
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

DANIEL BAUM

Multiple Semi-flexible 3D Superposition
of Drug-sized Molecules

ZIB-Report 04-52 (December 2004)

Multiple Semi-flexible 3D Superposition of

Drug-sized Molecules

Daniel Baum

Abstract

In this paper we describe a new algorithm for multiple semi-flexible
superpositioning of drug-sized molecules. The algorithm identifies struc-
tural similarities of two or more molecules. When comparing a set of
molecules on the basis of their three-dimensional structures, one is faced
with two main problems. (1) Molecular structures are not fixed but flex-
ible, i.e., a molecule adopts different forms. To address this problem, we
consider a set of conformers per molecule. As conformers we use represen-
tatives of conformational ensembles, generated by the program ZIBMol.
(2) The degree of similarity may vary considerably among the molecules.
This problem is addressed by searching for similar substructures present
in arbitrary subsets of the given set of molecules.

The algorithm requires to preselect a reference molecule. All molecules
are compared to this reference molecule. For this pairwise comparison we
use a two-step approach. Clique detection on the correspondence graph of
the molecular structures is used to generate start transformations, which
are then iteratively improved to compute large common substructures.
The results of the pairwise comparisons are efficiently merged using binary
matching trees.

All common substructures that were found, whether they are common
to all or only a few molecules, are ranked according to different criteria,
such as number of molecules containing the substructure, size of sub-
structure, and geometric fit. For evaluating the geometric fit, we extend
a known scoring function by introducing weights which allow to favor
potential pharmacophore points.

Despite considering the full atomic information for identifying multiple
structural similarities, our algorithm is quite fast. Thus it is well suited
as an interactive tool for the exploration of structural similarities of drug-
sized molecules.

Keywords: pharmaceutical drug design, multiple superposition, semi-flexible
alignment, clique detection, iterative closest point, matching tree.

Mathematics subject classification: 68W25, 92-08.

1 Introduction

In pharmaceutical drug design, one is often faced with the question, which
properties a drug (ligand) must have to bind to a specific receptor. In absence
of the receptor structure, the only given information is a set of ligands for which

1

we know or assume, that they all bind to the same receptor using similar binding
modes. In this case, one can only guess which properties a ligand needs to have
to bind to the receptor. To put this guesswork on solid ground, the ligands need
to be compared with each other, and similarities as well as differences need to
be revealed. Beside the physico-chemical properties of the ligand, its form plays
a major role in the binding process. Hence, it is not enough to consider the
two-dimensional structure of the ligands, but one also needs to look at their
three-dimensional forms. In general, the active forms of the ligands are not
known. Therefore, the ligand’s flexibility needs to be taken into account.

There exist two classes of algorithms that account for the flexibility of the
ligands. The first class of algorithms keeps the ligands flexible during the com-
parison stage. The advantage of this approach is that the search space is not
limited to a precomputed number of (generally) low-energy conformers. And
indeed, active conformers often have a slightly higher energy. The disadvan-
tages of this approach are two-fold. On the one hand, the search space needs
to be sampled for each comparison. On the other hand, one might end up
with statistically very unlikely conformers. The second class of algorithms uses
precomputed conformers to consider the flexibility of the ligands, hence they
are called semi-flexible algorithms. Their advantage is that the conformers of
each molecule need to be computed only once, independent of the comparison
to be accomplished, and thus a more exhaustive conformational analysis can
be carried out. Also, the development of comparison algorithms using multiple
conformers is uncoupled from sampling the conformational space. The disad-
vantage of this approach is that the conformational space of a molecule might
be very large and one can easily generate thousands of different conformers,
posing the question, which conformers should be used for the comparison. This
problem arises, since the conformers are generated before and not during the
comparison.

In the remainder of the introduction, we briefly want to describe related work
and compare our approach to previously published ones. Since the number of
publications in this field is very large, we will not cover all developments in
molecular superposition. Good coverage of the work predating 1990 can be
found in [3, 24]. Publications predating 2000 are excellently reviewed in [22].

We will first review publications belonging to the class of algorithms consid-
ering true flexibility. Sheridan et al. [32] use distance geometry to search for con-
formations containing a pharmacophore present in all molecules. Dammköhler
et al. [6] use different systematic search methods to sample the conformational
space. For comparing patterns in the conformers of different molecules they
use distance maps. Both approaches require a predefined pharmacophore to
be present in each molecule. McMartin et al. [27] and Lemmen et al. [21] pro-
pose methods for pairwise superposition, keeping one of the molecules rigid and
the other one flexible. However, while McMartin et al. use a combination of
a Monte Carlo perturbation and an energy minimization, Lemmen et al. de-
compose the molecule in relatively rigid parts and incrementally fit these to the
rigid molecule. Finally, Jones et al. [16] and Handschuh et al. [14] apply genetic
algorithms to flexibly superimpose sets of molecules.

Since our algorithm makes use of rigid-body alignment, in the following we
will mention publications dealing with both rigid-body and semi-flexible super-
position. Many rigid-body alignment methods try to maximize some kind of
volume overlap. The volume is generally given through Gaussian functions, ap-

2

proximating different properties, such as van der Waals overlap [11], electron
density overlap [29], or electrostatic potential overlap [10, 26]. The overlap
optimization methods range from simplex optimization [10], gradient optimiza-
tion [26], Fourier space methods [29, 20] to Monte Carlo optimization [30]. The
methods of Cosgrove et al. [5] and Hofbauer [15] use molecular surface simi-
larity to superimpose molecules. Both methods apply clique detection to find
matchings for a reduced set of surface points. Feuilleaubois et al. [7] use neural
networks to search for optimal sets of inter-atomic matches. Other approaches
include, e.g., the work of Masek et al. [25], Klebe et al. [19], Finn et al. [8], and
Miller et al. [28]. The work most closely related to our approach is the multi-
ple semi-flexible superposition algorithm by Martin et al. [23]. They specify a
reference molecule to which all other molecules are pairwise aligned. Multiple
conformers are considered separately. For the pairwise alignment they require
pharmacophore points to be specified which are matched using a clique detection
method. The results of the pairwise comparisons are finally merged to get mul-
tiple matchings. Since the number of pharmacophore points in each molecule
is considerably smaller than the overall number of atoms, clique detection can
easily be applied and merging the results is relatively easy. In parts, our work
is based on the work of Kirchner [18], who uses a greedy matching strategy for
finding the optimal matching of any two conformations of two molecules. Since
he is only interested in the optimal matching between two molecules, he can
apply a branch-and-bound method to prune large parts of the search tree.

