
Restricted Adaptivity in Stochastic Scheduling
Guillaume Sagnol #

Institut für Mathematik, TU Berlin, Germany

Daniel Schmidt genannt Waldschmidt #

Institut für Mathematik, TU Berlin, Germany

Abstract
We consider the stochastic scheduling problem of minimizing the expected makespan on m parallel
identical machines. While the (adaptive) list scheduling policy achieves an approximation ratio of 2,
any (non-adaptive) fixed assignment policy has performance guarantee Ω

(log m
log log m

)
. Although the

performance of the latter class of policies are worse, there are applications in which non-adaptive
policies are desired. In this work, we introduce the two classes of δ-delay and τ -shift policies whose
degree of adaptivity can be controlled by a parameter. We present a policy – belonging to both
classes – which is an O(log log m)-approximation for reasonably bounded parameters. In other words,
an exponential improvement on the performance of any fixed assignment policy can be achieved
when allowing a small degree of adaptivity. Moreover, we provide a matching lower bound for any
δ-delay and τ -shift policy when both parameters, respectively, are in the order of the expected
makespan of an optimal non-anticipatory policy.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases stochastic scheduling, makespan minimzation, approximation algorithm,
fixed assignment policy, non-anticipatory policy

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.79

Related Version Full Version: https://arxiv.org/abs/2106.15393 [30]

Funding Guillaume Sagnol and Daniel Schmidt genannt Waldschmidt were funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
– The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

Acknowledgements We thank Thibault Juillard for helpful discussions on the topic of this paper.
We also thank the anonymous referees for helpful comments.

1 Introduction

Load balancing problems are one of the most fundamental problems in the field of scheduling,
with applications in various sectors such as manufacturing, construction, communication or
operating systems. The common challenge is the search for an efficient allocation of scarce
resources to a number of tasks. While many variants of the problem are already hard to
solve, in addition one may have to face uncertainty regarding the duration of the tasks; one
way to model this is to use stochastic information learned from the available data.

In contrast to the solution concept of a schedule in deterministic problems, we are
concerned with non-anticipatory policies in stochastic scheduling problems. Such a policy
has the ability to react to the information observed so far. While this adaptivity can be very
powerful, there are situations where assigning resources to jobs prior to their execution is a
highly desired feature, e.g. for the scheduling of healthcare services. This is especially true
for the daily planning of elective surgery units in hospitals, where a sequence of patients
is typically set in advance for each operating room. In this work, we present and analyze
semi-adaptive policies, which allow one to control the level of adaptivity of the policy.

© Guillaume Sagnol and Daniel Schmidt genannt Waldschmidt;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 79; pp. 79:1–79:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sagnol@math.tu-berlin.de
https://orcid.org/0000-0001-6910-8907
mailto:dschmidt@math.tu-berlin.de
https://orcid.org/0000-0002-9331-445X
https://doi.org/10.4230/LIPIcs.ESA.2021.79
https://arxiv.org/abs/2106.15393
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Restricted Adaptivity in Stochastic Scheduling

1 2 3

t t t+ δ

3

t+ δ

2 1

Figure 1 Snippets of the execution of a δ-delay policy: Realizations of jobs observed up to time t

(left) and up to some time > t + δ (right) are depicted by rectangles in dark grey; the running job
non-completed by the time of each snippet is indicated by squared dots in dark grey; jobs that did
not start yet are depicted in light grey with the corresponding machine assignment.

The problem considered in this paper is the stochastic counterpart of the problem of
minimizing the makespan on parallel identical machines, denoted by P ||E[Cmax] using the
three field notation due to Graham, Lawler, Lenstra and Rinnooy Kan [13]. The input
consists of a set of n jobs J and a set of m parallel identical machines M. Each job j ∈ J
is associated with a non-negative random variable Pj representing the processing time of
the job. The processing times are assumed to be (mutually) independent and to have finite
expectation. In this work, it is sufficient to only know the expected processing times.

Roughly speaking, a non-anticipatory policy may, at any point in time t, decide to start a
job on an idle machine or to wait until a later decision time. However, it may not anticipate
any future information of the realizations, i.e., it may only make decisions based on the
information observed up to time t. For further details we refer to the work by Möhring,
Radermacher and Weiss [26]. The task is to find a non-anticipatory policy minimizing the
expected makespan E[Cmax] := E[maxj∈J Cj], where Cj denotes the (random) completion
time of job j under the considered policy. An optimal policy is denoted by OPT. By slight
abuse of notation we use Π for both the policy and the expected makespan of the policy.

An alternative way of understanding non-anticipatory policies is that they maintain a
queue of jobs for every machine. At any point in time t it may start the first job in the queue
of a machine if it is idle or it may change the queues arbitrarily, using only the information
observed up to time t. In this work we consider a policy to be adaptive if it has the ability
to react to the observations by changing the queues arbitrarily. The important class of
non-idling non-adaptive policies is called the class of fixed assignment policies. Such a policy
assigns all jobs to the machines beforehand, in form of ordered lists, and each machine
processes the corresponding jobs as early as possible in this order.

While the class of (fully adaptive) non-anticipatory policies and the class of (non-adaptive)
fixed assignment policies can be considered as two extremes, the purpose of this paper is to
introduce two classes of policies bridging the gap between them continuously.

