of times
that ¢, is considered, so we assume w.l.o.g. that ¢, is considered during the current search for
v’s new label in Q, i.e., lastProcessedLabel(u,v) advances at least until £,’s position in L%.
Hence, ¢, is extended along the arc (u,v), generating ¢, as a candidate to enter) in iteration
k. According to Line [§|in nextCandidateLabel] 1astProcessedLabel(u,v) is increased if there
is a label in L* that (pos-)dominates £,. If this happens, later searches for a new tentative
label for v no longer consider ¢, as a possible predecessor label and hence, ignore ¢,. In case
Lk #p £y, lastProcessedLabel(u, v) will not be altered and the next search for a new tentative
label for v will consider 4, again. Since such searches only happen when a label for v is made
permanent, ¢, will be considered at most |L,| times during calls to nextCandidateLabell O

The following theorem proves the correctness of the MD-FPTAS for the static case. Its
proof is similar to the one given in [4]. Recall that efficient paths can have at most n — 1 arcs
since the arc cost functions are positive.

10

Theorem 1. Consider a node v € V and an efficient (s,v)-path p* = (s = vo,v1,...,Vx = V).
Then, the MD-FPTAS finds an (s,v)-path p s.t.

ci(p) < rfe;(p®), Vi€ {1,...,d}.

Proof. We prove the statement by induction over k, the number of arcs of p*. W.l.o.g. we
assume that no parallel arcs exist in D. In the base case, we consider an efficient single-
arc path p* = ((s,v)). In the first iteration of Algorithm [} the label ¢* corresponding to
p* will be added to @ during Consider the first iteration in which a label ¢ for
node v is extracted from Q. If £ = £*, we are done since £* itself is made permanent. In
case ¢ # ¢*, Lemma [2| implies that £* Wlll be made permanent later or be discarded. If it is
discarded, Algorithms [| I and [5) I 5| guarantee the existence of a permanent label ? € L, such that

() < (6 (7a) and pos(f) < pos(t").

For j € {2,...,d}, we can derive log,(c;({)) — 1 < log,(c;(¢)) from and this in turn
can be restated as ¢;(¢) < rc;(£*), which, coupled with (7a]), proves the statement. In the
induction hypothesis, we assume that

¢;(B) < e (pY), e {1,...,d}, (8)

holds for any k € {2,...n — 1} and efficient paths p* with k — 1 arcs.

Induction Step: Let p* be an efficient (s,v)-path with k arcs and let (u,v) be its last
arc. Due to subpath efficiency, the subpath p}, of p* with k — 1 arcs is efficient. In addition,
the induction hypothesis guarantees the existence of a path ps, with corresponding permanent
label 4, such that .) holds for ps, and p%,. When /., is extracted and made permanent, the
label 7 := (v, ¢z, +cl(u,v)), ls,) is analyzed IHM For the (s,v)-path p corresponding

to £, we have

Cj(ﬁ) = cj(ﬁsu) + Cj((u7 ’U)) < Tkilcj (p:u) + Cj((u7 U)) < Tkilcj(p*)? VES {17 LR d}' (9)

From the proof of the base case and the statement in Lemma |2} we know that 7 is going to
either be made permanent in a later iteration or be discarded. In case / is made permanent,
we have ¢;(p) < 77 1ej(p*) < rFej(p*) for all j € {1,...,d} and we are done. If 7 is discarded,
there exists a permanent label £ € L, such that ¢;(£) < ¢1(£) and pos(£) < pos(f). The latter
inequality implies ¢;(¢) < r¢j(f) for j € {2,...,d} and for j = 1, e1(€) < rei(d) is trivially
given. Combining this with @D and considering the paths corresponding to the used labels, we
get