Our work is motivated by the need for a multiple semi-flexible superposition
algorithm which quickly generates a number of different good matchings, yet
uses the full atomic information. To our knowledge, no such algorithm was as yet
available. Thus, we try to bridge the gap between the work of Martin et al. [23],
which is fast, but uses only parts of the full structural information, and very
detailed, expensive algorithms which explore the full structural information, but
either are not able to handle flexibility or cannot do multiple superpositioning.

2 Materials and Methods

In this chapter, we describe all methods used in our algorithm. A graphical
overview of the algorithm is shown in Fig. 1. Since the term matching will be
used extensively in this chapter, we want to give its definition already at this
early position within the paper. Informally, a matching is a one-to-one mapping
of atoms of two molecules. Formally, it can be defined as follows.

Definition 2.1 Let m,n ∈ N \ {0}. A function M is called pairwise matching,
or simply matching, if it meets two properties:

1. M : {1, . . . ,m} −→ {0, . . . , n}
2. ∀i, j ∈ {1, . . . ,m} : M(i) = M(j)⇒ i = j ∨M(i) = 0

The set M∗ := {i|M(i) 6= 0} contains all elements that are not mapped to 0.

In the core of our algorithm we compute pairwise matchings (Sec. 2.1) be-
tween one conformation of the reference molecule, also referred to as reference
conformation, and one conformation of a query molecule, also referred to as
query conformation. In order not to overlook interesting matchings, we need to

3

����� ����� �
	 � �

 �

�
�

Reference
ConformationsQ

ue
ry

M
ol

ec
ul

es

Q
ue

ry
M

ol
ec

ul
e

C
on

fo
rm

at
io

ns

� ���

� �

� �

� ��� �

� � �

� ! "

$

Reference
Molecule

%

Matching Trees
per Query
Molecule

&�' Matching Trees
per Reference
Conformation

(*) +-, Pareto Sets
of all Matchings

. /

Figure 1: Overview of the algorithm. The reference molecule is denoted by R, its
conformations by Rj . The query molecules are denoted by Qi, their conforma-
tions by Qij . The • symbol denotes the computation of pairwise matchings. Tij
denotes the matching tree containing all pairwise matchings between molecule
Qi and reference conformation Rj . Ti is a final matching tree comprising all
multiple matchings (matching clusters) with respect to Ri. Finally, Pi is a
Pareto set containing multiple matchings of different reference conformations.

compute a considerable number of matchings. For each matching we compute
a score. If the score is small, we reject the matching, otherwise it is accepted.
Note, that for our purpose it is not sufficient to compute only the best match-
ing, since we are mainly interested in substructures present in more than one
query molecule and the substructure corresponding to the best matching might
not be present in other query molecules. All matchings are stored in so-called
matching trees (Sect. 2.2). They allow to quickly identify matchings with equal
target substructure. Matching trees are well suited for storing a large number of
matchings but also for computing intersections of matchings, i.e., substructures
present in more than one query molecule. All matching trees corresponding to
the same reference conformation are merged into a single final matching tree
containing all matching clusters for this conformation. Finally, all matching
clusters contained in all final matching trees are scored using competing score
values (Sect. 2.3). To account for all competing score values we use Pareto sets.
The complete algorithm is described in Sect. 2.4 and the algorithm’s parameters
are commented on in Sect. 2.5.

4

2.1 Pairwise Matchings

Since the computation of pairwise matchings lies at the core of the algorithm,
it needs to be efficient. Except for very small point sets it is not possible to
compute all potential matchings. Hence, we need to preselect a feasible subset of
matchings (Sect. 2.1.2). These starting matchings are iteratively improved, i.e.,
we search for the local maximum near a given start transformation (Sect. 2.1.3).
Instead of using an exact algorithm, which is computationally very expensive,
we use a greedy method, which in most cases finds the optimum or gets very
close to it [18]. We favor large matchings with a small distance between the
matched points. Since those two qualities compete with each other, we need
a scoring function that balances them (Sect. 2.1.1). This scoring function can
also be used to bound the iterative search (Sect. 2.1.3).

2.1.1 Scoring Function

Let A1, . . . , Am, and B1, . . . , Bn be the coordinates of all non-hydrogen atoms
of molecules A and B, let M be a matching and T a transformation. Then
we can define the root mean square (rms) distance and the score [33] of two
molecules A and B under matching M and transformation T as

rms(A,B;M ;T) :=

√∑
i∈M∗‖Ai − TBM(i)‖2

|M∗|
, and (1)

score(A,B;M ;T) :=
|M∗|

min(m,n)
· e−rms(A,B;M ;T) . (2)

If we define w as w : {1, . . . ,m}× {1, . . . , n} −→ R
+, we can further define the

weighted rms distance and the weighted score as

rms∗(A,B;M ;T) :=

√∑
i∈M∗ w(i,M(i)) · ‖Ai − TBM(i)‖2

|M∗|
, and (3)

score∗(A,B;M ;T) :=
|M∗|

min(m,n)
· e−rms

∗(A,B;M ;T) . (4)

The functions score, which is a pure geometric score, and score∗, which allows
to take atom types into account, will be used to evaluate pairwise matchings.