▶ Definition 1.1 (δ-delay and τ -shift policies). A δ-delay policy for δ > 0 is a non-anticipatory
policy which starts with a fixed assignment of all jobs to the machines and which may, at any
point in time t, reassign not-started jobs to other machines with a delay of δ: the reassigned
jobs are not allowed to start before time t+ δ.
A τ -shift policy for τ > 0 is a non-anticipatory policy which starts with a fixed assignment of
all jobs to the machines and which may reassign jobs to other machines, but only at times
that are an integer multiple of τ .

Snippets of the execution of a δ-delay policy and a τ -shift policy can be found in Figure 1
and Figure 2, respectively. Observe that we recover the class of fixed assignment policies by
letting δ or τ go to ∞, and the class of non-anticipatory in the limit when δ or τ goes to 0.

Related Work. Minimizing the makespan on parallel identical machines is a fundamental
deterministic scheduling problem which dates back to the 60s. Graham [11] showed that the
list scheduling algorithm computes a solution which is within a factor of

(
2 − 1

m

)
away from

G. Sagnol and D. Schmidt genannt Waldschmidt 79:3

3

2τττ

1 2 3

2τ

12

Figure 2 Snippets of the execution of a τ -shift policy: Realizations of jobs observed up to time
2τ (left) and some time > 2τ (right) are depicted by rectangles in dark grey; the running job
non-completed by the time of each snippet is indicated by squared dots in dark grey; jobs that did
not start yet are depicted in light grey with the corresponding machine assignment.

an optimal solution. When the jobs are arranged in LPT-order, i.e., in non-increasing order
of their processing times, he showed that list scheduling gives a

(4
3 − 1

3m

)
-approximation [12].

While Pm||Cmax, where the number of machines m is constant, and P ||Cmax are (weakly) and
strongly NP-complete [9], respectively, Sahni [32] and Hochbaum and Shmoys [18] obtained
a FPTAS and a PTAS, respectively. In subsequent work [3, 5, 17, 21, 22] the running time
of the PTAS was improved. More general machine environments were also considered in the
literature [19, 24].

The stochastic counterpart P ||E[Cmax] where the processing times of the jobs are random
and the objective is to minimize the expected makespan has also attracted attention. One
can easily see that the list scheduling algorithm by Graham [11] also yields a 2-approximation
compared to an optimal non-anticipatory policy for the stochastic problem, as its analysis
can be carried over to any realization. While list scheduling can be considered as a very
adaptive policy, some applications require rather restricted policies, e.g. when scheduling
operating rooms at a hospital [7, 36]. A class of non-adaptive policies analyzed in the
literature is comprised of fixed assignment policies, in which jobs must be assigned to the
machines beforehand. Although more applicable, it is well known that the performance
guarantee of an optimal fixed assignment is at least of the order Ω

(
log m

log log m

)
with respect

to an optimal non-anticipatory policy; see [14]. Much work was done in designing fixed
assignment policies that are within a constant factor of an optimal fixed assignment policy.
Kleinberg, Rabani and Tardos [23] obtain a constant factor approximation for this problem
for general probability distributions. When the processing times are exponentially and
Poisson distributed, PTASes were found [10, 6]. For the more general problem of makespan
minimization on unrelated machines, Gupta, Kumar, Nagarajan and Shen [14] obtained a
constant factor approximation. Closely related to the makespan objective, Molinaro [28]
obtained a constant factor approximation for the ℓp-norm objective. In contrast to the
literature for minimizing the makespan where approximative results were compared to an
optimal fixed assignment policy, much work on the min-sum objective was done for designing
approximative policies compared to an optimal non-anticipatory policy [27, 25, 34, 35, 15].
When minimizing the sum of weighted completion times, Skutella, Sviridenko and Uetz [35]
showed that the performance ratio of an optimal fixed assignment policy compared to an
optimal non-anticipatory policy can be as large as Ω(∆), where ∆ is an upper bound on the
squared coefficient of variation of the random variables. Lastly, Sagnol, Schmidt genannt
Waldschmidt and Tesch [31] considered the extensible bin packing objective, for which they
showed that the fixed assignment policy induced by the LEPT order has a tight approximation
ratio of 1 + e−1 with respect to an optimal non-anticipatory policy.

Closely related to the reassignment of jobs in δ-delay and τ -shift policies, various non-
preemptive scheduling problems with migration were considered in offline and online settings.
Aggarwal, Motwani and Zhu [1] examined the offline problem where one must perform
budgeted migration to improve a given schedule. For online makespan minimization on

ESA 2021

79:4 Restricted Adaptivity in Stochastic Scheduling

parallel machines, different variants on limited migration, e.g. bounds on the processing
volume [33] or bounds on the number of jobs [2], were studied. Another related online
problem was considered by Englert, Ozmen and Westermann [8] where a reordering buffer
can be used to defer the assignment of a limited number of jobs.

One source of motivation for this research is the aforementioned application to surgery
scheduling. In this domain, a central problem is the allocation of patients to operating
rooms. Although additional resource constraints exist, the core of the problem can be
modeled as the allocation of jobs with stochastic durations to parallel machines [7]. In this
field, committing to a fixed assignment policy is common practice in order to simplify staff
management and reduce the stress level in the operating theatre [4, 29, 36]. Another obstacle
to the introduction of sophisticated adaptive policies is the reluctance of computer-assisted
scheduling systems among practitioners [20]. That being said, it is clear that resource
reallocations do occasionally occur in operating rooms to deal with unforeseen events, hence,
giving a reason to study some kind of semi-adaptive model. The proposed model of δ-delay
is an attempt to take into account the organizational overhead associated with rescheduling
decisions; the model of τ -shift policy by the fact that rescheduling decisions cannot be made
at any point in time, but must be agreed upon in short meetings between the OR manager
and the medical team. Moreover, we point out that the class of τ -shift policies encompasses
the popular class of proactive-reactive policies used for the more general resource constrained
project scheduling problem [16], in which a baseline schedule can be reoptimized after a
set of predetermined decision points (these approaches typically consider a penalty in the
objective function to account for deviations between the initial baseline schedule and the
reoptimized ones).

