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Abstract

Neurotransmission at chemical synapses relies on the calcium-induced fusion of
synaptic vesicles with the presynaptic membrane. The distance to the calcium chan-
nels determines the release probability and thereby the postsynaptic signal. Suitable
models of the process need to capture both the mean and the variance observed in
electrophysiological measurements of the postsynaptic current. In this work, we pro-
pose a method to directly compute the exact first- and second-order moments for
signals generated by a linear reaction network under convolution with an impulse
response function, rendering computationally expensive numerical simulations of the
underlying stochastic counting process obsolete. We show that the autocorrelation
of the process is central for the calculation of the filtered signal’s second-order mo-
ments, and derive a system of PDEs for the cross-correlation functions (including
the autocorrelations) of linear reaction networks with time-dependent rates. Finally,
we employ our method to efficiently compare different spatial coarse graining ap-
proaches for a specific model of synaptic vesicle fusion. Beyond the application to
neurotransmission processes, the developed theory can be applied to any linear re-
action system that produces a filtered stochastic signal.

Key words: linear reaction networks, cross-correlation, neurotransmission mod-
els, LTI filter, chemical master equation, vesicle fusion dynamics
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1 Introduction

Neurotransmission is the process by which a chemical or electrical signal is passed from
a neuron to a target cell. The junction points at which it occurs are called synapses. In
the presynaptic terminal of chemical synapses, the incoming action potential is translated
into the release of neurotransmitters that rapidly diffuse over the synaptic cleft and elicit
a postsynaptic response by binding to receptors in the target cell membrane [1]. Before
being released into the cleft, the molecules are contained in small vesicles that can localize
to the presynaptic cell membrane in the close perimeter of voltage-gated Ca?*-channels
(the active zone) and are functionally prepared — we say primed — for release [2,3]. The
arriving signal prompts the opening of the channels, leading to an influx of calcium-ions
that bind to receptors on the vesicle surface. This triggers the fusion of vesicles with the
presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft [4, 5].

Dynamical imaging of the neurotransmission process is not trivial due to the diffrac-
tion limit. Analyses of neuronal signaling therefore often combine microscopy techniques
with electrophysiological measurements, which use electrodes in order to capture the
postsynaptic electric signal [6-9]. Various approaches have been developed in order to
describe the dynamic behaviour and classify synapses according to characteristic param-
eters [10-14]. Stochastic models play an especially important role, as the vesicle release
process has been observed to be ’reliably unreliable’: in most synapses, arrivals of action
potentials provoke fusion in only 20% of cases and spontaneous release may occur in the
absence of a stimulus [15-17]. The release probability of a single vesicle grows nonlinearly
with cooperative binding of the Ca2*-ions, where cooperativity values (i.e. binding steps)
have been shown to range from 0 to 5 [18,19].

Kobbersmed et al. [20] were first to introduce a stochastic vesicle fusion model which
takes these aspects as well as active zone geometry into account. Based on a realistic
spatial vesicle distribution, they optimized different models to electrophysiological data
of repeated stimulation of the drosophila neuromucular junction. In these models, the
vesicle dynamics are formulated as a Markov jump process involving first-order reactions
for the docking of vesicles to the membrane (priming), the binding of calcium ions to the
vesicle’s surface and finally the fusion of the vesicle with the membrane. They showed
that generally, accurate replication of short-term plasticity and signal variances could
only be achieved in models where not only the release probability, but also the number
of releasable vesicles at a given moment was Ca?T-dependent. The best results were
obtained with the so-called unpriming model, which additionally includes a reaction for
the undocking of the vesicle from the membrane happening at a rate that depends on
the calcium concentration. In order to reproduce the postsynaptic current measured in
electrophysiological experiments, Kobbersmed et al. calculated the convolution of the
process’ components with the response current of a single vesicle. The optimization of
model parameters was done by solving deterministic reaction rate equations, and signal
variances were determined afterwards based on Monte Carlo simulations of the underlying
stochastic process.

In this paper, we take up the unpriming model of [20] and show that expensive and
imprecise stochastic simulations may be circumvented due to the linearity of the reaction
system, even if the output — namely the postsynaptic current resulting from the convolu-
tion — is given by a non-linear response function. We consider this postsynaptic current
as the output signal of a linear time-invariant (LTI) filter and find that the second-order
moment of such filtered signals can be expressed by means of the autocorrelation function
of the underlying stochastic process. Motivated by this observation, we derive a character-
istic partial differential equation (PDE) for the cross-correlation function (including the



autocorrelation) of the process described by a general biochemical reaction network with
time-dependent linear propensity functions. The time evolution of such a reaction system
can be characterized by the chemical master equation, which has been solved analytically
for certain subsets of linear reaction systems [21]. To our knowledge, the autocorrelation
functions have so far only been researched for systems with time-independent linear rates
(e.g. in [22] via means of noise power spectra analysis'). However, in this work we are
concerned specificalfly with non-equilibrium reaction systems. We show that, in case of
a linear reaction network, the resulting PDEs — together with the well-known ordinary
differential equations (ODEs) for the first- and second-order moments of the process —
form a closed system of equations that can be solved directly, avoiding stochastic simu-
lations of the process. The solution then determines the first- and second-order moments
of the output signal of interest. We apply this analytical approach to neurotransmis-
sion dynamics and examine a spatial extension of the vesicle fusion model, comparing
expectations and variances of the total junction current depending on different levels
of spatial coarse-graining. Furthermore, we demonstrate consistency of our results with
experimental data.