2.1.2 Start Transformation

There exist several ways to generate start transformations for the matching
search. One strategy is to select triples of atoms in both molecules [18]. If
the triples are within some distance bounds to each other in terms of inter-
atomic distances, i.e., if they span similar triangles, they will be used to compute
a least squares fit [17, 34] between the three matching pairs. The resulting
transformation can be used as a start transformation.

We use clique detection [4] to identify small subsets of atoms in both mole-
cules with similar structure [3]. These subsets are then used in a similar fashion
as the triples above to compute start transformations by computing the least
squares fit. The clique detection method has several advantages over the triples-
of-atoms method. First, apart from reducing the number of start transforma-
tions by decreasing the distance threshold, we can also reduce the number of

5

start transformations by increasing the minimum clique size, which is often more
suitable for larger molecules. Second, the number of start transformations will
in general be much less using the same distance constraints, since a clique with
more than three nodes contains several triples which would lead to very similar
if not equal start transformations. A third advantage is, that we can also inte-
grate further constraints (see below) into the generation of the correspondence
graph and thus, we do not have to handle all constraints explicitly.

Correspondence Graph. The graph in which we search for cliques is called
correspondence graph (or product graph). It consists of nodes and undirected
edges. Each node represents a pair of atoms - one atom from each molecule -
that are allowed to be matched. E.g., we might only want atoms to be matched if
they are of similar type, thus, only atom pairs of similar type will be represented
as nodes in the correspondence graph. An edge connecting two nodes is found in
the correspondence graph, if the two pairs of atoms fulfill all desired constraints.

Constraints. The main constraint is usually concerned with distance. If
node ni represents atom pair (u, x) and node nj represents atom pair (v, y),
then ni and nj will be connected by an edge of the correspondence graph, if
|d(Au, Av) − d(Bx, By)| < δgraph, where d(·, ·) is the Euclidean distance. A
second constraint is usually u 6= v and x 6= y, i.e., no atom of one molecule
should be matched to two or more atoms of the other molecule. To reduce the
size and the number of cliques, a third constraint could be used to ensure that
atoms u and v, and atoms x and y, respectively, should be a minimum number
of bonds, δbond, apart, i.e., dbond(u, v) ≥ δbond and dbond(x, y) ≥ δbond, where
dbond(a, b) denotes the bond distance between atoms a and b. This constraint
is motivated by the fact that the matchings we are looking for should contain
many atoms, and hence atoms very close to each other are not that interesting
for generating start transformations. Note that if δbond is 1, the second and
third constraints are equal.

Cliques. A clique in a graph is a subgraph in which all nodes are connected
to each other, and which is maximal in the sense that no node can be added
to the subgraph while preserving the first property. Hence, a clique in the
correspondence graph contains a maximal number of nodes, such that all pairs
of nodes mutually fulfill all constraints. Since the first constraint ensures similar
distances, the distance matrices of the two point sets corresponding to the clique
are equal, and hence, except for space reflections, the point sets will have similar
structures. Since each node of the clique corresponds to one atom pair, the clique
also gives us an explicit atom-to-atom-matching, which allows us to compute a
start transformation.

2.1.3 Matching Search

Given two molecules A and B and a transformation T (e.g., a start transfor-
mation computed with clique detection), the aim is to compute the matching
M maximizing Eq. (2) (or Eq. (4)). There exists an exact graph theoretical
algorithm to compute the optimal matching [18]. However, this algorithm has
a run time of O(n3), where n = max{|A|, |B|}.

Greedy matching using score. It was shown in [18], that there exists a
greedy algorithm which in most cases computes the optimal matching or gets
very close to it. Let E≤δ := {(i, j)|i ∈ {1, . . . ,m} ∧ j ∈ {1, . . . , n} ∧ ‖Ai −
TBj‖2 ≤ δ} be the set of edges between atoms of molecule A and atoms of

6

���

���

���

�
	

���

��

���

���

���

���

���

���

�
	

���

��

���

���

���

Figure 2: Two bipartite graphs depicting the set E≤δ (left) and the best match-
ing (right). The nodes ai and bj represent atoms of molecules A and B, respec-
tively. The best matching consists of only three matching pairs, since adding
one out of two possible further matching pairs reduces the score of the matching.

molecule B transformed by T whose squared distances are bound by δ. The
algorithm now works as follows.

1. Compute the set E≤δ and assign a weight to each edge given by the squared
distance of the transformed atoms, the edge represents.

2. Sort the edges according to their weights, starting with the edge having
the smallest weight.

3. Compute matching M1 which contains the edge with the smallest weight.
4. Compute matchingMi+1 fromMi by adding the edge e having the smallest

weight with neither end node coinciding with an end node of any edge
already in Mi.

The algorithm terminates if no further matching can be computed. For each
matching we compute its score. The best matching is the one with the highest
score. Note that, due to the scoring function, the best matching is not neces-
sarily the one with the largest number of matching pairs. An example is shown
in Fig. 2.

Greedy matching using score∗. The only modification we need to ac-
complish to compute the best matching according to score∗ instead of score,
is to scale the squared lengths of the edges by the weights of their correspond-
ing atoms. I.e., E≤δ is now defined as E≤δ := {(i, j)|i ∈ {1, . . . ,m} ∧ j ∈
{1, . . . , n} ∧ w(i, j) · ‖Ai − TBj‖2 ≤ δ}, and the edges are sorted by their
weighted squared lengths. This strategy allows to favor matchings with atom
pairs that have similar properties, such as, e.g., atom type. In contrast to score,
score∗ favors atom pairs with a small weight, even though the atoms might be
further away from each other. As result, matching pairs with slightly larger
distance but preferable atomic properties will be added to the matching.