Our Contribution. We introduce and analyze two new classes of policies (δ-delay and τ -shift
policies) that interpolate between the two extremes of non-adaptive and adaptive policies.
For the stochastic problem of minimizing the expected makespan on m parallel identical
machines, we analyze the policy LEPTδ,α, which belongs to the intersection of both classes.
This policy can in fact be seen as a generalization of the list policy LEPT, which waits for
predefined periods of time before reassigning the non-yet started jobs, taking the delay of δ
into account. While an optimal fixed assignment policy has performance guarantee of at least
Ω

(
log m

log log m

)
compared to an optimal non-anticipatory policy, we show that LEPTδ,α is an

O(log logm)-approximation for some constant α > 0 and all δ = O(1) · OPT. Therefore, we
exponentially improve the performance of non-adaptive policies by allowing a small amount
of adaptivity. Moreover, we provide a matching lower bound for δ-delay policies as well as
for τ -shift policies if δ or τ are in Θ(OPT). This shows that there is no δ-delay or τ -shift
policy beating the approximation ratio of LEPTδ,α by more than a constant factor.

Organization. Section 2 is devoted for the upper bound on the performance guarantee
of LEPTδ,α. A lower bound on optimal δ-delay policies as well as τ -shift policies is given
in Section 3. At the end, we conclude and give possible future research directions. Useful
results from probability theory and detailed proofs can be found in the appendix of the full
version of this paper [30].

2 Upper Bound

In this section, we show that there exists α > 1 such that the policy LEPTδ,α (see Defini-
tion 2.5) has a performance guarantee doubly logarithmic in m if δ = O(1) · OPT.

G. Sagnol and D. Schmidt genannt Waldschmidt 79:5

▶ Theorem 2.1. There exists α > 1 such that LEPTδ,α is an O(log logm)-approximation
for δ = κ · OPT for any constant κ > 0.

In the following, we show Theorem 2.1 for α = 33. We note that we did not optimize
the constants appearing in our calculation as our lower bound shows that log log(m) is the
correct order. Notice that it suffices to show the performance guarantee for m large enough
as for m = O(1) the trivial policy assigning all jobs to a single machine is a constant factor
approximation. To prove the main theorem, we proceed as follows: First, we define and
discuss properties of the fixed assignment policy FLEPT as it lies at the heart of our policy
called LEPTδ,α. After we give the formal definition of LEPTδ,α, we derive lower bounds
on OPT needed to show its performance guarantee. The remaining part is devoted to
show Theorem 2.1. The main idea of the proof is that the policy works over a sequence
of reassignment periods; at the beginning of each period, there is a constant fraction of
available machines with high probability. This can be used to show the following squaring
effect: if the remaining volume of non-started jobs is ϵ ·m · OPT in a period, it will be at
most ϵ2 ·m · OPT in the next period, with high probability.

Recall that the List Scheduling algorithm due to Graham [11] with respect to a list of
all jobs schedules the next job in the list on the next idle machine. Let us define the fixed
assignment policy induced by list scheduling in LEPT order.

▶ Definition 2.2 (The fixed assignment policy FLEPT). Let all jobs be arranged in non-
increasing order of their expected processing times. FLEPT is the fixed assignment policy
that assigns the jobs in this order to the same machines as List Scheduling would yield for
the deterministic instance in which the processing times are replaced by their expected value.

As shown by Sagnol, Schmidt genannt Waldschmidt and Tesch [31], FLEPT admits
bounds on the expected load of any machine captured in the next lemma.

▶ Lemma 2.3 ([31]: Section 3, Lemma 3). Given an assignment of jobs to machines induced
by FLEPT, let ℓi denote the expected load of machine i, i.e., the sum of expected processing
times of the jobs assigned to i. Moreover, let ni denote the number of jobs assigned to i and
let ℓ := mini∈M ℓi. Then, for all i ∈ M we have ℓ ≤ ℓi ≤ ni

ni−1ℓ, where ni

ni−1 = 1
0 := +∞

whenever ni = 1.

We immediately obtain by Lemma 2.3 the following structure on FLEPT.

▶ Corollary 2.4. Given an assignment of jobs to machines induced by FLEPT, we can
partition the set of machines into two types of machines: Either there is only a single job
assigned to a machine or the expected load of a machine is bounded by 2ℓ. Moreover, ℓ can
be bounded from above by the averaged expected load. In particular, if x denotes the total
(remaining) expected load and m′ is a lower bound on the total number of machines m, then
2ℓ ≤ 2 · x

m′ .

Corollary 2.4 will play a central role in showing Theorem 2.1 as FLEPT constitutes an
essential part of LEPTδ,α, which we define now.