Herein we are concerned with the forward problem: compute the total current based
a Ca?t-dependent vesicle fusion model and its spatial extension. The consequent next
step is the associated inverse problem: Identify the key parameters of the fusion model
and its spatial components based on experimental data on the total current. Finding a
robust solution to such inverse problems is generally very difficult if the forward problem
involves complex stochastic dynamics and a large number of involved parameters [24].
The inherent ill-posedness of the inverse problem requires advanced regularization in
combination with highly precise computations of expectation values of the stochastic
dynamics. The results to be presented herein provide a decisive advantage in this regard:
we deliver a deterministic method for computing precise expectation values of the forward
problem, thus allowing to avoid stochastic simulation and their intrinsic uncertainty and
computational effort.

We start in Sec. 2 by introducing the model for stochastic vesicle fusion dynamics
including the filtered output current as the quantity of central interest. This serves
as a motivation for the investigations of Sec. 3, where we analyse filtered signals for
more general chemical reaction systems and derive the characteristic PDEs for the cross-
correlation function (including the autocorrelation) of the corresponding reaction jump
process. The application to the spatially extended fusion model follows in Section 4.

2 Motivation: Neurotransmission dynamics

In [20], Kobbersmed et al. describe the neurotranmission process by means of the reaction
model depicted in Figure 1, where vesicle priming, fusion and the binding of Ca?*-ions are
given by Markov jump processes. Each process describes the dynamics of a set of release
sites located at a specific distance to the calcium channel. A release site can either be
empty (state Py), or there is a vesicle attached to it, which itself can be in different states
depending on the number of calcium-ions bound to the vesicle’s fusion sensor (states R,
with m = 0, ..., 5 referring to the number of bound calcium-ions). The process by which
a vesicle attaches to an empty release site is called priming and it is described by the
reaction

PO — R(),

IThe autocorrelation is related to the power spectral density via the Fourier transform [23].



which occurs at rate k.., > 0 for each release site and turns the empty release site into a
vesicle-docked release site of status Ry.2 The model also includes the backward reaction,

RO — PQ,

called unpriming, which detaches the vesicle from the release site again. This happens,
for each release site, at rate u - r for a constant v > 0 and a rate r that depends on the
calcium concentration [CaQﬂ according to

[Ca2+] "

—1—
' [Ca®*]" + (kan)™

where kp; > 0 is a Michaelis-Menten constant and n € N is the cooperativity exponent.
The Ca?*-binding state of a vesicle changes according to the forward- and backward-
reactions
Rm\:\Rm—i-ly m:O,...,4,

with the corresponding calcium-dependent forward rates
v = (5—m) [Ca®*] k.,
and the backward rates given by
15 = (m 4+ 1) 8" ke

for constants k.., ko, 3 > 0 that refer to Ca?T-binding/unbinding rate and cooperativity
factor, respectively.

The central mechanism is the fusion of a vesicle with the membrane, which can happen
from each status R,, and is modeled by the reactions

R, — Py + F, (1)

where I refers to the cumulative number of fused vesicles. It resets the release site to the
empty state Py and occurs with rate

%(m) =Lta™.
1
Here, L™ > 0 is the basal fusion rate constant and oo = (Lk—f) ® with k; denoting the fusion
rate of a fully activated vesicle.
The calcium-concentration [CaQ+] , which determines some of the reaction rates above,
depends on the distance d > 0 of the considered release sites to the calcium channel and

changes with time ¢ > 0:
[Ca®t] = [Ca®t] (t,d). (2)

The spreading of [CaQﬂ within the active zone is given by a PDE3, taking into account
the external calcium concentration (determining the inflow of calcium into the cell) and
the times a stimulus is applied (determining when the calcium channel opens) [25].

2That is, the total propensity for such a reaction to occur is given by k.o, > 0 times the number of
empty release sites.

3The model can therefore be regarded as a hybrid approach between a jump process and a diffusion
PDE [24]. Note that the approximation of the calcium ion population as a continuous concentration
is essential for the linearity of the reaction propensities, which will become of great importance in the
following sections.
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Figure 1: Model of synaptic vesicle fusion. Each release site can either be empty
(state Py), or there is a vesicle docked to it which itself switches between calcium-binding
states Ry, ..., R5. From each of these states, fusion can occur, leading back to an empty
release site and an increase in fused vesicles F'. A docked vesicle can detach again, thereby
resetting the release site to the empty state (unpriming reaction, see gray arrow) [20].

The stochastic process and output current

For each location on the membrane with fixed distance d to the calcium channel, the
resulting reaction dynamics are modeled by a Markov jump process of the form

X (t) = (Po(t), Ro(t), ..., Rs(t))

with Py(t) denoting the number of empty release sites and R,,(t) giving the number of
docked vesicles with binding state m at time ¢. In addition to the reaction jump process
(X (t))i>0 describing the status of the release sites and docked vesicles, we introduce
the stochastic process (F(t))¢>0 which counts the number of fusion events given by the
reactions (1). That is, F'(t) is a monotonically increasing process with initial value F'(0) =
0, which rises by one each time that a fusion event occurs, see Eq. (11) in Sec. 3.2 for
a more precise definition. Alternatively, the fused vesicle F' may itself be treated as a
chemical species, leading directly to an extended reaction jump process of the form

X (t) = (Po(t), Ro(t), -, Rs (), (1)) (3)

as considered in [20]. However, for our general investigations of Section 3, the special role
of the component F(t) as a counting process plays an important role.