Iterative improvement of matchings. Let M1 be the best matching
found by applying greedy matching to a given start transformation. From
matching M i we can compute matching M i+1 by applying the greedy match-
ing method to the new start transformation given by least squares fitting the
molecules using matching M i. We continue in this manner until the score does
not increase from M i to M i+1. In general, this process converges very quickly
and we only need about 5 iterations. The last matching is considered the best
matching for the original start transformation. This strategy was also described
in [18]. We use the iterative algorithm to compute a good matching for each
clique in the correspondence graph.

7

�

� � �

�

�

�

�

�

	

� �
 �

��

� � �

�

�

Figure 3: Complete matching tree for a reference molecule with three atoms.
For example, leaf a represents the empty substructure, whereas leaf d represents
the substructure with atoms 2 and 3.

2.2 Matching Tree

A matching tree is a binary tree used for storing matchings corresponding to
a single reference conformation. A matching tree allows to find all matchings
corresponding to the same substructure in the reference conformation in time
O(m), where m is the number of atoms in the reference molecule. A matching
tree has depth m. Level 0 of the matching tree represents the root node, level
i > 0 represents the i’th atom in the reference molecule. Each leaf corresponds
to a unique substructure of the reference molecule (see Fig. 3 for an example).
The maximum number of leaves is 2m. The path p = [p0, . . . , pm] from the
root to a leaf uniquely defines the substructure associated with the leaf: If atom
i of the reference molecule is contained in the leaf’s substructure, pi will be
the right child of pi−1, otherwise it will be the left child. Each matching will
be inserted into a matching tree according to the matched substructure of the
reference conformation. Thus, two matchings Mx and My will be stored in the
same leaf if ∀i : Mx(i) 6= 0 ⇔ My(i) 6= 0. For each leaf we maintain a sorted
list of matchings. The substructure corresponding to a leaf can also be thought
of as a bit field, where the i’th bit is set to 1 if the i’th atom of the reference
molecule is in the substructure.

For each query molecule (and each reference conformation) we maintain
a separate matching tree in which all matchings are stored. Once we have
computed all matching trees corresponding to the same reference conformation,
we need to merge these matching trees to find substructures common in more
than two molecules.

Merging of matching trees. Two matching trees are merged in two steps.
In the first step, we compute the intersections of all substructures corresponding
to the leaves of the first tree and all substructures corresponding to the leaves of
the second tree and insert these intersections into the first tree. If we take the
bit field representation of substructures, the intersection of two substructures
is the result of the bitwise AND operation of the two bit fields. If S is the
substructure resulting from the intersection of two substructures, and M is a
matching of either matching list of the two leaves associated with the intersected
substructures, we define the restricted matching MS as

MS(i) :=

{
M(i) if i ∈ S,
0 otherwise.

(5)

All restricted matchings resulting from intersecting two substructures are in-
serted in the first matching tree. Technically, this is done by just inserting the

8

pointers to the original matchings. The restricted matching can easily be gener-
ated from the substructure associated with the leaf and the original matching.

In the second step, we insert all matchings of the second tree into the first
tree, if they are not already there.

Merging of the matching trees is done iteratively, i.e., we merge two trees
into one of them which is then merged with another one and so forth, until all
trees are merged into a single tree, the final matching tree.

The merging step drastically reduces the amount of work to be done when
bringing together matchings of different query molecules. Since in each merging
step the intersected substructures are inserted into the merged tree, substruc-
tures contained in multiple query molecules only need to be intersected once
during a single merging step.

2.3 Evaluation of Matching Clusters

A final matching tree resulting from iteratively merging N matching trees con-
tains leaves with matchings from 1 up to N query molecules, whereby we might
have several matchings for each query molecule. Leaves representing larger sub-
structures will in general contain matchings from fewer query molecules than
leaves representing smaller substructures.

We call the matchings gathered at one leaf of the final matching tree together
with its reference substructure matching cluster. A matching cluster contains
possibly more than one matching per query molecule. Note that these matchings
will in general belong to different conformations, but some matchings might also
belong to the same conformation.

2.3.1 Sorting the Matchings of a Matching Cluster

To evaluate a matching cluster, we need to find the best matching per query
molecule, i.e., the matching which best fits the reference substructure. To evalu-
ate a matching of the matching cluster, it needs to be restricted by the reference
substructure S, as described in the previous section. This restriction is due to
the intersection of leaves in the merging step.

Let T be the transformation minimizing rms(A,B;MS ;T) (see Eq. (1)),
given by least-squares-fitting A and B according to MS . We can then sort
all matchings of a matching cluster belonging to the same query molecule
according to rms(A,B;MS ;T) or rms∗(A,B;MS ;T) (see Eqs. (1) and (3)),
respectively. Note that we do not need to compute score(A,B;MS ;T) or
score∗(A,B;MS ;T), since all restricted matchings are of the same size and
we only compare matchings of the same query molecule with each other. The
score(∗) values only need to be computed for the best matching per query
molecule within each cluster. Only the values of the best matchings are used to
compute the matching cluster value.

2.3.2 Sorting of Matching Clusters

After sorting all matchings within a matching cluster belonging to one query
molecule, we can compute all cluster values and sort the matching clusters
according to their values. Since we have competing matching cluster values,
such as the number of query molecules in the cluster, the size of the cluster

9

substructure, and the averaged score of all remaining cluster matchings, we
consider the competing values of each matching cluster as a vector and define
a relation on these vectors. Using this relation we generate so-called Pareto
sets [35], where each set contains matching clusters that are considered equally
good. There exists a total order on these sets, but not on the elements of each
set.