▶ Definition 2.5 (Policy LEPTδ,α). Let δ, α > 0, k∗ :=
⌊
log2

(2
3 (log2(m)) + 1

)⌋
+ 2 and let

T := 2 · max{ 1
m

∑
j∈J E[Pj],maxj E[Pj]}. Moreover, let τk := k(δ+αT) for k ∈ [k∗ + 1]. At

the beginning the jobs are assigned according to FLEPT. For k = 1, . . . , k∗ + 1, LEPTδ,α

reassigns the jobs that have not started yet before τk to the machines that have processed all
jobs assigned at previous iterations 0, . . . , k − 1 by time τ1, . . . , τk, respectively, according to
FLEPT. The reassigned jobs may start at time τk + δ at the earliest.

ESA 2021

79:6 Restricted Adaptivity in Stochastic Scheduling

We note that in practice it makes sense to use all available machines at each iteration
instead of the machines that were available in each previous iteration. Although our policy
is limited, we show that in its execution a constant fraction of machines is available in each
iteration with high probability. It also simplifies our analysis and matches the bound shown
in the next section. Furthermore, observe that LEPTδ,α is both a δ-delay policy and a
(δ+αT)-shift policy. Next, let us introduce some quantities which will turn out to be helpful
to analyze LEPTδ,α.

▶ Definition 2.6. Let Ξk denote the random variable describing the total expected processing
time of the remaining jobs which have not been started at time < τk divided by Tm. Moreover,
let Ak denote the random variable describing the fraction of machines which are available
at each time τ1, . . . , τk, i.e., the machines have completed all jobs assigned in each iteration
0, . . . , k − 1.

τk−1

δ

τk

αT δδ αT

Akm

Ak−1m

remaining expected load ΞkTm

τk−2

reassignment
1

2

3

4 5

6

7

8

9

10

11

12

1

2

3

4 5

6

7

8

9

10

11 12

Figure 3 Snippet of LEPTδ,α: Realizations of jobs observed up to time τk are depicted by
rectangles in dark grey; the running jobs non-completed by the time of the snippet are indicated
by squared dots in dark grey; the expected processing times of the jobs that did not start yet are
depicted in light gray. The remaining expected processing time of the twelve light gray jobs is ΞkT m.
These jobs are reassigned in an FLEPT fashion to the Akm machines at the bottom at time τk,
and the first job of each newly formed queue will start at time τk + δ.

A snippet of LEPTδ,α together with the introduced notation is illustrated in Figure 3.
Observe that the randomness of Ξk occurs only in the set of remaining jobs. We begin

with some simple observations.

▶ Observation 2.7. For any k, we have Ξk ≤ Ξk−1 ≤ 1 and Ak ≤ Ak−1 ≤ 1 almost surely.

Next, we want to discuss lower bounds on the expected makespan of an optimal non-
anticipatory policy. The first one justifies the use of T in the definition of LEPTδ,α.

▶ Lemma 2.8. Let T := 2·max{ 1
m

∑
j∈J E[Pj],maxj E[Pj]} and ℓ be defined as in Lemma 2.3.

Then, we have 2ℓ ≤ T ≤ 2 · OPT.

Proof. By Corollary 2.4 we immediately obtain the first inequality as ℓ is a lower bound on
the averaged load 1

m

∑
j∈J E[Pj]. Clearly, for each realization p the makespan is bounded

from below by 1
m

∑
j∈J pj . Hence, taking expectations we obtain OPT ≥ 1

m

∑
j∈J E[Pj].

Lastly, in any non-anticipatory policy obviously all jobs must be scheduled non-preemptively.
Therefore, maxj E[Pj] is another lower bound on OPT. ◀

We obtain another lower bound when only at most m jobs have to be scheduled.

G. Sagnol and D. Schmidt genannt Waldschmidt 79:7

▶ Lemma 2.9. We have E [maxj∈J Pj] ≤ OPT.

Proof. For any realization p, a lower bound on the optimal makepsan for p is maxj∈J pj .
Taking expectations yields the statement. ◀

We have now set all necessary definitions and lower bounds on the cost of an optimal
non-anticipatory policy to devote the remaining part of this section to prove Theorem 2.1.
We first derive an upper bound on LEPTδ,α in terms of Ξk∗+1.

▶ Lemma 2.10. We have that LEPTδ,α ≤ τk∗+1 + δ + OPT + E[Ξk∗+1] · Tm.

Proof. Let C(p) denote the first point in time in realization p in which all jobs that started
before τk∗+1 are completed. We consider an auxiliary policy Π which is identical to LEPTδ,α

up to time τk∗+1 and starts processing the remaining jobs at time max{τk∗+1 + δ, C(p)} on
an arbitrary single machine. Clearly, LEPTδ,α ≤ Π since LEPTδ,α starts the remaining
jobs at time τk∗+1 + δ, hence, not later than Π and uses at least as many machines as Π.
For any realization p and the starting time of the remaining jobs S(p) we have

S(p) = τk∗+1 + max{δ, C(p) − τk∗+1} ≤ τk∗+1 + max{δ,max
j∈J

pj} ≤ τk∗+1 + δ + max
j∈J

pj .

Hence, by Lemma 2.9 the expected starting time is at most τk∗+1 + δ + OPT. By definition
of Ξk∗+1 the expected remaining load is exactly E[Ξk∗+1] · Tm. ◀

Due to the derived upper bound it only remains to bound E[Ξk∗+1]. The next central
lemma provides an upper bound on the probability that this quantity is large.

▶ Lemma 2.11. There exists α > 1 such that we have P
(
Ξk∗+1 >

1
m

)
= o

(1
m

)
.

Let us assume for a moment that Lemma 2.11 is true. We then can prove the main
theorem.