The waiting times between jumps in the system’s state are exponentially distributed
according to the rates on the arrows depicted in Figure 1. Several of these rates are
implicitly time-dependent by their connection to the the calcium-concentration (2). Note
that the sum over the number of empty release sites Py and vesicles in states Ry, ..., Rs
is constant over time.

The postsynaptic response current resulting from the dynamics of the process X (¢)
can be calculated by convolving the functional derivative f(t) of the counting process
F(t) with the impulse response function g : Ry — R (given by the mini current evoked
by a single vesicle, see Figure 2), leading to the stochastic output current C(t) given by

C(t) = (f * g)(t) = / " f()a(t - s)ds, ()

see [26]. It is this output current C(t) which is measured in electrophysiological exper-
iments and for which first- and second-order moments are analyzed. In terms of signal
processing theory, the output current C(t) corresponds to the output signal of a linear
time-invariant (LTT) filter with input signal f and impulse response g [27]. This invites
to investigate such filtered signals for more general reaction networks, which will be done
in the following section.
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Figure 2: Mini current. Miniature excitatory postsynaptic current (mEPSC) g(¢)
evoked by a single vesicle.

3  Filtered signals for linear reaction systems

As output signals from LTT filters are of major interest when analyzing neurotransmission
dynamics, we study such signals in the following, with the aim to derive characteristic
equations for their first- and second-order moments. We start in Section 3.1 by introduc-
ing the general reaction network under consideration. For the case of linear propensity
functions, we summarize the well-known moment equations of such networks, which will
be employed in the subsequent analysis. In Section 3.2, we derive the moment equations
for the filtered signal and show that the second-order moments are determined by the
autocorrelation function of the underlying stochastic process. A characteristic system of
PDEs for the cross-correlation function (including the autocorrelation) will be derived
in Section 3.3, revealing that in case of a linear reaction network, this system is closed
and can be used to directly determine the signal’s moments, thereby avoiding expensive
stochastic simulations of the underlying reaction process.

3.1 The reaction network

The standard reaction network under consideration consists of . € N chemical species
Sy, ...,Sr which randomly interact through K € N reaction channels Rq,..., Rg. Each
reaction is given by an equation of the form

Ri: 8181+ ... + s0eSL %Sllksl +...+SILkSL (5)

with stoichiometric coefficients sy, sj, € No. The state of the system is defined by a
vector © = (z1, ...,71) € NI with z; denoting the number of particles of species S;. Each
time that reaction Ry takes place, this leads to a jump in the system state of the form
x— x+v® where v*) = <V§k)7 e yék)) € Z" is the state-change vector of reaction Ry,
with entries l/l(k) := s}, — Six. The rate at which a jump induced by reaction Ry occurs
depends on the system’s state = and is given by the propensity function A\ : N§ — R..
That is, A\g(x) is the probability per unit of time for reaction Ry to take place under the
condition that the system is in state «.

Given an initial state X (0) = x(, the components of the reaction network define a
Markov jump process (X (t));>0, with X (¢) € N§ being the system state at time ¢ > 0.
Letting P(x,t) denote the probability to find this process X (t) at time ¢ in state x, the



dynamics are fully characterized by the chemical master equation
K

D) =3 ule — v Pla — i) ~ M) Pla)]. (6)
k=1

Moment equations for linear reaction networks

Let Iy denote the index set of zero-order reactions with propensities of the form

A(,t) = k(1) (7)

for a function v : Ry — Ry, while £y is the index set of first-order reactions with
propensity functions of the form

(@, 1) = i ()21, (8)

for some index I € {1,...,L}. The system is called linear reaction network if there are
only zero- and first-order reactions, while reactions of higher order are excluded, i.e., it
holds that Ko UK, = {1,..., K}.

For a linear reaction network with propensity functions given by (7) and (8), respec-
tively, the first-order moments p;(t) := E[X;(t)] evolve according to

)= @+ > W), ) 9)
keko keky

which results from the master equation (6) [28,29]. For the (mixed) second-order moments
cp(t) == E[X;(¢) Xy (t)] of a linear reaction network we have

Lew®) = 3 w(t) (4P + D (t) +1{2fP)
keko (]_0)
+ 3 ) (e @) + v enn () + v, 1))
keky

Together with (9) this forms a closed system of equations for the first- and second-order
moments of a linear reaction system. Equations (9) and (10) will be needed in Section
3.3 in order to determine the autocorrelation function of a linear reaction network.

3.2 Moments of filtered signals

Given a stochastic reaction system with linear reaction propensities, we are interested in
the signal produced by a set of key reactions Ry, k € K* C {1,..., K}, for a given index
subset K*. In the context of the vesicle fusion model from Sec. 2, these key reactions
are given by the fusion reactions (1), while all intermediate steps such as docking and
undocking of calcium ions are not counted as key reactions. Let 0 < Ty < Ty <

denote the random time points where any of these key reactions Ry, k € K*, takes place.
Note that the random numbers 7T} are not independent of each other, and they satisfy
T; < T;41 almost surely for all j. Given these jump times, we define the counting process

(F(8)10 by )
=Sne-n). no={g 120 (1)



which means that F(¢) describes the cumulative number of occurrences of key reactions
Ri, k € K*, by time t. Per definition, the process F' is piecewise-constant and monoton-
ically increasing in time by jumps of size 1, and it satisfies F'(0) = 0 almost surely.