1 ~ k—1

;Cj(P) <ci(p) <7 (0") = ci(p) < rfei(p”),

which finishes the proof. O

From now on we assume that the arc cost functions of Dyn-MOSP instances are piecewise
linear FIFO functions. In this case, the proof of Theorem [l| works if the intercepts of the affine
functions describing the pieces of the arc cost functions are positive. Note that in the proof of
Theorem [1| we needed the arc cost vectors only in @

Using the notation for dynamic cost, what needs to hold is

- c;(p”)- (10)

To prove the following Lemma, we switch to a less cluttered notation. We assume that
f :R> — Ry is a continuous piecewise linear function with k£ € N breakpoints and describe the
affine functions that build the pieces of f by aff ;(z) := a;z +b;, 1 € {1,...,k—1}.

& (B) = ¢ (Bow) + ¢5(@r c(Fon) < 775 (0) + 75 (0, c(pl) = 7

11

(7b)

Lemma 3. Let f : R> — R> be as described above and oo € R>1 a constant. If f fulfills the
FIFO property and the intercepts b; of the affine functions building f are non-negative for all
1€ {1,...,k— 1}, then for points x, y € R> with x < ay there holds z + f(z) < a(y + f(y)).

Proof. We consider three different cases to prove the statement.

Case 1: f(z) < f(y). Since a > 1, we have f(z) < af(y). Together with z < ay this
proves the statement.

Case 2: x <y and f(z) > f(y). In this case, the FIFO property and « > 1 can be used to
get:

z+ f(z) <y+ fy) < ay+af(y).

Case 3: y < z and f(z) > f(y). Let aff ; be the affine function with aff ;(y) = f(y) and
aff ; the one with aff j(z) = f(z). There holds ¢ < j and we define aff;, [€ {i,...,j}, to be
the affine function corresponding to the steepest piece of f between y and z, i.e., the one with
the biggest a;. This choice implies f(z) < aff ;(z) and aff ;(y) < f(y). Additionally, as for any
affine function with positive intercept we have aff ;(ay) < a(ay + b)) = aaff ;(y). All in all,
we can conclude

f(&) < aff () < aff 1 (ay) < aafl 1(y) < af(y).

Together with x < ay this proves the statement. O

Now we set ¢; ((u,v),-) = f, = ¢;(p), y = ¢;(p*), and 7"~ = & to get that holds and
formulate the following theorem:

Theorem 2 (FPTAS for Dyn-MOSP). Let Z be a Dyn-MOSP instance with continuous piece-
wise linear and positive arc cost functions that fulfill the FIFO property. Additionally, let the
functions ¢;((u,v),-), 7 € {2,...,d} have only non-negative intercepts. Then, the MD-FPTAS
computes a (14 &) cover of the minimum complete set of efficient paths for I computed by the
MD algorithm.

Proof. The proof is analogous to the one of Theorem using instead of @ in the induction
step. O

4.1 Complexity of the MD-FPTAS.

In this section, we set C' := max;e2,... 4} Cj and, as before, assume that the approximation ratio
£; is equal in every dimension. Then, each tensor T, can store at most 7 := (| 2 log(nC))"
paths and when analyzing the MD-FPTAS we get

d—1

Niaz = ({g log(nC)J)1171 and N <n ({g log(nC)J)

Recall that the lists L, contain permanent labels that are sorted in lexicographically increasing
order. In the biobjective case, this implies that they will be sorted increasingly according to
the first cost component and simultaneously, decreasingly w.r.t. their pos value El This follows
directly from the monotonicity of the log function and the already discussed fact that for d = 2
efficient labels that are sorted lexicographically have an increasing second cost component.
Hence, as in the exact case, the complexity C of the pos-dominance checks (Algorithms 4] and
5)) is constant in the biobjective case and linear (O (7)) for d > 3. Table [2| shows the running
time of the different FPTAS for MOSP that we are discussing in this paper.

2Note that for d = 2, pos(-) maps to R> so it is well defined to talk about a label’s pos value.

12

Table 2: Complexities of the different state of the art FPTAS for MOSP problems.