Proof of Theorem 2.1. By Lemmas 2.10 and 2.11 and by the law of total expectation we
obtain

LEPTδ,α ≤ τk∗+1 + δ + OPT + E[Ξk∗+1] · Tm

= τk∗+1 + δ + OPT + P
(

Ξk∗+1 ≤ 1
m

)
︸ ︷︷ ︸

≤1

·E
[
Ξk∗+1

∣∣∣Ξk∗+1 ≤ 1
m

]
· Tm︸ ︷︷ ︸

≤T

+ E
[
Ξk∗+1

∣∣∣Ξk∗+1 >
1
m

]
︸ ︷︷ ︸

≤1

·P
(

Ξk∗+1 >
1
m

)
·m︸ ︷︷ ︸

=o(1)

·T

≤ (αT + δ) · O(log log(m)) + δ + OPT + T + o(1) · T
= O(log log(m)) · OPT,

where the last step follows by Lemma 2.8 and the choice of δ and α. ◀

Let us return to the proof of Lemma 2.11. The high level idea is to use induction to show
that in each iteration there is a constant fraction of available machines with high probability
and hence, the remaining expected load after k∗ iterations is small with high probability. The
first lemma provides a stochastic dominance relation of Ξk and Ak to binomially distributed
random variables in order to simplify calculations.

ESA 2021

79:8 Restricted Adaptivity in Stochastic Scheduling

▶ Lemma 2.12. For all u, ξ ∈ (0, 1), for all a ∈
[1

2 , 1
]

and for any iteration k we have,

P(Ξk+1 ≤ u|Ξk ≤ ξ, Ak ≥ a) ≥ P
(

2ξ
am

Y ≤ u

)
, where Y ∼ Bin

(
m,

2ξ
aα

)
(1)

and

P(Ak+1 ≥ u|Ξk−1 ≤ ξ, Ak ≥ a) ≥ P
(

1
m
Z ≥ u

)
, where Z ∼ Bin

(
⌈am⌉, 1 − 2ξ

aα

)
. (2)

Proof sketch. For (2) the key idea is that in each iteration k a machine is available with
probability at least

(
1 − 2ξ

aα

)
using Corollary 2.4 and Markov’s inequality. To show (1) we

additionally bound the (normalized) remaining expected load by 2ξ
am using Corollary 2.4. ◀

Using Lemma 2.12 we inductively prove probability bounds on Ξk and Ak without
conditioning on the random variables of the previous iterations. The next lemma handles
the base case of the induction stated in Lemma 2.14.

▶ Lemma 2.13 (Base case of induction). Let γ1 = 1 and β2 = 3
4 . Then, there exists

ϵ = e−Θ(m
1
3) such that

P(Ξ1 ≤ γ1) ≥ 1 − ϵ, (3)
P (A2 ≥ β2) ≥ 1 − 3ϵ. (4)

Proof sketch. The first statement (3) is clear, as Ξ1 ≤ 1 almost surely. For the second
statement, we first show that A1 is large with high probability using Corollary 2.4 and the
Chernoff bound. This bound can be used together with Lemma 2.12 and the Chernoff bound
to show (4). ◀

We use the above statement as the base case of an induction to show the next lemma.

▶ Lemma 2.14. Let γ1 = 1, γk+1 = 1
2γ

2
k (∀k ≥ 1), βk = 3

4 − 2
α

∑k−2
h=1 γh (∀k ≥ 2) and let

k∗ :=
⌊
log2

(2
3 (log2(m)) + 1

)⌋
+ 2. Then, there exists ψ = Θ

(
1

log log(m))

)
and ϵ = e−Θ(m

1
3)

such that

P(Ξk ≤ γk) ≥ 1 − (2k − 1)ϵ, ∀k = 1, . . . , k∗ (5)
P(Ak ≥ βk − (k − 2)ψ) ≥ 1 − (2k − 1)ϵ, ∀k = 2, . . . , k∗. (6)

Proof sketch. The doubly exponential decrease of γk and the choice of α implies that
βk > β∞ > 5

8 . Additionally, the choice of ψ yields β∞ − (k − 2)ψ ≥ 1
2 . Thus, we can assume

that at each iteration with high probability half of the machines are available. For the
induction step we make use of Lemma 2.12, the Chernoff bound and the union bound. ◀

By Lemmas 2.12–2.14 we can now show the probability bound on the remaining expected
load at iteration (k∗ + 1).

Proof of Lemma 2.11. Let u = 1
m , ξ = m− 2

3 and a = 1
2 . Lemma 2.12 (1) implies

P(Ξk∗+1 ≤ u|Ξk∗ ≤ ξ, Ak∗ ≥ a) ≥ P
(
Y ≤ 1

4m
2
3

)
,

G. Sagnol and D. Schmidt genannt Waldschmidt 79:9

where Y ∼ Bin
(
m, 4

αm
− 2

3

)
. As E[Y] = 4

αm
1
3 we obtain by applying the Chernoff bound for

ζ = α
16m

1
3 − 1 > 0

P
(
Y ≤ 1

4m
2
3

)
= P (Y ≤ (1 + ζ) · E[Y]) ≥ exp

(
−E[Y] · ζ2

2 + ζ

)
= 1−exp(−Θ(m 2

3)) ≥ 1−ϵ,

for m large enough. This yields

P (Ξk∗+1 ≤ u) ≥ P
(

Ξk∗+1 ≤ u
∣∣∣Ξk∗ ≤ ξ, Ak∗ ≥ a

)
· P (Ξk∗ ≤ ξ, Ak∗ ≥ a)