Remark 1. In accordance with our notes in Section 2, we can introduce an additional
species Sp+1 = F into the reaction network defined in Section 3.1 and replace the stoi-
chiometric equation (5) of each key reaction Ry, k € K*, by

Ri: 81681+ ... +s0eSL —)Sllk81+...+S/LkSL+F, (12)

while keeping the remaining reactions unaltered. This means that the system state x =
(z1,...,21) is extended by a component xy11 referring to the number of particles of this
additional species F' of cumulative key reaction events. We obtain an extended Markov
jump process of the form X (t) = (X1(t), ..., Xp(t), F(t)), in analogy to the one given in
(3). Setting F'(0) = 0, we get the counting process defined in (11). In the context of the
vesicle fusion model of Sec. 2, F refers to the species of fused vesicles, and Eq. (12) is a
generalization of the fusion reaction (1).

The functional derivative f of the counting process F' is given by a sum of dirac delta
functions shifted by the time points Tj, i.e., we have F(t) = ffoo f(s)ds with

£t =30t = Ty),

where 0 is the standard Dirac delta. We consider the process f as the input signal of an
LTI filter, which determines the output signal C(t) = (f*g)(t) via convolution with a given
impulse response function g : Ry — R, as defined in (4). In the following, we investigate
the first- and second-order moments E[C(t)] and E[C?(t)] of this central quantity C(t).

First- and second-order moments of the output signal C(¢)

Let pp(t) := E[F(t)] denote the expectation of the counting process F'(¢). For the first-
order moment puc(t) := E[C(t)] of the output signal C(¢) we have

welt) = B[ [ 109905

_ E[/CZF(ts)g(s)ds}
© / E{;F(t—s)} g(s)ds

[ LEFE- g

= [ Hrte = s)gte)ds

for pp = %,u r, where (%) follows from Fubini’s theorem and (xx) from the Leibniz rule.

This means that we can express the first-order moment ¢ (t) of the output signal C(t) by
means of pp(t) according to

fic = pp * g (13)



As we can understand F'(t) as the component of an extended reaction jump process with
additional species F' (see Remark 1), its expectation pp is determined by the standard
moment-ODE (9).

In order to determine also the second-order moments E[C?(t)] of the output signal, we
define, for any function a : Ri — R, the twofold convolution

(a*gxg)(t):= /jo /jo a(s,s)g(t — s)g(t — s')dsds’.

With this definition, we can write

[/ / F(s)f(s7)g(t —s)g(t — Sl)dsds’}

=(as*g*g)(t)

for ap(s,s') := E[f(s)f(s')].* Noting that as(s,s’) = %
E[F(s)F(s")], we finally get

wic 0] = (52 g00r) <a+9) 0 (14)

That is, the second-order moments of the output signal C(t) can be expressed by means
of the autocorrelation function ap of F(t). In the following subsection, we will derive
a characteristic equation for the autocorrelation function of a general linear reaction
network.

—ar(s,s’) for ap(s,s’) =

3.3 Characteristic equation for cross-correlation functions

While the evolution equations for the first- and second-order moments of the reaction
jump process X (t) are well-known, see Equations (9) and (10), the corresponding cross-
correlations

al,l/(t, S) = E[Xl(t)Xl/(S)], l, U e {1, ...,L}, t # s,

have not explicitly been investigated in the literature. However, as we have seen before,
these cross-correlation functions are essential to analytically determine the second-order
moments of the filtered signal C(¢). The following theorem delivers a characteristic equa-
tion for the cross-correlation functions of a linear reaction network.

Theorem 1. For a linear reaction network the cross-correlation functions satisfy
0]
Hra (t:s) =3 @y pe(s) + 3wty Va, vt s) (15)
keKo ke
fort > s >0, with initial value a; (s, s) = cr(s) = E[X;(s) Xy (s)].

The proof can be found in the Appendix, page 23.

This means that, together with (9) and (10), we have a closed system of equations
for the first-order moments (;(t), the covariances cov(X;(t), Xy (t)) = 10 (t) — pu(8) prr (t)
and the cross-correlations a; (¢, s) of the reaction jump process X (¢) (or, likewise, for
the extended process X (t)) for a linear reaction network.

4A remark on the first- and second-order moments of the input signal f is given in the Appendix 6.2.



Remark 2 (Non-linear reaction systems). For second-order reactions with propensities of
the form \i(x,t) = y(t)z;zp the term on the right-hand side of (15) includes third-order
moments of the form E[X;(t) Xy (t) Xy (s)], so the overall system is not closed anymore.

In the following, we will illustrate our result by an example in which we will also
consider the normalized autocorrelation coefficient given by

ap(t,s) — wt)pu(s)
oi(t)ou(s)

for 01(t) = \/VIXe(D)] = EXPO] — 120 = v/ (0) — 12 (0.

Example 1 (Reduced linear system). Consider the simple linear reaction network with
two species S1,Sa and two reactions

Iil’l(t, S) =

(16)

R1281—>82, R2282—>81.

The key reaction we are interested in is given by Ra, i.e., we have K* = {2}, and F\(t)
18 counting the occurrences of this second reaction. In order to apply our results, we use
the model extension introduced in Remark 1, meaning that we replace the second reaction
by Ry : Sy — 81 + F and consider the extended process X (t) = (X1(t), X5(t), F(t)) with
the additional species S3 = F. Let v1(t) and ~2(t) denote the reaction rates for Ry and
Ro. We compare two scenarios in order to demonstrate the behaviour of the system for
constant as well as for time-dependent rates. In both cases, we set the initial state of the
extended system to X (0) = (10,0,0) and the rate of the second reaction Ry to y(t) =5
for allt. The scenarios differ in how we set the rate for the first reaction R:

7 (t) =2 (Scenario 1),

1 (t=0.5)2
M) =0142 ————=e" 75,05 (Scenario 2).