Definition 2.2 A vector u = (u1, . . . , uk) is said to dominate vector v =
(v1, . . . , vk) (denoted by u � v) if and only if u is partially larger than v, i.e.,
∀i ∈ {1, . . . , k}, ui ≥ vi ∧ ∃i ∈ {1, . . . , k} : ui > vi.

Definition 2.3 Let P ⊂ R
k be a set of vectors of dimension k. Then P is

called Pareto set if and only if @u, v ∈ P : u � v.

Definition 2.4 Let P and Q be two Pareto sets. Then P is said to dominate
Q (similarly denoted by P � Q) if and only if ∀q ∈ Q ∃p ∈ P : p � q.

Definition 2.5 Let V ⊂ Rk be a set of vectors of dimension k, and let P =
{P1, . . . , Pn} be a family of Pareto sets. Then P is called a decomposition of
V , if

⋃n
i=1 Pi = V and ∀i, j ∈ {1, . . . , n}, i 6= j, either Pi � Pj or Pj � Pi. If

∀i ∈ {1, . . . , n}, i 6= k : Pk � Pi, then Pk is said to be the Pareto optimal set of
P.

For sorting all matching clusters, we compute the Pareto sets P1, . . . , Pn rep-
resenting the decomposition of V , where V is the set of score vectors of all
matching clusters. Thus, P1 is the Pareto optimal set. Furthermore, ∀i, j, i <
j ∧ ∀v ∈ Pj ⇒ ∃u ∈ Pi, such that u dominates v.

2.4 Algorithm

After introducing all methods used in our algorithm, we can now describe the
complete algorithm. It consists of three steps, whereby the first two steps are
executed separately for each reference conformation, and only the last step is
done for all reference conformations.

1. For each reference conformation we take all query molecules in turn and
compute pairwise matchings (Sect. 2.1) between the query molecule’s con-
formations and the specified reference conformation. All pairwise match-
ings belonging to the same query molecule and reference conformation are
stored in a separate matching tree (Sect. 2.2).

2. All matching trees belonging to the same reference conformation are merged
iteratively (Sect. 2.2), thereby producing all matching clusters, which are
then evaluated in the last step. At the end of this step we have as many
final matching trees as we have reference conformations.

3. We consider all matching clusters of all final matching trees. For each
matching cluster we compute its score values. Interpreting these score
values as vectors, we can compute the Pareto sets (or only the Pareto op-
timal set) for all matching clusters. Note that a Pareto set will, in general,
contain matching clusters corresponding to different reference conforma-
tions.

A graphical overview of the algorithm is given in Fig. 1.

10

2.5 Parameters

For our algorithm a couple of parameters need to be set. These shall be shortly
described next.

2.5.1 Atom Types

We allow to use three different kinds of atom types for the clique detection
method as well as for the greedy matching-search. These are none, atomic
number, and pharmacophore. For clique detection and greedy matching different
atom types can be used.

The type none does not consider any atom types and hence, any atoms can
be matched. Thus, we can use the score of Eq. (2).

The atomic number type does not allow atoms with different atomic number
to be matched. Thus, atom pairs with different atomic numbers will not be
represented by a node in the correspondence graph, and they will also not be
considered in the greedy matching-search by setting their distance to infinity.
In this case we can use the score of Eq. (2).

The pharmacophore type is based on the atom type classification used in
the Merck Molecular Force Field (MMFF) [12]. According to this type declara-
tion, all atoms can be sorted into one or more of the following groups: donors,
acceptors, aromatics, and hydrophobics. Each atom pair is rated according
to the group membership of the two atoms. The given rate values reflect the
importance of a matching pair.

• Donors and acceptors are to be favored most. Therefore, if two atoms
belong either both to the donor or both to the acceptor group, they get a
rate value of 2.0.

• If two atoms are both aromatic or both hydrophobic, this pair is slightly
favored by assigning a rate value of 1.1.

• If one atom is a donor (or acceptor) and the other one is hydrophobic or
aromatic but not a donor (or acceptor), we penalize this atom pair by
assigning a rate value of 0.5.

• Finally, if two atoms do not belong to either of the above groups, they are
assigned a rate value of 1.0.

The weights of the atom pairs as used in Eqs. (3) and (4) are the reciprocal values
of their rate values, thus we have weights of 0.5, 0.91, 2.0, and 1.0, respectively.

2.5.2 Clique Detection Parameters

We use three parameters for determining start transformations with clique de-
tection. The first parameter is the minimum clique size, minc. This parameter
fits easily into the clique detection algorithm [4], since this is a branch-and-
bound algorithm into which the minimum clique size can be integrated as a
further bound condition.

The other two parameters are no direct parameters of the clique detection
algorithm, but need to be considered during the construction of the correspon-
dence graph. The distance threshold parameter δgraph ensures that every two
corresponding atom pairs of a matching have similar distances, and thus, that
a clique represents similar substructures (except for inversions at the chirality

11

N

N

Cl

OH

N

N

N

N

H

1

2

N

N

N

N

H

N

N

N

1

2

N

N

N

S

NH

O
O

O

1

2

N

N

N

N

H

N

N

O

O
OH

1

2

Figure 4: Structural formulas of the angiotensin II antagonists: Losartan, L-
158,809, L-159,894, and CV-11974 (from left to right).

center). If δgraph is small, we generally get smaller and fewer cliques. For the
size of molecules we are interested in, we usually set δgraph = 0.2.

The bond distance parameter δbond ensures that atom pairs connected by
an edge in the correspondence graph are at least δbond bonds apart in both
molecules. We introduced δbond to compute start transformations based on
substructures containing atoms that are spread over the molecule instead of
being too closely packed. E.g., a start transformation based on a substructure
of three consecutive atoms (in terms of binding structure) might not be a good
starting point. However, δbond needs to be carefully chosen, since a large δbond
might easily lead to overlooking good matchings. In our experiments we often
set δbond to 2 or 3.