≥ (1 − ϵ) ·
(
1 − (2k∗

− 1)ϵ− (2k∗
− 1)ϵ

)
≥ 1 −

(
1 + 2 · (2k∗

− 1)
)
ϵ

= 1 − (2k∗+1 − 1)ϵ,

where we used the law of total probability in the first inequality and for the second step
we used the union bound and Lemma 2.14. Therefore, as 2k∗+1 = Θ (log(m)), we have
P

(
Ξk∗+1 >

1
m

)
·m → 0 as m → ∞. ◀

3 Lower Bound

Throughout this section, we consider an instance IN with n = Nm jobs over m machines.
Each job has processing time Pj ∼ Bernoulli

(1
N

)
, i.e. Pj = 1 with probability 1

N , and
Pj = 0 otherwise. The main result of this section is a Ω(δ log log(m)) lower bound on the
performance of any δ-delay policy for large values of N . This matches the upper bound
obtained in the previous section. Note that the hidden constant in the Ω notation does not
depend on the value of δ > 0. For δ = Θ(OPT), this implies that no δ-delay policy can
improve on the log logm performance guarantee of LEPTδ,α by more than some constant
factor. At the end of the section we show that an analogous result holds for τ -shift policies
as well.

▶ Theorem 3.1. Let δ ≤ 1. For instance IN let OPTdelay
δ and OPT denote the value of

an optimal δ-delay policy and of an optimal non-anticipatory policy, respectively. Then, for
N = Ω(

√
m) we have

OPTdelay
δ

OPT = Ω(δ · log log(m)).

The proof is split into two main lemmas. The first one relates the expected makespan of
an optimal δ-delay policy to the expected makespan of an optimal 1-delay policy.

▶ Lemma 3.2. Assume 1
δ ∈ N. Then, we have OPTdelay

δ ≥ δ · OPT1.

The second lemma shows that OPT1 grows doubly logarithmically with m.

▶ Lemma 3.3. For N = Ω(
√
m) it holds OPT1 = Ω(log log(m)).

Let us assume for now that the above lemmas hold. Then, we simply need to show that
OPT = O(1) to prove the theorem.

Proof of Theorem 3.1. On the one hand, Lemma 3.2 and Lemma 3.3 imply OPTdelay
δ =

Ω(δ · log log(m)). On the other hand, we can use the List Scheduling policy (LS) due to
Graham [11] to obtain an upper bound on the value of an optimal non-anticipatory policy.

ESA 2021

79:10 Restricted Adaptivity in Stochastic Scheduling

Whenever a machine becomes idle, LS schedules any non-scheduled job on it. For any
fixed realization p = (pj)j∈[Nm] we obtain for its makespan CLS

max(p) =
⌈

1
m

∑
j∈[Nm] pj

⌉
≤

1 + 1
m

∑
j∈[Nm] pj . As a result, taking expectations on both sides yields

OPT ≤ E[CLS
max] ≤ 1 + 1

m

∑
j∈[Nm]

E[Pj] = 1 + 1
m

·Nm · 1
N

= 2,

concluding the proof of the theorem. ◀

To prove the lemmas, we first make an observation on the structure of optimal δ-delay
policies. When we execute a set of Bernoulli jobs on a machine, we immediately observe
whether one of the jobs was a long job (i.e., pj = 1), and also the number of vanishing jobs
(i.e., pj = 0) that have already been executed. This indicates that optimal δ-delay policies do
not insert deliberate idle time in the schedule (since waiting does not provide any information
on running jobs), and for the case 1

δ ∈ N, they may only take reassignment decisions at times
of the form kδ for k ∈ N. We call policies with this property δ-active.

Proof of Lemma 3.2. The starting time of each job in OPTdelay
δ is an integer multiple of

δ, because 1/δ ∈ N and OPTdelay
δ is δ-active. Let Jki(p) denote the set of jobs started on

machine i at time kδ by OPTdelay
δ , for a realization p ∈ {0, 1}n of the processing times.

Jki(p) may contain many vanishing jobs executed at time t = kδ, and at most one long job
executed during the time interval [kδ, kδ + 1). It is easy to construct a 1-delay policy (call it
Π1) that executes the same set of jobs Jki(p) during the interval [k, k + 1) on machine i, by
taking at time k − 1 the same reassignment decisions as OPTdelay

δ takes at time (k − 1)δ,
and by waiting until time t = k to execute the reassigned jobs. In both schedules, the
makespan is caused by the same long job (if there is at least one long job). Its starting time
is OPTdelay

δ (p) − 1 in the optimal δ-delay policy and 1
δ (OPTdelay

δ (p) − 1) in the policy Π1.
Hence the policy Π1 has makespan Π1(p) = 1

δ · (OPTdelay
δ (p) − 1) + 1 for any realization

p ̸= 0, and Π1(p) = OPTdelay
δ (p) = 0 if p = 0. Taking expectations yields

OPT1 ≤ E[Π1(p)] = 1
δ

· OPTdelay
δ + P(p ̸= 0) ·

(
1 − 1

δ

)
≤ 1
δ

· OPTdelay
δ ,

where we have used the fact that δ ≤ 1. This implies OPTdelay
δ ≥ δ · OPT1. ◀

This lemma allows us to work with 1-delay policies, which are easier to handle: At all
times t ∈ N, a 1-active policy observes the set of jobs non-started yet at time t− 1 + ϵ (for
an infinitesimal small ϵ > 0) and reassigns them to any machine, on which they will start at
time t at the earliest: we call it an iteration.

