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Abstract

In light of the energy transition production planning of future decarbonized
energy systems lead to very large and complex optimization problems. A widely
used modeling paradigm for modeling and solving such problems is mathematical
programming. While there are various scientific energy system models and model-
ing tools, most of them do not provide the necessary level of detail or the modeling
flexibility to be applicable for industrial usage. Industrial modeling tools, on the
other hand, provide a high level of detail and modeling flexibility. However, those
models often exhibit a size and complexity that restricts their scope to a time hori-
zon of several months, severely complicating long-term planning. As a remedy, we
propose a model class that is detailed enough for real-world usage but still com-
pact enough for long-term planning. The model class is based on a generalized
unit commitment problem on a network with investment decisions. The focus lies
on the topological dependency of different energy production and transportation
units.
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1 Introduction
To achieve the goals of the Paris Agreement, the decarbonization of all energy sectors
is necessary. This requires a shift from centralized technologies, which are based on
fossil fuels, to the integration of renewable energy sources, decentralized technologies,
and sector coupling. These aspects severely increase the complexity of energy systems.
For the (investment and production) planning of energy systems, in particular, several
decades have to be considered while simultaneously taking into account operational
aspects such as short-term fluctuations [1].

To tackle such complex planning problems, the usage of mathematical models has
become indispensable. Mixed-integer programming (MIP) in particular has become
a widely used paradigm due to the ability to capture combinatorial structures which
are exhibited by investment and operation decisions and the availability of effective
algorithms and high-performance solvers.

For long-term energy production planning, it is an unsolved question how much
detail is required in terms of the spatial and temporal resolution as well as the physical
accuracy of the model. This also highly depends on the specific energy system and
the research questions associated with the analysis of the model. It can be observed
that there is a clear trade-off between the modeling efficiency, on one hand, and the
modeling flexibility and meticulous representation of details, on the other. This partic-
ular difference divides the existing energy system modeling tools in the academic and
industrial environments.

There is a variety of academic models and modeling tools (e.g. PyPSA [2], oemof
[3], EnergyPlan [4] or AnyMOD [5]) for energy system analysis. Most of them are
designed for analysis on a regional or continental scale. Therefore the level of detail
is rather restricted. This makes it difficult to apply these tools to the industrial energy
systems of individual energy providers. Apart from software frameworks, there are
many articles e.g. [6, 7] that directly formulate a model for investment planning of
multi-energy systems. However, these models are often designed for the analysis of
the interplay of specific technologies, which makes it hard to apply them in a general
setting. For instance, the authors of [8] argue that many models are specific to partic-
ular energy pathways and contain specific equations for each type of technology. This
makes them difficult to be applied to a broader spectrum of problems. They propose
an energy system model based on a value web and zones. This model class is suitable
for a rough analysis of generation, conversion, storage, and transport technologies on
an urban scale. However, depending on the scale of the energy system, it is neces-
sary to model specific technologies in even more detail by introducing characteristic
curves or polyhedral operation regions. Moreover, the topological dependency of dif-
ferent technological units (for instance in a steam-extraction-condensation cycle) must
be considered. These aspects combined are not covered in academic modeling tools but
can play a crucial role, especially for industrial energy portfolio optimization problems.

On the other hand, most industrial modeling tools (e.g. BoFiT by Volue 1, ResOpt
by Kisters2, Microgrid-Creator by Energenious3 or ENERGY OPTIMA 3 by Energy
Opticon4) offer a much higher level of detail and modeling flexibility than academic
tools. Industrial tools are designed to capture the technological components of the
energy system individually as well as their topological dependency. This enables de-

1https://www.volue.com/product/bofit-optimization
2https://energie.kisters.de/loesungen-produkte/resopt-optimierung/
3https://energenious.eu/index.php/mgc/
4https://de.energyopticon.com/energy-optima-3/
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tailed production planning. However, as the users have high flexibility to make system
constructions, the resulting models are highly unstructured and therefore rely on the us-
age of commercial solvers out-of-the-box, rapidly hitting a computational performance
plateau. For large energy systems, the high level of detail of such models leads to a
size and complexity that limits the considered time horizon to several months. In this
way, investments cannot be formulated as decision variables but have to be manually
simulated as individual scenarios. This makes holistic long-term investment planning
practically impossible and hardly provides any insights about the obtained solution’s
quality.