TZ [24] Martins FPTAS [4] MD-FPTAS MD-FPTAS T, (Sec. [£.1.1))
d=2 O (”szlog (nC)) O (n3T2) O ((nlogn +m)T) O ((nlogn +m)T)
d>3 O (nmT) O (n*T?) O ((nlogn+mT)T) O ((nlogn+m)T)

4.1.1 Storing Tensors Explicitly.

While the complexity of the MD-FPTAS is lower than the one of the Martins-FPTAS, the
FPTAS presented in [24] (TZ-FPTAS) is yet to be undercut. This algorithm works similar to
the well known Bellman Ford algorithm for the One-to-All Shortest Path Problem and stores
the tensor T, for every node v € V. In iteration ¢ € {1,...,n — 1}, the algorithm computes
(s,v)-paths with at most i edges and does no proper dominance check. Instead, for a newly
found path p, the entry pos(p) in T, is checked: if it is empty, p is added; if a path exists
already, only the one with the lowest cost in the exact dimension (in [24] it is the d'* one)
is kept. Since the dominance checks are costly, storing the tensors T, and checking only the
current position yields a great advantage when it comes to the algorithmic complexity.

We can adapt the MD-FPTAS such that at every node a tensor T;, is stored. The entries
of T, are 0 or 1 depending on whether a path with the corresponding pos value has already
been stored in L,. Let ¢, be a tentative label for a node v computed in Line |§| of
or in Line [2] of [propagate} Instead of calling the function BLACK_BOX_DOM, we
check if Ty [pos (€)] == 0. In case the tensor entry is indeed set to 0, we add ¢, to L, and set
T,[pos (£,)] = 1. If the tensor entry is set to 1, we neglect £, since there is a lex. smaller label
in L, with the same pos than ¢,, hence pos-dominating /,,.

The suggested adaption increases the storage space of the MD-FPTAS. Moreover, in general,
it will compute more labels than before since checking dominance using <05 is more restrictive
than checking pos-equality. However, as in the TZ-FPTAS, the construction of the tensors
T, guarantees that the number of paths and iterations stays polynomially bounded. As a
consequence, the running time of the MD-FPTAS for d > 3 objectives becomes

O ((nlogn +m)T) .

5 Computational Results

In this section we provide computational evidence of the improved running time of the MD-
FPTAS when compared with the Martins-FPTAS presented in [4] that turned out to be faster
than the TZ-FPTAS from [24].

Martins-FPTAS is based on the classical label setting algorithm for MOSP by Martins [17].
The data structures are similar to the ones of the MD-FPTAS. Instead of having at most one
label per node in the priority queue, it stores all tentative labels therein until they are extracted
or deleted because a label entering the queue dominates them. This necessity to iterate through
the queue to possibly delete labels is more costly than the searches for a node’s next candidate
label performed in the MD-FPTAS. Table [2] shows the complexity of the Martins-FPTAS.

5.1 Test Instances.

We perform experiments considering 2 and 3 objective functions. In the biobjective static case
we use the same instances that were used in [4]. The first group of such instances consists
of graphs that contain only efficient paths. These graphs were first described in [15] and are

13

U1

n—1

T, T

0/0 — vy

1|0—> (%)

n—1
0/0 —— v3 I Un—2 — ([272~ —> Un—1

Figure 2: General EXP instance. Every path is efficient.

suitable to check the impact of the used approximation techniques (see Figure. We call these
instances EXP and consider the corresponding graphs with 3 to 51 nodes. The second group of
instances, denoted by GRID, are 33 undirected grid graphs of varying size. All instances within
GRID have a number of nodes that varies between 1202 and 40002 and a number of arcs that
varies between 4720 and 159 600. The search starts at an artificial node connected to all nodes
in the first column of the grid. The costs on the arcs are generated randomly between 0 and
10. The third group of instances are 15 so called NetMaker graphs. They have 3000 nodes and
between 30000 and 80000 arcs. The source node is always the node with id 0. Both the GRID
and NET instances were first used in [I9].