V2m - 0.052

Samples of the stochastic process X(t) are created via a modified version of Gillespie’s
direct method with a mazimal timestep in order to update the time-dependent rates [30)].
We display the average system behaviour and standard deviation for the two scenarios,
calculated from the moment-ODEs (9) and (10) and via Monte-Carlo simulations of the
process, in Figure 3a and 3b. As one would expect, in the case of constant rates (Scenario
1), the means of species Sy and Sy quickly equilibrate, leading to an approximately linear
increase in pp(t) = E[F(t)] after a short time delay. While the standard deviation of both
X1 (t) and X5(t) converges to a constant value with equilibration, it increases over time
for F(t). In the second scenario, similar behavior arises far from the peak of v1 at time
t = 0.5, but the temporary increase in v1(t) during the peak leads to nonlinear changes in
the average system state as well as the standard deviations.

Using Theorem 1, we compute the autocorrelation function a;;(s,t) = E[X;(t)Xi(s)]
for each species of the extended system between all time points s and t by solving the
PDE (15). The autocorrelation function ap p is displayed in Figure 4 for both scenarios.
In Scenario 1 (Fig. /4a), the linear increase of F after the equilibration period causes
ar r(s,t) to be dependent on the product s-t of the time points. Denoting the slope of the
mean prp(t) in Figure 3a by m, one can approzimate the autocorrelation as ap p(s,t) =~
m? - s-t. In the second scenario, due to the fact that the counting process F(t) has low
values for all time points before the passage of the peak in v1(t), the autocorrelation is
small whenever t or s is in that domain. The temporary increase in v1(t) causes an

10
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Figure 3: Average system behavior. Mean yu;(t) = E[X;(¢)] and standard deviation
o1(t) = /V[Xi(t)] of the number of particles of species §; from moment-ODEs (solid)
and Monte-Carlo simulation (11)'°(t),0,"°(t), dashed) for the reduced system of Example
1 and (a) constant reaction rates (Scenario 1) and (b) time-dependent v;(t) (Scenario
2). 10® MC-steps for each scenario.
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Figure 4: Autocorrelation for species F. Autocorrelation function ap r(t, s) as solu-
tion of the PDE (15) for (a) constant reaction rates (Scenario 1) and (b) time-dependent
~1(t) (Scenario 2) of Example 1.

asymptotic, approximately logistic growth in the number of key reaction events F' (Figure
3b), which is reflected in similar autocorrelation values when both s and t are close to 1.

Since ay (s, t) is in absolute units, its scale varies according to the respective number
of particles. In order to show the stochastic dependency independent of the system scale
and to make a direct comparison between different scenarios feasible, we also compute the
autocorrelation coefficient k; (s, t) from Eq. (16), shown for species F in Figure 5. Note
especially the low autocorrelation coefficient between timepoints before and after the peak
for the second scenario in Figure 5b.

Clircling back to the initial motivation of our calculations, we now compute the first-
and second-order moment of the output signal generated by the second reaction,

Ct) = (f x9)(®), (17)

where f(t) is the functional derivative of the stochastic process F(t), and the impulse
response function g is defined as the simple step function

g@)k_{—l, ift €0,0.2)

0, otherwise.

For both scenarios we compare the deterministic solution that results from solving Eq.
(13) and Eq. (14) and using Thm. (1) to Monte-Carlo estimations, observing that the
results agree very well in both cases, see Figure 6. In order to keep the relative error
in the single-digit range, more than 10* MC-steps were required for each scenario. Solv-
ing the deterministic equations instead reduced the computational runtime by a factor of
200. This example thus illustrates that, in case of a linear reaction network, numerically
expensive MC-simulations for estimating first- and second-order moments of stochastic
filtered signals can be avoided by using our result from Thm. (1).
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Figure 5: Autocorrelation coefficient for species F. Normalized autocorrelation
coefficient kg p(t,s) given in Eq. (16) for (a) constant reaction rates (Scenario 1) and
(b) time-dependent 1 (¢) (Scenario 2) of Example 1.

4 Application to vesicle fusion model

In the neurotransmission process as modeled by Kobbersmed at al., the measured post-
synaptic current is actually the sum of the currents resulting from multiple release sites
placed along the active zone. In the following, we therefore model the overall neurotrans-
mission process by combining the dynamics at different spatial locations. In Section 4.1
we introduce the spatially extended vesicle fusion model. Subsequently, we analyze the
dynamics for a spatially fully resolved and a spatially coarse-grained setting in Sections
4.2 and 4.3, respectively, thereby using the results from Sec. 3 in order to determine the
moments of the total junction current. We close our investigations by an analysis of the
current’s peak size in Section 4.4.