2.5.3 Greedy Matching Parameters

The parameter δ was already introduced in Sect. 2.1.3. In all our experiments
we set δ to 2.0. This is in accordance with the observation made in [18]. Due
to our scoring function it is unlikely for the size of molecules we consider that
increasing δ will lead to different results.

The second parameter is the minimum matching size, minm, which is used to
reject matchings that are too small. This parameter is also used in the merging
step to reject intersections smaller than minm.

3 Results

We tested the described algorithm on several groups of molecules. Unfortu-
nately, there are no benchmarks for superimposing molecules. Therefore, we
chose two groups that had previously been used for the assessment of superposi-
tion algorithms and thus seemed well suited [13, 15]. The first group consisted of
a set of four angiotensin II antagonists. For this group the active conformations
were not available. We therefore computed the metastable conformations [9]
for each of these molecules and used representatives of these conformations as

12

Figure 5: Stereo views of two matchings of four angiotensin II antagonists from
the first (top) and the second (bottom) Pareto set, respectively. The red wire-
frame cubes denote the common substructure. The numbers denote the same
rings as in Fig. 4.

input to our algorithm. The second group consisted of seven thermolysin in-
hibitors. For this set of molecules the active conformations were available from
the PDB (Protein Data Bank) [1], and thus we used these conformations as
input to the algorithm. Further tests were done, e.g., with a group of about 40
odor molecules. The results of these investigations will be described elsewhere.

All computations were performed on a PC workstation with 3GHz processor.
The implementations were done in C++, and the source code was integrated
into the visualization software AmiraMol [2]. All images in this chapter were
also made with AmiraMol.

3.1 Angiotensin II Antagonists

The four angiotensin II antagonists considered here are Losartan, L-158,809, L-
159,894, and CV-11974. The two-dimensional structures as well as the nomen-
clature of these molecules were taken from [36]. The three-dimensional struc-
tures were generated using CORINA [31]. These structures were used as input
to the program ZIBMol [9], which generated 20, 13, 13, and 25 metastable con-
formations, respectively. From these metastable conformations we chose the
structures with minimum energy as representatives. The representatives were
then used as input to our algorithm.

13

NH

O COOH

N
H

NHPO
O

-

O

O

OHOH

OH NH
NH

O

OO
-

COOH

N
H

NH

O COOH

N
H

NH2
O NH P

NH
O

OO
-

NH COOH

O

NH
NH

O

OH N
O

-

OH
OH

O NH P
NH

O

OO
-

NH COOH

O

O NH P
O

O

OO
-

NH

O

COOH

Figure 6: Structural formulas of the thermolysin inhibitors: 1TLP, 1TMN,
3TMN, 4TMN, 5TLN, 5TMN, and 6TMN (from left to right and top to bottom).

3.1.1 Computational Results

For the computation of the multiple structure superposition of the angiotensin II
antagonists the following settings were used. The atom type to be considered
was pharmacophore for both clique detection and greedy matching. The mini-
mum clique size, minc, was set to 5. The distance threshold, δgraph, was set to
0.2, the minimum matching size, minm, was set to 15, and the minimum bond
distance, δbond, was set to 1. We chose Losartan as reference molecule.

325196 matching clusters were computed in 116 seconds. The large number
of matching clusters is due to the large similarity between the molecules which
leads to many slightly different matchings. Two matching were selected, one
from the first and one from the second Pareto set, which are shown in Fig. 5.
The two matchings differ in the relative orientation of the imidazole ring of
Losartan to the double-ring of the other three molecules. In the first matching
the second nitrogen atom is not matched to the nitrogen atoms of the other
molecules, in the second matching the nitrogen atoms are matched. In both
matchings the imidazole ring as well as the aromatic rings are matched between
all molecules. Furthermore, the tetrazole ring of Losartan, L-158,809, and CV-
11974 is matched to the sulfonamide group of L-159,894. These groups are
probably responsible for forming hydrogen bonds to the receptor.

14

Figure 7: Stereo view of matching of all 7 thermolysin inhibitors. The matching
has size 12. The wire-frame surface denotes the common substructure.

Figure 8: Stereo view of matching of 6 thermolysin inhibitors (without 3TMN).
The matching has size 16. The wire-frame surface denotes the common sub-
structure.

3.2 Thermolysin Inhibitors

The active conformations of seven inhibitors of thermolysin (TLN, EC-number
3.4.24.27) were compared with each other. These inhibitors were extracted
from the enzyme-inhibitor complexes found in the PDB: 1TLP, 1TMN, 3TMN,
4TMN, 5TLN, 5TMN, and 6TMN. The separated inhibitors were then para-
metrized using the Merck Molecular Force Field (MMFF) implemented in the
program ZIBMol. The parametrization was needed for assigning atom types
(donor, acceptor, hydrophobic, aromatic).

3.2.1 Computational Results

For the computation of the multiple structure superposition of the seven ther-
molysin inhibitors the following settings were used. The atom type to be con-
sidered was pharmacophore for both clique detection and greedy matching. The
minimum clique size, minc, was set to 5. The distance threshold, δgraph, was
set to 0.2, the minimum matching size, minm, was set to 8, and the minimum
bond distance, δbond, was set to 1. We chose the 4TMN inhibitor as reference
molecule. However, this choice was somewhat arbitrary since we got similar
results for the other inhibitors except for that of 3TMN. This is due to the size
of the 3TMN inhibitor, which is considerably smaller and in particular misses

15

the functional group responsible for binding to the zinc ion in the active site.
The computation of the superposition took less than a second. 308 matchings

were computed which were sorted into 70 Pareto sets. Two superpositions from
the Pareto optimal set, namely the one with all inhibitors and the one with 6
inhibitors are shown in Figs. 7 and 8, respectively. Due to the size of the 3TMN
inhibitor and the absence of the functional group responsible for binding to the
zinc ion, the first matching size is considerably smaller with 12 atoms in contrast
to 16 atoms.