In this article, we aim to bridge the gap between academic and industrial energy
production planning models. We propose a novel model class that offers the level of
detail and flexibility required for industrial usage while still being tractable for long-
term planning.

The model class is based on a generalized form of a unit commitment (UC) model
on a network with investment decisions. In its traditional form, the objective of the
UC problem is to determine the on/off status and production level of all generating
units to satisfy the energy demand at the minimum operating cost, taking into account
the system-wide technical constraints [9]. While UC models have been introduced for
power systems originally, they can be extended to multi-energy systems, where differ-
ent energy resources such as heat, electricity and gas are considered simultaneously.
Those models have mainly been used for short-term operational planning in the past,
but as already pointed out, there is a necessity to include such short-term operational
constraints in long-term planning models [10]. When spatial aspects are to be consid-
ered, generation and energy loads are distributed over a network. Nodes often represent
zones or regions, where the demand and production of each energy resource are aggre-
gated. While such a level of detail is sufficient for a regional or continental scale, it
is not sufficient to model the energy production portfolio of a single energy provider.
Here, different types of generators (e.g. CHP plants, gas turbines, steam generators,
steam turbines, heating condensers,. . . ) and their topological dependencies have to be
considered as well.

To the best of our knowledge, there does not exist any energy system modeling
framework that combines all the aforementioned aspects. In contrast, our proposed
model class captures the necessary level of detail for long-term energy production plan-
ning and offers modeling flexibility that makes it applicable to various energy systems
in practice. The focus lies on the topological dependency of different energy produc-
tion units. Further details, such as operational dependencies between technological
units, are included and theoretically described from a network perspective. This anal-
ysis enables future avenues of research to thoroughly study the areas of combinatorial
complexity in the models and utilize these insights for effective solution algorithms.

The size of the model heavily depends on the time granularity. For long-term plan-
ning models, it is a common practice to use representative time periods in order to keep
the model size tractable [11]. The representative time periods reflect daily and seasonal
patterns. Due to the integration of decentralized technologies and renewable energy
sources, short-term operational aspects are gaining importance in long-term planning.
For this reason, several authors (e.g. [12], [13], [14]) suggest to include operational
constraints such as ramping or minimum up and down times in combination with rep-
resentative time periods for long-term planning models. Our model class offers this
option as well.

We introduce our model class in an abstract formulation. Nevertheless, it captures
many aspects that can be found in industrial modeling tools for energy production
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portfolio optimization. In this way, we ensure that our modeling approach can be used
in practice.

2 Model
The model class is a generalized form of a UC model on a network. Each energy
production or transportation unit is represented by a node and has its binary status
variable that can be switched on and off. On each arc, there is a flow of a specific
energy resource (e. g. fuel, steam, power, heat). Operational constraints on the flow
variables are imposed by the nodes based on their binary status. A formalized version
of the model is given below.

Figure 1: Sample energy system with 15 nodes.