4.1 Spatial extension of the vesicle fusion model

The calcium concentration a release site will be exposed to during an action potential
varies depending on the distance to the calcium channel. This determines the number of
primed vesicles and the overall vesicle fusion dynamics at the different release sites. We
define a set of distances d;, i € {1, ..., Ng}, at which the release sites can be located. (Note
that there can be several release sites located at the same distance.) For each distance d;
we consider a process

X(i)(t) _ (P()(i)(t),Réi)(t)’ ., RO(t), PO (t)) (18)

as the one defined in (3), with F()(t) referring to the number of fused vesicles (or,
equivalently, the cumulative number of fusion events) at this location at time ¢. The
calcium concentration [Ca2+] (t,d;), which determines the jump rates for the process

X @ according to the rules of the vesicle fusion model described in Sec. 2 is a function
of time ¢ and distance d; to the calcium channel, see Eq. (2).
We denote by C;(t) the output current at location with distance d;, i.e.,

Ci(t) = (S = 9)(t),

13
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Figure 6: Output current for reduced linear system. Mean puc(t) = E[C(f)] and
standard deviation o¢(t) = 1/V[C(t)] of the current C(t) given in (17) computed by solving
the PDE (15) and using Eq. (14) (solid black) in comparison to Monte-Carlo estimations
(dashed brown) for (a) constant rates (Scenario 1) and (b) time-dependent ~; (¢) (Scenario
2) given in Example 1. For both scenarios, an exemplary trajectory (green) illustrates
the stochastic temporal evolution of the current C(t). The MC-estimations result from
103 MC-steps for each scenario.

see (4), with f()(t) denoting the input signal at distance d;, i.e., f(*) is given by the func-
tional derivative of the counting process F(*). The impulse response g(t) is the miniature
excitatory postsynaptic current depicted in Figure 2. The total junction current evoked
by all release sites together is then given by adding up all distance-specific output cur-
rents [26]:

Ng t ]
Cooraa(t) == S Ci(t) = / S D (s)g(t — 5)ds.
=1 i

Since the C;(t) are stochastically independent of each other, we have

Ng

Bt (8) = ElCrotar (1)) = D E[Ci(1)] (19)
;dl Ng
58,0 (1) = V[Crotal (1))= Z VICGi(t)] = Z (E[CZ ()] —E[C:(1))*) (20)

for the first and second cumulant of Cippqi(t).

We consider the case of two presynaptic stimuli in the form of two spikes in the calcium
concentration over a certain time interval [0, T] for a suitable T' > 0. We want to analyse
the behavior of a system of 180 release sites for different external calcium concentrations
[Ca?*]_ ., which regulate the amount of calcium inflow while the channel is open and
thereby determine the function [Ca?*] (¢,d;). For the analysis in the following sections,
this calcium flow will be calculated in advance by numerically solving the corresponding
PDE [25]. The stochastic processes (18) will be simulated using the temporal Gillespie
algorithm [30].

14
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Figure 7: Calcium concentration at example locations. Calcium concentration
[Ca®*](t,d;) over time t at five different distances d; from the calcium channel for two
stimuli at ¢ = 0.002s and t5 = 0.012s with an external calcium concentration [Ca2+]e$t =
0.75mM.

4.2 One release site at each location

Let us first consider the case discussed in [20], where each of the 180 release sites is placed
at a different distance d; from the calcium channel, so that the number of locations is
Ny = 180, and a two-pulse stimulus is applied to the system.

Distribution of distances

According to [20], the probability density function (pdf) of the distribution of vesicles (at
the drosophila neuromuscular junction) is the integrated Rayleigh distribution

2 g (21)
VEEES

where d is the distance from the calcium channel and ¢ = 76.51nm. For a depiction of
p(d) see the red curve in Figure 10 further below. Using inverse transform sampling, the
release site distances can then be generated from the cumulative distribution function of
p(d).

The application of two consecutive stimuli at t; = 0.002s and t; = 0.012s then results
in unique calcium concentration evolutions for each location, which is shown in Figure
7 for the first five d;. Since many of the rates in the model are calcium-dependent (see
Figure 1), this means that will also vary according to the release site’s location.

p(d)

Autocorrelation at different locations

Solving the PDE (15) for all locations and using (16), we can now compute the autocorre-
lation functions a%) (t,s) == apw _po(t,s) and the normalized autocorrelation coefficients
ngﬁ) (t,8) == Kpw po (t,s) for each d;. Figure 8 displays them for an example location
d; = 0.118nm. The sharpness of the calcium peaks causes the areas with similar values of

ag)(t, s) or m%l)(t, s) to have very sharp edges compared to the case with a broader peak
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example location. (a) Autocorrelation ag)(t,s) and (b) normalized autocorrelation
coefficient ng)(t, s) of species F(!) (= number of fused vesicles at distance d;) for two
stimuli as shown in Figure 7 from solution of the PDE (15). The distance for this location
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Figure 9: Total junction current for two stimuli. Mean pc,,,,, (t) = E[Ciotai (t)] and

standard deviation og,,,, (t) = \/V[Ciotai(t)] of the total junction current for 180 locations
(Ng = 180) as in [20]. Stimuli were as shown in Figure 7.

in the reduced system (Scenario 2 of Example 1, Figures 4b and 5b). However, interest-
ingly, the overall behaviour of both ag,l)(t, s) and Hg)(t, s) is consistent with the reduced
linear system of Example 1, despite the larger number of intermediate states (additional
species) and more complex time dependence in the vesicle fusion model, which suggests
to reduce the vesicle fusion model skipping intermediate reaction steps.

Total current

We can now compute first- and second-order moments E[C;(¢)] and E[C?(¢)] for the indi-
vidual distances and, by Eqs. (19) and (20), the first two cumulants for the total junction
current, fic,,,., = E[Ciotar(t)] and o2 = V[Ciotar(t)]. The total junction current and
standard deviation resulting from 180 vesicles that are distributed according to Eq. (21)
is shown in Figure 9.
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Rayleigh-distributed 180 release sites into Ny = 10 evenly spaced bins. The integrated
Rayleigh distribution p(d) (red) is given in Equation (21).