Of special interest in the second matching is the zinc ion binding group.
For the 1TLP, 4TMN, 5TMN, and 6TMN inhibitors this region is identical,
consisting of a phosphor atom which two oxygen atoms are bound to. The 1TMN
and 5TLN inhibitors, however, differ in this region from the rest and between
each other. At the position of the phosphor atom, in the 1TMN inhibitor we
find a carbon which a COO- is bound to. That is, apart from the absence of
the phosphor atom, there is an additional carbon which slightly dislocates the
oxygen atoms. This is similar to the 5TLN inhibitor, here, however, we have an
additional nitrogen atom inserted between the carbon and the oxygen atoms,
further dislocating one of the oxygen atoms. Despite this, the oxygen atoms
were correctly matched.

4 Discussion

We presented a new algorithm for multiple semi-flexible superposition of drug-
sized molecules. Our algorithm is similar to DISCO [23] in two points. (1) A
reference molecule needs to be specified to which all other molecules are com-
pared. (2) The results of these pairwise comparisons are then merged to get
substructures present in all or many molecules. DISCO uses clique detection to
identify common substructures. Clique detection, however, is limited to rather
small sets of points. DISCO circumvents this problem by prespecifying a few
pharmacophore points which are used instead of all atoms. Our approach, in
constrast, uses the full atomic information. Using clique detection we would
only be able to identify rather small common substructures. We therefore use a
two-step approach for the comparison of two molecular structures. In the first
step, clique detection is used to generate good start transformations. The second
step refines each start transformation and computes the matching. The match-
ings found using this two-step approach are, in general, considerably larger than
those found by clique detection alone. However, the large matchings that we
get impose a new problem. Merging of the pairwise results becomes much more
expensive. We solve this problem by introducing matching trees to the merging
step.

We tested our algorithm on several groups of molecules, the results of two of
which are presented in Sect. 3. These results suggest, that the new approach is
very well capable of identifying common substructures in a set of molecules. The
algorithm depends on the computation of resonable molecular conformations.
However, the algorithm is fault-tolerant to the absence of conformations in that
it also computes substructures present in only a few molecules.

The results of the algorithm present only suggestions to the user. The clas-
sification of the matchings in Pareto sets allows the user to view the results
starting with the best matchings. In some cases, matchings most interesting to

16

the user might not be found in the Pareto optimal set (see Sect. 3.1.1). The large
number of computed matchings, however, allows the user to look at matchings
determined to be not-so-good by the algorithm.

The parameters of the algorithm allow the user to decide how thoroughly
the search for common substructures should be performed. A trade-off has to
be found between runtime and search detail.

In the future, the main focus will be on considering even more conforma-
tions per molecule while keeping short runtimes. The runtime of our algorithm,
however, is mainly determined by the number of conformations per molecule.
It grows quadratically with the number of conformations. Currently, although
some conformations might be similar in large parts of the structure, pairwise
comparisons are executed separately for all conformations. Exploiting these sim-
ilarities might enable us to considerably reduce the algorithm’s runtime, and,
thus, it might allow for even more flexibility.

Acknowledgments. I would like to thank Johannes Schmidt-Ehrenberg for
many helpful discussions and his comments on the paper, and Frank Cordes for
his help in generating conformational ensembles and his valuable hints concern-
ing the paper.

References
[1] Protein Data Bank (PDB). URL http://www.rcsb.org/pdb.

[2] AmiraMol – User’s Guide and Reference Manual. Zuse Institute Berlin (ZIB) and Indeed
- Visual Concepts GmbH, Berlin, http://www.amiravis.com, 2002.

[3] Andrew T. Brint and Peter Willett. Algorithms for the identification of three-dimensional
maximal common substructures. J. Chem. Inf. Comput. Sci., 27:152–158, 1987.

[4] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

[5] D. Cosgrove, D. M. Bayada, and A. P. Johnson. A novel method of aligning molecules by
local surface shape similarity. Journal of Computer-Aided Molecular Design, 14:573–591,
2000.

[6] R.A. Dammköler, S.F. Karasek, E.F. Shands, and G.R. Marshall. Sampling conforma-
tional hyperspace: techniques for improving completeness. J. Comput. Aided Mol. Des.,
9(6):491–499, 1995.

[7] E. Feuilleaubois, V. Fabart, and J. P. Doucet. Implementation of the three-dimensional-
pattern search problem on hopfield-like neural networks. SAR QSAR Environ Res.,
1(2-3):97–114, 1993.

[8] Paul W. Finn, Lydia E. Kavraki, Jean-Claude Latombe, , Rajeev Motwani, Christian R.
Shelton, Suresh Venkatasubramanian, and A. Yao. RAPID: randomized pharmacophore
identification for drug design. In Proceedings of the thirteenth annual symposium on
Computational geometry, pages 324–333. ACM Press, 1997.

[9] Alexander Fischer, Christof Schütte, Peter Deuflhard, and Frank Cordes. Hierarchical
uncoupling-coupling of metastable conformations. In Tamar Schlick and Hin Hark Gan,
editors, Computational Methods for Macromolecules: Challenges and Applications, Pro-
ceedings of the 3rd International Workshop on Algorithms for Macromolecular Modeling,
New York, Oct. 12–14, 2000, volume 24 of Lecture Notes in Computational Science and
Engineering, pages 235–259, Berlin, 2002. Springer.

[10] Andrew C. Good and W. Graham Richards E. E. Hodgkin. Utilization of Gaussian func-
tions for the rapid evaluation of molecular similarity. Journal of Chemical Information
and Computer Sciences, 32(3):188–191, 1992.