In the 3-dimensional case we consider a subset of the instances used in [9]. The first set
of instances are again NetMaker graphs with an extra cost component. These NET3D instances
have 5000 to 15000 nodes and 40045 to 344 189 arcs. In total, we consider 35 such graphs.
Again, the source node is always the one with id 0. We also consider grids with 3 objectives.
The undirected 100 x 100 grid graph remains unchanged among all instances; we consider
10 different arc cost functions. These instances are the only ones for which we consider a
One-to-One scenario. Trying to solve the One-to-All MOSP on these grids was not possible
without violating the time limit. Hence, we endorsed Algorithm [I] with the pruning techniques
for MOSP instances described in [9]. It is easy to see that they are compatible with the
approximation techniques used in this paper. In total, the GRID — 3D instance set contains 300
One-to-One MOSP instances with varying L; norm between the source and the target node.

The last test instance is a Dyn-MOSP instance motivated by the Horizontal Flight Planning
Problem (HFPP) introduced in [3] and [2]. The directed graph in this instances has 410 387
nodes and 878902 arcs and is called an airway network. The arcs are the direct connections
between pre-defined coordinates (the graph’s nodes) along which commercial aircrafts are al-
lowed to ﬂyﬂ We define two cost functions on each arc. The first one encodes the duration
of the traversal of an arc depending on the time point at which the tail of the arc is reached.
The duration is influenced by weather conditions and we evaluate the weather information we
have every 3h to get 10 data points per arc. The second function models the aircraft’s con-
sumption along an arc depending on the aircraft’s weight at the arc’s tail node. In our model
we get 171 initial weights per arc and the corresponding consumption for each weight. The
difference between two consecutive weights is 500kg. In both functions, datapoints are inter-
polated linearly, hence obtaining two continuous piecewise linear functions. The single pieces
of the duration function can have positive or negative slopes depending on the wind but the
FIFO property still holds as shown in [3]. The consumption function yields an always positive
slope since clearly, a higher initial weight will cause a higher consumption. It is therefore also
FIFO and, more importantly, the intercepts of its affine pieces are positive, hence fulfilling the
requirements from Lemma [3] In total, we have randomly chosen 380 airports as the initial
nodes s and compute the (pos)-efficient paths to all nodes reachable with the full tank of a
long-haul aircraft.

30n [Sky-Vector| an airway network can be displayed.

14

www.skyvector.com

Table 3: Results from one to all runs of bidimensional Martins FPTAS and MD-FPTAS

Martins BDA
N Exact t[s] FPTAS t[s] Exact t[s] FPTAS t[s]

€= 0.05 0.5 1 0.05 0.5 1

avg 338611 524.5146 0.3062 0.0077 0.0046 0.1545 0.0109 0.0032 0.0025
EXP min 4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

max 1572862 4213.4131 8.1309 0.1652 0.0658 36.6369 0.0811 0.0229 0.0176

avg 872717 0.9005 1.0308 1.0323 1.0030 0.6181 0.9846 0.9891 0.9534
GRID min 8189 0.0009 0.0024 0.0011 0.0038 0.0015 0.0013 0.0038 0.0034

max 5381078 6.8469 7.7819 7.8717 7.8638 4.2258 6.8425 6.8795 6.7666

avg 597998 2.3356 2.7183 2.7106 2.6828 0.7214 1.3948 1.3723 1.3597
NET min 185894 0.3399 0.4359 0.4480 0.4217 0.1407 0.3527 0.3260 0.3395