We denote by Rt the random variable describing the number of remaining jobs at time
t ∈ N0, before OPT1 runs the jobs, and by Λt = Rt

Nm the fraction of remaining jobs at time
t. For the initial state we have Λ0 = 1 (a.s.). Not surprisingly, the optimal policy balances
the remaining jobs as evenly as possible on the m machines.

▶ Proposition 3.4. In iteration t, OPT1 assigns the remaining ΛtNm jobs by balancing the
load as evenly as possible, i.e., each machine receives ⌈ΛtN⌉ or ⌊ΛtN⌋ jobs.

Proof sketch. Consider a realization of the jobs started before time t − 1 for some t ∈ N,
and in which r jobs remain at time t − 1. A 1-active policy must reassign the r jobs to
the m machines. By moving jobs between two machines, one can show that the balancing
policy, which assigns

⌊
r
m

⌋
or

⌈
r
m

⌉
jobs to each machine, minimizes the (random) number

G. Sagnol and D. Schmidt genannt Waldschmidt 79:11

of remaining jobs at time t for the order of stochastic dominance, in the class of 1-active
policies. Then, the optimality of the balancing policy follows from the fact that the expected
cost-to-go from iteration t, r 7→ E[OPT1 − t|Rt = r] is monotone decreasing with respect to
the number of remaining jobs. ◀

For notational convenience let ⌊ΛtN⌉i denote the number of jobs assigned to machine i
by OPT1. By independence of the processing times, the number of jobs that must be drawn
before picking a long job is geometrically distributed with parameter 1

N . Consequently, we
obtain the following observation.

▶ Observation 3.5. For i ∈ [m] let Gi ∼ Geom(1
N) be i.i.d. random variables. Then, we

have

Λt+1
d= 1
Nm

m∑
i=1

(⌊ΛtN⌉i −Gi)+.

We can now prove that OPT1 is of order Ω(log log(m)). To do this, we first need a
lemma showing that Λt converges quadratically to 0.

▶ Lemma 3.6. For N = Ω(
√
m) and t ∈

{
1, . . . , ⌊log2

(1
4 log2e(m)

)
⌋
}

we have

P
(

Λt ≥ (2e)1−2t
)

≥
(

1 − e−2
√

m
)t

.

A rigorous proof of this lemma is proved in the appendix of the full version [30]. For now,
we just explain the intuition behind the quadratic convergence of Λt to 0 in expectation, by
taking a (hand-wavy look) at the conditional expectation E[Λt+1|Λt = λ] for large values of
N . Using that ⌊λN⌉

N → λ and the well-known fact that Gi

N converges in distribution to an
exponential random variable X ∼ Exp(1), we see that when N → ∞, E[Λt+1|Λt = λ] should
approach E[(λ−X)+] =

∫ λ

x=0(λ− x)e−xdx = λ+ e−λ − 1. Then, the quadratic convergence
of Λt is suggested by the inequalities λ2

e ≤ λ+ e−λ − 1 ≤ λ2

2 , which hold for all λ ∈ [0, 1].
With this lemma, we obtain a short proof for Lemma 3.3.

Proof of Lemma 3.3. By Lemma 3.6 we obtain for t = Ω(log log(m)) and N = Ω(
√
m)

OPT1 ≥ P (Cmax ≥ t) · t ≥ P
(

Λt ≥ (2e)1−2t
)

· t ≥
(

1 − e−2
√

m
)t

︸ ︷︷ ︸
m→∞−−−−→1

·t = Ω(log log(m)).◀

A similar result can be shown for τ -shift policies, for the same instance IN .

▶ Theorem 3.7. Let τ ≤ 1, such that 1
τ ∈ N. For instance IN let OPTshift

τ and OPT denote
the value of an optimal τ -shift policy and of an optimal non-anticipatory policy, respectively.
Then, for N = Ω(

√
m) we have

OPTshift
τ

OPT = Ω(τ · log log(m)).

Proof. Similarly as for the case of δ-delay policies, for 1/τ ∈ N it is clear that an optimal
τ -shift policy for instance IN must be τ -active. Therefore, the optimal τ -active policy
coincides with both the optimal τ -shift and the optimal τ -delay policy. This shows that
OPTshift

τ = OPTdelay
τ , and the result follows from Theorem 3.1. ◀

ESA 2021

79:12 Restricted Adaptivity in Stochastic Scheduling

4 Conclusion

We considered the stochastic optimization problem of minimizing the expected makespan on
parallel identical machines. While any list scheduling policy is a constant factor approximation,
the performance guarantee of all fixed assignment policies is at least Ω

(
log m

log log m

)
. We

introduced two classes of policies to establish a happy medium between the two extremes
of adaptive and non-adaptive policies. The policy LEPTδ,α, which is both a δ-delay and a
τ -shift policy, was shown to have performance guarantee of O(log logm) if δ and τ are in the
scale of the instance. Moreover, we provided a matching lower bound for δ, τ = Θ(OPT).
Therefore, LEPTδ,α improves upon the performance of an optimal fixed assignment policy
using a small amount of adaptivity. Moreover, there exists no δ-delay or τ -shift policy beating
its performance guarantee by more than a constant.

For the case of δ, τ = O(1
log log m), Theorem 3.1 gives a constant lower bound, while

Theorem 2.1 only gives a doubly logarithmic upper bound. An open question is whether a
constant approximation guarantee is possible in this case.