4.3 Spatial coarse graining

The approach described in Section 4.2 requires the solution of 180 systems of differential
equations, each consisting of 7 equations for the first-order moments (one for each species),
7 X 7 equations for the second-order moments and na; equations for the autocorrelation,
where na¢ is the number of time steps for the chosen time discretization At (so nay- At =
tmaz). For example, for na; = 100 this equates to (7 + 7 x 7+ 100) = 156 equations
for each distance and approximately 180 x 156 ~ 2.8 - 10® equations in total. Thus, it is
favorable to choose the time discretization A; as large as possible without significant loss
of accuracy to keep the number of equations per system low. In order to further reduce
the resulting computational cost, we introduce a spatial coarse graining (CG) approach
for the locations: the maximum distance to the calcium channel is divided into Ny equally
spaced subintervals (bins) with midpoints d;. The number of release sites within each bin
is determined from the integrated Rayleigh distribution p (Eq. (21)). An example plot of
the probability densities for Vg = 10 together with the integrated Rayleigh distribution
is depicted in Figure 10.

The computation is then very similar to that in Section 4.2, but with multiple release
sites at each of the new equidistant locations d;. This is easily implemented by scaling the
initial conditions at each d; according to the number of release sites that were grouped into
interval i. We compare the total current and its variance for different values of Ny with
the results without CG in Figure 11. The first-order moment fxe¢,,,,, (t) can be approxi-
mated sufficiently well even with only Ny = 3, while the variance computation requires
at least Ny = 10 subintervals to achieve a good agreement. Thus, the number of systems
of differential equations can be brought down to 10 instead of 180. This also means that
the system can be modelled accurately with a CG approach in both the stochastic as well
as the determinsitic case.

With 1000 MC-steps for the system with Ny = 180, we still observe significant sta-
tistical uncertainty in the variance. Thus, when interested in high accuracy (e.g., when
solving stochastic inverse problems) our proposed deterministic technique is advanta-
geous regarding accuracy and numerical effort. Our method is especially preferable for
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Figure 11: Comparison of different degrees of spatial coarseness. (a) Expecta-
tion fic,,,,, (t) = E[Crotar(t)] of total junction current and (b) its variance o3 (t) =
VI[Ctotai(t)] for different numbers of coarse graining bins Ny (dashed) compared to the
original system with no coarse graining (solid red, Ny = 180). The system counsisted of

180 release sites grouped in Ny locations with 2 applied stimuli as shown in Figure 7 and
time discretization A; = le—4.

determining a favorable CG approach since the analytically exact results allow for direct
comparison between different levels of coarseness.

4.4 Peak analysis: Local minima of the mean current

Of special interest are the peaks (i.e., the local minima) of the resulting total current.
While in [20], the mean and variances of the random local minima of Cipiq; are analyzed
(see Appendix 6.3), we will here consider the local minima of the mean current fxg,,,,,-
To that end, we recursively define the time points 7" > 0 where the gradient of yc,,,,,
is zero by setting 7 := 0 and

d
7™ := min {t > 70D, 7 HCrotan (t) = 0}

for n > 1. Then,
My, = p1e, 0, (T V) (22)

is the nth local minimum of ye,,,,, for n > 1, and
VY, = Ugmal (T(2"_1)) (23)

is the variance at the corresponding time point. Figure 12 shows the variance V; versus
the first local minimum M; at time T for different external calcium concentrations
[CaQ"’]CXt in comparison to the corresponding values calculated from experimental data
by [20]. The experimental data points are averaged over 6 different animals, with 9
repetitions for each animal. Due to the low number of samples in the experiment and
the considerable variation between the different animals (indicated by the large standard
deviations in Figure 12), it is very difficult to perform a sound analysis of the agreement
between our results and the observed data. Nevertheless, we find that all our calculated
values lie within the confidence area given by the statistical mean plus/minus the standard
deviation. Most importantly, one can observe an approximately parabolic pattern in the
relation between mean and variance, just as described in [20].
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Figure 12: Peak analysis. Variance V; = U(Ziwmz (TM) versus first peak M; =
fiCyorn (TM) of the mean total current. The crosses refer to the values calculated an-
alytically using (22) and (23). The points were calculated from experimental data and

are the averages of 6 animals, with 9 repetitions per animal.

5 Conclusion

In this work, the process of neurotransmission served as a motivation to analyse moments
of filtered signals for stochastic linear reaction networks with time-dependent reaction
rates. We examined the total postsynaptic current, which is the quantity measured and
explored in electrophysiologial experiments, from the mathematical perspective, consid-
ering it as the output signal from a linear time-invariant filter. We showed that the
second-order moments of such output signals may be quantified by the autocorrelation
function of the underlying stochastic process. Although moment equations for stochastic
reaction dynamics given by chemical master equations are well-studied in the literature,
analogue equations for the corresponding cross-correlations outside of equilibrium have
not been investigated so far. As one main result of the present work, we derived a
characteristic PDE for the cross-correlation functions of linear reaction networks, which
completes the system of moment equations and allows to analytically quantify the vari-
ance of the output signals of interest. By solving these equations, the filtered signal’s
variance can be calculated without any stochastic simulations of the underlying reaction
process, thereby reducing numerical effort.