max 1260412 5.6329 6.6300 6.6990 6.6252 1.7005 3.8076 3.7614 3.7924

5.2 Results

The experiments were ran on a machine with an Intel Xeon CPU E5-2670 v2 @ 2.50GHz
processor. It has 2 CPUs per node and 10 cores per CPU. The available RAM was 128GB. All
algorithms were implemented in C' and compiled with the version 7.5 of the GCC compiler with
compiler optimization level set at 03. For the priority queues, we used our own implementation
of a binary heap. The only difference between the heaps used for the implementations of the
Martins’ based algorithms and those used in the implementations of the MD algorithms is that
in the former we took extra care of guaranteeing fast access to a node’s heap labels. This
is needed because every time a label for a node v is added to @, labels for v in @ that are
dominated by the new one have to be removed. All lists of permanent labels are modelled as
arrays, allowing all algorithms to share the code used for the dominance checks. We set a time
limit of 5400s for all algorithms. Whenever we report averages, we consider instances that were
solved by all algorithms involved in the comparison. The min and max values consider only
the results obtained by single algorithms.

5.2.1 Static Bidimensional Results.

Tablesummarizes the results of the biobjective MOSP instances. The running time advantage
of the exact BDA on the EXP instances is remarkable. On average, it is 3450 times faster than
Martins algorithm. The average number of permanent labels on these instances is 338 611 and
the maximum is 1572862. We computed (1 + €)-covers for the EXP instances with different
values for € and the average speedup decreases steadily as € grows: x30 for ¢ = 0.05, x2.4 for
e =0.5, and x1,84 for e = 1. This is because 1.10%, 0.17%, and 0.11% of the labels from the
exact solutions are computed for the mentioned & values.

Figure [3] gives a visual impression of the running times: on the left hand side we compare
the BDA with the FPTAS-BDA and appreciate how the solution time of the exact algorithm
grows exponentially with the number of computed solutions. The FPTAS is not faster than the
exact algorithms when the number of labels is similar, but on the bigger EXP graphs it saves a
lot of labels. On the right hand side we compare the Martins-FPTAS and the BDA-FPTAS.
We can see that the running time growth of the BDA is much slower.

The bidimensional GRID and NET instances unveil the major drawback of the used ap-
proximation techniques: on graphs with a realistic/practical amount of nodes, the value of
r= 1+ 5)1/"71 is very close to 1 and the pos values of any two different paths are almost

15

EXP | 2D | BD | Exact vs FPTAS

04 & & & & otk A A A A A

10! 102 103 104 10° 106 107 108
N

EXP | 2D | Martins/BD | FPTAS vs FPTAS

84 °

74

6)

5
o) °
24
s 3 °

°
Py
°
14 °
°
04 ® °?
0 20000 40000 60000 80000 100000 120000
N

Figure 3: BDA exact (green), BD-FPTAS (yellow) and Martins FPTAS (blue) on exponential instances. & = 0.05.

16

GRID | 2D | Martins/BD | FPTAS vs FPTAS

)
2 °
s 3 ° ° [

24 [

)
14 ® ®
o] &
0 1000000 2000000 3000000 4000000 5000000
X

NET | 2D | Martins/BD | FPTAS vs FPTAS
[]

l‘eﬁ
w”

200000 400000 600000 800000 1000000 1200000
N

Figure 4: BD-FPTAS (yellow) and Martins FPTAS (blue) on grid instances (left) and netmaker instances (right)

always distinct. Hence, the exact algorithms are faster than the FPTAS since the computation
time of pos is non negligible in practice and no labels are saved. In [4] they overcome this
problem by choosing huge values for £ and they compute an a posteriori approximation that
always turns out to be much better than €. We focus on realistic values for € instead and see
that the average FPTAS speedup on GRID instances and € = 0.05 is x1.66 and on NET instances
and £ = 0.05 it is x3.23. On both instance sets the FPTAS solutions contained almost all
exact solutions and even increasing € = 0.05 up to 1 did not have a noteworthy impact. All
algorithms were able to solve all instances in these two sets within the time limit. Figure [
compares both FPTAS and consolidate the impression gained from the EXP instances: the run-
ning time advantage of the MD-FPTAS gets bigger as the number of efficient solutions grows.