[11] J. A. Grant, M. A. Gallardo, and B. T. Pickup. A fast method of molecular shape
comparison: A simple application of a Gaussian description of molecular shape. Journal
of Computational Chemistry, 17(14):1653–1666, 1996.

17

[12] T. A. Halgren. Merck molecular force field. I-V. J. Comp. Chem., 17(5&6):490–641,
1996.

[13] Sandra Handschuh. Entwicklung und Einsatz computergestützter Methoden zur Ermit-
tlung struktureller Ähnlichkeiten: Analyse biologisch relevanter Ligand-Rezeptor Wech-
selwirkungen. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 1999.

[14] Sandra Handschuh, Markus Wagener, and Johann Gasteiger. Superposition of three-
dimensional chemical structures allowing for conformational flexibility by a hybrid
method. J. Chem. Inf. Comput. Sci., 38:220–232, 1998.

[15] Christian Hofbauer. Molecular Surface Comparison. A Versatile Drug Discovery Tool.
PhD thesis, Technische Universität Wien, 2004.

[16] Gareth Jones, Peter Willett, and Robert C. Glen. A genetic algorithm for flexible molec-
ular overlay and pharmacophore elucidation. J. Comput. Aided Mol. Des., 9(6):532–549,
1995.

[17] Wolfgang Kabsch. A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallographica A, 34:827–828, 1978.

[18] Stefan Kirchner. Ein Approximationsalgorithmus zur Berechnung der Ähnlichkeit dreidi-
mensionaler Punktmengen. Diploma Thesis, Department of Computer Science, Humboldt
University Berlin, 2003.

[19] Gerhard Klebe, Thomas Mietzner, and Frank Weber. Different approaches toward an au-
tomatic structural alignment of drug moleculars: Applications to sterol mimics, thrombin
and thermolysin inhibitors. Journal of Computer-Aided Molecular Design, 8(6):751–778,
1994.

[20] Christian Lemmen, Claus Hiller, and Thomas Lengauer. RigFit: A new approach to su-
perimposing ligand molecules. Journal of Computer-Aided Molecular Design, 12(5):491–
502, 1998.

[21] Christian Lemmen and Thomas Lengauer. FLEXS: a method for fast flexible ligand
superposition. J. Med. Chem., 41(23):4502–4520, 1998.

[22] Christian Lemmen and Thomas Lengauer. Computational methods for the structural
alignment of molecules. Journal of Computer-Aided Molecular Design, 14:215–232, 2000.

[23] Yvonne C. Martin, Mark G. Bures, Elisabeth Danaher, Jerry DeLazzer, and Isabella Lico.
A fast new approach to pharmacophore mapping and its application to dopaminergic and
benzodiazepine agonists. Journal of Computer-Aided Molecular Design, 7:83–102, 1993.

[24] Yvonne C. Martin, Mark G. Bures, and Peter Willett. Searching databases of three-
dimensional structures. In Kenny B. Lipkowitz, editor, Reviews in Computational Chem-
istry, number 1, pages 213–263. Elsevier Science Publishers B.V., 1990.

[25] B. B. Masek, A. Merchant, and J. B. Matthew. Molecular shape comparison of an-
giotensin II receptor antagonists. J. Med. Chem., 36(9):1230–1238, 1993.

[26] Alan J. McMahon and Paul M. King. Optimization of Carbó molecular similarity index
using gradient methods. Journal of Computational Chemistry, 18(2):151–158, 1997.

[27] C. McMartin and R.S. Bohacek. Flexible matching of test ligands to a 3d pharmacophore
using a molecular superposition force field: comparison of predicted and experimental
conformations of inhibitors of three enzymes. J. Comput. Aided Mol. Des., 9(3):237–250,
1995.

[28] M. D. Miller, R. P. Sheridan, and S. K. Kearsley. Sq: a program for rapidly producing
pharmacophorically relevent molecular superpositions. Journal Med. Chem., 42(9):1505–
1514, 1999.

[29] J. W. M. Nissink, M. L. Verdonk, J. Kroon, and G. Klebe T. Mietzner. Superposition
of molecules: Electron density fitting by application of Fourier transforms. Journal of
Computational Chemistry, 18(5):638–645, 1997.

[30] Martin F. Parretti, Romano T. Kroemer, Jeffrey H. Rothman, and W. Graham Richards.
Alignment of molecules by the Monte Carlo optimization of molecular similarity indices.
Journal of Computational Chemistry, 18(11):1344–1353, 1997.

[31] Jens Sadowski and Johann Gasteiger. From Atoms and Bonds to Three-Dimensional
Atomic Coordinates: Automatic Model Builders. In Chemical Reviews, pages 2567–2581.
1993.

18

[32] Robert P. Sheridan, Ramaswamy Nilakantan, J.S. Dixon, and R. Venkataraghavan. The
ensemble approach to distance geometry: application to the nicotinic pharmacophore. J.
Med. Chem., 29(6):899–906, 1986.

[33] Martin Thimm, Andrean Goede, Stefan Hougardy, and Robert Preissner. Comparison
of 2d similarity and 3d superposition. Application to searching a conformational drug
database. J. Chem. Inf. Comput. Sci., 44:1816–1822, 2004.

[34] Shinji Umeyama. Least-Squares Estimation of Transformation Parameters Between Two
Point Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13:676–681, 1991.

[35] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classification, Anal-
yses, and New Innovations. PhD thesis, Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology, Air University, 1999.

[36] Ruth R. Wexler, William J. Greenlee, John D. Irvin, Michael R. Goldberg, Kristine
Prendergast, Ronald D. Smith, and Pieter B. M. W. M. Timmermans. Nonpeptide
Angiotensin II Receptor Antagonists: The Next Generation in Antihypertensive Therapy.
J. Med. Chem., 39(3):625–656, 1996.

19