We demonstrated this by means of an exemplary reduced reaction system and via
application to neurotransmission dynamics. For the latter, a spatial extension of the
model for vesicle-fusion dynamics in the active zone was investigated. Our findings show
the possibility of a drastic spatial coarse-graining: The large amount of individual release
sites located along the presynaptic membrane may be grouped according to their distance
to the calcium channel into a small number of equally spaced bins. This reduced system
delivers a very good approximation for the original solution while significantly reducing
the number of equations to be solved. Finally, we showed that the relation between mean
and variance of the total postsynaptic current’s peaks is in accordance with the results
from experimental studies.

Our general result for the cross-correlation (Theorem 1) can be applied to any lin-
ear reaction network with time-dependent rates. This is of special significance for solving
inverse problems such as parameter estimation for stochastic reaction systems: As demon-
strated in the example of the vesicle fusion model, these systems can be very complex
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and involve a great amount of different parameters that produce a random outcome,
which makes finding a robust solution to the inverse problem extremely difficult. Here,
we propose an accurate and fast method to solve the corresponding forward problem
by finding the first- and second-order moments deterministically. This renders imprecise
and computationally expensive stochastic simulations redundant and is therefore of great
advantage in parameter estimation and model optimization. In the future, our approach
may find application not only in the analysis of other time-dependent biochemical reac-
tion networks, but also in any other area where stochasticity and impulse responses are
relevant, e.g. particle detection or macroeconomic modeling. As we demonstrated for
vesicle fusion models, our approach can be especially useful in the efficient and accurate
exploration and comparison of coarse-graining approaches.

In the context of neurotransmission dynamics our results may be used to efficiently
investigate the effect of varying vesicle distributions at synapses of different species or to
optimize other neurotransmission models via spatial coarse graining or model reduction.
Further research into the mathematical part of this work could include the investigation
of the effect of other (e.g. time-variant) filters. Furthermore, it may be interesting to
research the possibility of extending our approach to approximate the cross-correlation
of nonlinear reaction networks, e.g. by a stepwise linearization of the reaction rates.
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6 Appendix

6.1 Proof of Theorem 1
For fixed I,I’ € {1, ..., L} and fixed s > 0 we have, for t > s,

—apy (t, 8)

Z Z xyPle(t) = x, X (s) = y)

yENo zeNy

K
IPIPD muy (M — v O)Pla(t) = @ — v, X0 (5) = ) — (@) Pla(t) = 2, Xu(s) = ]

1y€No zeNl
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Using the definitions of y;(t) and a; (¢, s) we obtain (15).

6.2 First- and second-order moments of the input signal

As in Sec. 3.2, let 0 < Ty < T5 < ... denote the random time points where any of the key
reactions Ry, k € K*, happens. For the first-order moment of the input signal f we have

ZE t—T, Z/ 3t —s)p;(s dS—Zp]
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where p; is the probability density (exponential distribution, continuous function) of the
jump time 7. For the second-order moments we get

E[f(t) f(t")]
=E [(ia(f—Tﬂ) ié(t/—T
i=1 =1
:iﬁ[é(t—T +ZE (t —T)o(t' —T;))
i=1 IjJ#il
:;/0 5(t—8)6(t — s)pi(s d8+1;/ / 8(t —s)0(t' — s")pij(s, s')dsds

J#i

Z(S(t—t pi(t —i—Z/ 6(t" — 8" )pij(t,s")ds'
= 1751

ij=1

U

N
Il
—

5(t — t")pi(t) + Z pij(t,t)

[3 1

i
where p;; is the joint density function of two jump times T;,T}, ¢ # j. (Especially, we
have p;;(t,t') =0 for t’ <t and i < j.)

6.3 Peak analysis: Comparison

In [20], an analysis of the peaks and peak variances resembling the one in 4.4 is per-
formed. However, there is an important difference between our method and theirs in the
order of taking the expectation and the local minima: The authors consider the first min-
imum of each of the individual realisations Ciotq; and calculate expectation and variances

afterwards.” Formally, they split the time interval into two intervals I; := [0,7”] and
Iy := [T, T] for a certain time point 7" € [0,T]. One can then define the mean

1, = E [min Cropal(t 24

M [?gl}nl total( )] (24)

and the variance
fj’n =V [?éilgctotal(t)] (25)

of the temporal minimum of the~0utput current Cyoiq; Over the time interval I, for n = 1, 2.
In [20], they estimate M and V; for the case of two stimuli by means of MC-simulations.
These are different from M; and V; defined in (22) and (23), respectively, where

M1 = 416,000 (TV) = E[Crotat(TV)] = min E[Cropar (¢)]

tel

for I, := [0,7(?)], and
Vi =0}, (TW) = V[Ciota (TM)].

This difference holds true for all other n, as well.

5This is standard practice in biology in order to allow for better comparison between different animals.
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Remark 3 (Alternative definition by means of gradient). In analogy to the definitions in
Sec. 4.4, we can recursively define the (random) time points T > 0 where the gradient
of the current is zero by setting T(®) :== 0 and

3 - d
T+ .= min {t > T . actm‘,al (t) = O} :

By this definition, we can set

A%ﬂzﬁkmmdﬂwﬂﬂ

u,:v@mﬂﬂ%ﬂw.

However, this all relies on the assumption that there are no saddle points. Moreover, it
can happen that %Ctoml(t) = 0 holds for other time points which are local minima/mazima
or saddle points but not the 'peaks’ we want to identify by (24). On the other hand, this
approach can be advantageous since one does not need to assign the number of peaks in
advance and no prior assumptions on their time points are made.
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