5.2.2 Static Three Dimensional Results

Instances with 3 objectives are much harder to solve. In Table 4] we summarize the results
obtained from the One-to-One queries ran on GRID3D instances and from the One-to-All queries
ran on NET3D instances. We observe the same behavior as in the 2D instances: a solid running
time advantage for the MD-FPTAS on average (x1.70 on GRID3D instances and x1.46 on
NET3D instances) for ¢ = 0.05 but slower running times than in the exact counterparts. In these
experiments all algorithms always computed always the same amount of labels per instance.

17

Table 4: Results obtained by 3 dimensional Martins-FPTAS and MD-FPTAS

Martins MDA
N (020
./\t/((02a))/ Exact t[s] FPTAS t[s] Exact t[s] FPTAS t[s]
e = 0.05 1 0.05 1
GRID 3D avg 8307 647.5844 772.9468 757.3884 439.4622 452.7110 452.4130
One-to.0 min 4 0.0255 0.0200 0.0255 0.0251 0.0232 0.0261
nETHOTRE max 30041 4258.0670 5027.8374 5015.9595 3338.0901 3375.1526 3408.5612
NET 3D avg 13308684 1136.8950 1271.7758 1227.7586 823.6826 872.3511 844.0173
One-to-All min 1170703 8.8158 43.9947 10.3916 4.0682 18.8914 5.5458
ne-tos max 38647047 4288.9419 4626.8179 4636.0591 4394.0124 4486.7231 4468.3011
Table 5: Running times and computed permanent labels on FPP instances.
Out-Airport Exact e=0.5 e=1
t[s] N t[s] N t[s] N
Cape Town 1.3288 1537645 1.0757 917327 1.0246 817945
Los Angeles 11.1541 12854272 8.5292 8260426 8.4359 7961418
Moscow 15.8314 19385407 11.4957 11458971 11.2693 10819170
Berlin-Tegel 14.6621 16815977 12.8159 12724498 12.6338 12126247
Tenerife 6.4615 9182417 5.4099 6247958 5.2085 5739303

Figure [5] shows the comparison of both FPTAS’ running times depending on the number of
computed solutions. In both instance sets the Martins-FPTAS failed to solve bigger instances
within the time limit. The overall trend mirrors the biobjective results as the running time of
the MD-FPTAS grows considerably slower than that of the Martins-FPTAS.

5.2.3 Dyn-MOSP results

Figure [6] contains histograms showing how the labels (left) and running time (right) savings of
the MD-FPTAS are distributed among the 380 considered Dyn-MOSP instances. On average,
21% of the time and 35% of the exact labels can be saved. Considering that we have chosen
€ = 0.5, the efficiency of the FPTAS on these instances is remarkable. Additionally, in real
world flight planning problems, the computation of every label is very expensive, hence giving
the known FPTAS techniques and in particular the new MD-FPTAS a new impulse.

In Table [5| we depicted some geographically distant departure airports and show the im-
pact of the FPTAS when computing routes to all possibly reachable nodes. We finish our
computational experiments showing the less consumption and fastest routes from Berlin to
Yekaterinburg in Figure[7] Even though consumption and time are correlated objectives, this
example shows that both have to be considered since the routes vary considerably.