A possible future line of research is the analysis of δ-delay and τ -shift policies for stochastic
scheduling problems with other numerous objectives, different machine environments as well as
various job characteristics. Moreover, it would be interesting to design other non-anticipatory
policies whose adaptivity can be controlled.

References
1 Gagan Aggarwal, Rajeev Motwani, and An Zhu. The load rebalancing problem. Journal of

Algorithms, 60(1):42–59, 2006.
2 Susanne Albers and Matthias Hellwig. On the value of job migration in online makespan

minimization. Algorithmica, 79(2):598–623, 2017.
3 Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes for

scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.
4 B.P. Berg and B.T. Denton. Fast approximation methods for online scheduling of outpatient

procedure centers. INFORMS Journal on Computing, 29(4):631–644, 2017.
5 Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of approximation schemes

for the classical scheduling problem. In ACM-SIAM Symposium on Discrete Algorithms, pages
657–668, 2013.

6 Anindya De, Sanjeev Khanna, Huan Li, and Hesam Nikpey. An efficient PTAS for stochastic
load balancing with poisson jobs. In 47th International Colloquium on Automata, Languages,
and Programming, volume 168 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

7 Brian T. Denton, Andrew J. Miller, Hari J. Balasubramanian, and Todd R. Huschka. Optimal
allocation of surgery blocks to operating rooms under uncertainty. Operations Research,
58(4-1):802–816, 2010.

8 Matthias Englert, Deniz Ozmen, and Matthias Westermann. The power of reordering for
online minimum makespan scheduling. SIAM Journal on Computing, 43(3):1220–1237, 2014.

9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness, 1979.

10 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In 40th Annual
Symposium on Foundations of Computer Science, pages 579–586. IEEE, 1999.

11 Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563–1581, 1966.

12 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

G. Sagnol and D. Schmidt genannt Waldschmidt 79:13

13 Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Annals of Discrete Mathematics, volume 5, pages 287–326. Elsevier, 1979.

14 Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic load
balancing on unrelated machines. Mathematics of Operations Research, 46(1):115–133, 2021.

15 Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Greed works—online algorithms
for unrelated machine stochastic scheduling. Mathematics of Operations Research, 45(2):497–
516, 2020.

16 Willy Herroelen and Roel Leus. Robust and reactive project scheduling: a review and
classification of procedures. International Journal of Production Research, 42(8):1599–1620,
2004.

17 Dorit S. Hochbaum. Various notions of approximations: Good, better, best and more.
Approximation algorithms for NP-hard problems, 1997.

18 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. Journal of the ACM, 34(1):144–162, 1987.

19 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM Journal on Computing,
17(3):539–551, 1988.

20 David Isern, David Sánchez, and Antonio Moreno. Agents applied in health care: A review.
International journal of medical informatics, 79(3):145–166, 2010.

21 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation
with a constant number of integral variables. SIAM Journal on Discrete Mathematics,
24(2):457–485, 2010.

22 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling
via sparsification techniques. Mathematics of Operations Research, 45(4):1371–1392, 2020.

23 Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191–217, 2000.

24 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming, 46(1):259–271, 1990.

25 Nicole Megow, Marc Uetz, and Tjark Vredeveld. Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research, 31(3):513–525, 2006.

26 Rolf H. Möhring, Franz Josef Radermacher, and Gideon Weiss. Stochastic scheduling problems
I—general strategies. Zeitschrift für Operations Research, 28(7):193–260, 1984.

27 Rolf H. Möhring, Andreas S. Schulz, and Marc Uetz. Approximation in stochastic scheduling:
the power of lp-based priority policies. Journal of the ACM, 46(6):924–942, 1999.

28 Marco Molinaro. Stochastic lp load balancing and moment problems via the l-function method.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
343–354. SIAM, 2019.

29 Guillaume Sagnol, Christoph Barner, Ralf Borndörfer, Mickaël Grima, Mathees Seeling,
Claudia Spies, and Klaus Wernecke. Robust allocation of operating rooms: A cutting plane
approach to handle lognormal case durations. European Journal of Operational Research,
271(2):420–435, 2018.

30 Guillaume Sagnol and Daniel Schmidt genannt Waldschmidt. Restricted adaptivity in stochastic
scheduling, 2021. arXiv:2106.15393.

31 Guillaume Sagnol, Daniel Schmidt genannt Waldschmidt, and Alexander Tesch. The price
of fixed assignments in stochastic extensible bin packing. In International Workshop on
Approximation and Online Algorithms, pages 327–347. Springer, 2018.

32 Sartaj K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23(1):116–
127, 1976.

33 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Mathematics of Operations Research, 34(2):481–498, 2009.

ESA 2021

http://arxiv.org/abs/2106.15393

79:14 Restricted Adaptivity in Stochastic Scheduling

34 Andreas S. Schulz. Stochastic online scheduling revisited. In International Conference on
Combinatorial Optimization and Applications, pages 448–457. Springer, 2008.

35 Martin Skutella, Maxim Sviridenko, and Marc Uetz. Unrelated machine scheduling with
stochastic processing times. Mathematics of Operations Research, 41(3):851–864, 2016.

36 Guanlian Xiao, Willem van Jaarsveld, Ming Dong, and Joris van de Klundert. Models,
algorithms and performance analysis for adaptive operating room scheduling. International
Journal of Production Research, 56(4):1389–1413, 2018.

	1 Introduction
	2 Upper Bound
	3 Lower Bound
	4 Conclusion