6 Conclusion

We have proven that Dynamic Multiobjective Shortest Path problems (Dyn-MOSP) can be
solved by a generalization of the static Multiobjective Dijkstra (MD) algorithm if the arc cost

18

GRID | 3D | Martins/MD | FPTAS vs FPTAS

5000 A ® eg0
\ °
e ®» 9
o ©
4000 ° H
® *
w 3000
[
£
= 2000 A
1000 -
0
0 5000 10000 15000 20000 25000 30000
Ne
NET | 3D | Martins/MD | FPTAS vs FPTAS
[]) * N
4000 - [}
*
3000 - * *
)
P °
£ 2000 e ®© * o *
° * * L *
1000 A [] *
*_ X *
oo * *
o] afa® T+
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
N le7

Figure 5: MD-FPTAS (yellow) and Martins FPTAS (blue) on grid instances (left) and netmaker instances (right)

19

Labels Saved by Dyn-FPTAS on FPP instances

Number of instances

Time saved by MD-FPTAS on FPP instances

N w »
o o o
L L L

Number of instances

=
o
L

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1 — trpras/tex

Figure 6: Distribution of percentage of labels saved by the MD-FPTAS in comparison to the exact
MDA on FPP instances

Figure 7: Less consumption (left) and fastest (right) routes from Berlin to Yekaterinburg.

20

functions are FIFO and have independent dynamics (e.g. weight and time; time and state
of charge). Our main contribution was to adapt the techniques used in the seminal work by
Tsaggouris and Zaroliagis [24] to derive a new FPTAS for MOSP problems that is based on
the label setting MD algorithm. The running time of the resulting MD-FPTAS is the number
of computed solutions multiplied by the running time of the classical Dijkstra algorithm and
is thus - to the best of our knowledge - the most efficient FPTAS for MOSP problems in the
literature. Even better, it also works for Dyn-MOSP instances if the arc cost functions are
FIFO, continuous, and piecewise linear, having only positive intercepts. These requirements
are not very restrictive in practice.

We corroborated the theoretical efficiency of our algorithms computationally. On a test set
of standard bidimensional and three-dimensional instances, our MD-FPTAS was faster than
the Martins-FPTAS introduced by Breugem et al. [4]. In the static case, we faced the same
problem as the authors in [24] and [4]: the FPTAS does not avoid the computation of paths
unless ¢ is chosen very large. The reason is that, so far, most instances used in the literature to
test MOSP algorithms have integer costs, causing efficient cost vectors to lie at least one cost
unit apart from each other. In Dyn-MOSP instances the evaluation of continuous, piecewise
linear functions is likely to generate labels with rational cost. This is the case in the Flight
Planning instances that we considered. And indeed, using realistic values for e, we computed
(1 + €)-covers for these instances and saved 30% in terms of running time and 45% in terms of
labels.

References

[1] Richard Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc.,
60(6):503-515, 11 1954.

[2] Marco Blanco, Ralf Borndorfer, Nam Dung Hoang, Anton Kaier, Pedro M. Casas, Thomas
Schlechte, and Swen Schlobach. Cost Projection Methods for the Shortest Path Problem
with Crossing Costs. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS 2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 15:1-15:14,
Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[3] Marco Blanco, Ralf Borndorfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas
Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on
Airway Networks Using Super-Optimal Wind. In Marc Goerigk and Renato Werneck,
editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Opti-
mization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics
(OASIcs), pages 12:1-12:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[4] Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. Analysis of fptases for the
multi-objective shortest path problem. Comput. Oper. Res., 78:44-58, 2017.

[5] Fritz Bokler and Markus Chimani. Approzimating Multiobjective Shortest Path in Practice,
pages 120-133. Society for Industrial and Applied Mathematics, 2020.

[6] M.E. Captivo, J. Climaco, J. Figueira, E. Martins, and J.L. Santos. Solving bicriteria
0-1 knapsack problems using a labeling algorithm. Computers and Operations Research,
30(12):1865-1886, 2003.

21

7]

(8]

9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

J.C.N. Climaco and M.M.B. Pascoal. Multicriteria path and tree problems: Discussion on
exact algorithms and applications. International Transactions in Operational Research,
19(1-2):63-98, 2012.

J. Current and M. Marsh. Multiobjective transportation network design and routing
problems: Taxonomy and annotation. European Journal of Operational Research, 65(1):4—
19, 1993.

Pedro Maristany de las Casas, Antonio Sedeno-Noda, and Ralf Borndoérfer. An asymp-
totically and computationally improved multiobjective shortest path algorithm. Technical
Report 20-26, ZIB, Takustr. 7, 14195 Berlin, 2020.

Yann Disser, Matthias Miiller-Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. Faxp. Algorithms Lecture Notes Comput. Sci,
5038:347-361, 05 2008.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22(4):425-460, 2000.

Mathias Ehrgott and Xavier Gandibleux. Multiple Criteria Optimization: State of the Art
Annotated Bibliographic Surveys. International Series in Operations Research & Manage-
ment Science. Springer US, 2006.

Michael Emmerich and André Deutz. A tutorial on multiobjective optimization: funda-
mentals and evolutionary methods. Natural Computing, 17, 05 2018.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596-615, jul 1987.

Pierre Hansen. Bicriterion path problems. In Giinter Fandel and Tomas Gal, editors, Mul-
tiple Criteria Decision Making Theory and Application, pages 109-127, Berlin, Heidelberg,
1980. Springer Berlin Heidelberg.

Michael M. Kostreva and Laura Lancaster. Multiple objective path optimization for time
dependent objective functions. In Tadeusz Trzaskalik and Jerzy Michnik, editors, Multiple
Objective and Goal Programming, pages 127-142, Heidelberg, 2002. Physica-Verlag HD.

Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. FEuropean
Journal of Operational Research, 16(2):236-245, May 1984.

Christos Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and
optimal access of Web sources. In Proceedings 41st Annual Symposium on Foundations of
Computer Science. IEEE Comput. Soc, 2000.

Andrea Raith and Matthias Ehrgott. A comparison of solution strategies for biobjective
shortest path problems. Computers & Operations Research, 36(4):1299-1331, apr 2009.

Antonio Sedefio-noda and Marcos Colebrook. A biobjective dijkstra algorithm. European
Journal of Operational Research, 276(1):106-118, jul 2019.

P. Serafini. Some considerations about computational complexity for multiobjective com-
binatorial problems. Recent advances and historical development of vector optimization,
294:222-232, 1986.

22

22]

23]

24]

[25]

[26]

A.J.V. Skriver. A classification of bicriterion shortest path (bsp) algorithms. Asia-Pacific
Journal of Operational Research, 17(2):199-212, 2000.

Z. Tarapata. Selected multicriteria shortest path problems: An analysis of complexity,
models and adaptation of standard algorithms. International Journal of Applied Mathe-
matics and Computer Science, 17(2):269-287, 2007.

George Tsaggouris and Christos Zaroliagis. Multiobjective optimization: Improved fptas
for shortest paths and non-linear objectives with applications. In Tetsuo Asano, editor,
Algorithms and Computation, pages 389-398, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

E.L. Ulungu and J Teghem. Multi-objective shortest path problem: A survey. In D.
Gliickaufova, D. Loula, and M. Cerny, editors, Proceedings of the International Work-
shop on Multicriteria Decision Making: Methods - Algorithms - Applications at Liblice,
Czechoslovakia. Institute of Economics, Czechoslovak Academy of Sciences, Prague, pages
176-188, 1991.

P. Vincke. Problemes multicriteres. Cahiers du Centre d’ Etudes de Recherche Opera-
tionelle, 16:425-439, 1974.

23

	Introduction
	Literature Review
	Outline

	Multiobjective Shortest Path Problems
	The Multiobjective Dijkstra Algorithm for Dynamic MOSP Problems
	Description of the Algorithm
	Correctness
	Complexity

	A new FPTAS for the Multiobjective Shortest Path Problem
	Complexity of the MD-FPTAS.
	Storing Tensors Explicitly.

	Computational Results
	Test Instances.
	Results
	Static Bidimensional Results.
	Static Three Dimensional Results
	Dyn-MOSP results

	Conclusion