The focus of this model class is energy production and the topological dependency
of the production units. An example is given in figure 1. Here, an energy system for
the production of heat and power is depicted. There are two fuel purchase contracts for
natural gas and hydrogen, which are represented by the nodes k1 and k2. Both fuels
can be used for a combined heat and power (CHP) plant k4 and a steam generator k5.
The balance node k3 models an equality between the total inflow and outflow of this
node. Here, a prescribed input or output ratio of natural gas and hydrogen can also
be modeled. The steam produced by the steam generator can be forwarded to a steam
turbine k6 producing power and a heat condenser producing k7 producing heat. The
total amount of power is summarized in balance node k8. Excess power can be sold
to the power trading unit k9. Alternatively, additional power can be purchased. This
power can be used for the electric heater k10 and the circulation pump k14. There is an
additional solar thermal unit k11 producing heat. The total amount of produced heat is
accumulated in balance node k12. Heat can be kept in a storage k13 or forwarded to
the circulation pump k14 to cover the heat demand at node k15. Cost is given by the
operation of the nodes depending on the inflow and outflow, by start-ups of the nodes
as well as by potential investment decisions to integrate further nodes into the network.
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2.1 Network Aspects
In this and the subsequent sections, we give a formal definition of the model class. This
part introduces the network aspects. Let T = {0, . . . , tend} denote the set of time points
for the optimization problem. In a very fine resolution, these could be the beginning of
each hour for every year of the planning horizon. For long-term planning models, this
can also be time points of representative periods. We model the network as a directed
graph G = (K,L) with nodes k ∈ K and arcs l ∈ L, which we refer to as (transport)
lines. Nodes represent technological units, trading units or demands as in the example
above. Lines represent an abstracted view of the transport options from one node to
another. In the network, we have flows of different resources (e. g. fuel, steam, power,
heat). There is one designated resource flow on every arc. This means, we can split the
set of arcs disjointly by energy resource, i. e.

L =
⋃
r∈R

Lr, (1)

where R denotes the set of resources. For every arc l ∈ L, we denote the flow during
the time interval between time point t and time point t+1 with a non-negative variable
xt,l. As every arc is associated with exactly one resource r, so is every flow variable.
Therefore, we do not state r as an index. Every node in the network has an operational
status which can be active or inactive. For this, we introduce a binary variable zt,k that
describes the status of node k between the time points t and t+1. The status variables
of certain nodes are fixed, e.ġ. a demand node cannot be switched off. In practice,
there is no binary variable for such nodes. Nevertheless, to keep the notation concise,
we notate a binary variable for each node. Depending on this status, each node induces
a feasible operation region for the flow variables of the incident arcs. To model this,
we introduce for each node k ∈ K at each time point t ∈ T a set

Λ(k) = {(i, k) ∈ L | i ∈ K} ∪ {(k, j) ∈ L | j ∈ K} (2)

of incoming and outgoing arcs. Based on this set we define a vector of the respective
flow variables

xt,Λ(k) = xt,ll∈Λ(k). (3)

We refer to the set that defines the feasible operation region on these variables based
on the status variable of the node as Ft,k(zt,k). The constraints modeling this status
dependency read

xt,Λ(k) ∈ Ft,k(zt,k) ∀t ∈ T, ∀k ∈ K. (4)

If the status of the node is inactive, then the inflow and outflow are equal to zero, i. e.
Ft,k(0) = {0}. Note that the right hand side of this expression is a vector of zeros of
the dimension of the number of incident arcs. If the node is active, the shape of the
feasible operation region is specific for every node depending on what technological or
economic unit it represents. The feasible operation region is time-dependent as it can
be influenced by the outside temperate in the case of a technological unit or market data
in the case of an economic unit. While this is a very general formulation, the feasible
operation region of most units can be expressed in a compact way.

Figure 2 shows some examples of how feasible operation regions Ft,k(1) can look
like. The left part shows a characteristic curve that describes the output of a heat
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Figure 2: Examples of feasible operation regions

condenser (e.g. k7 in figure 1 based on the incoming steam. Characteristic curves
are often approximated using piecewise-linear functions, which allows a mixed-integer
linear reformulation. For CHP plants as k4, depending on the specific technology, the
ratio of produced heat and power can be fixed and or flexible. In the first case, the
produced heat and power depend directly on the amount of fuel provided, which can
again be described using two characteristic curves. In the second case, the range of heat
and power output can be described as a PQ diagram that imposes a polyhedral operation
set as depicted in the middle of figure 2. For each point within the PQ diagram, there
is a different amount of fuel required. This is indicated by the color gradient. For
transport technologies such as the circulation pump k14, there is relation between the
forwarded amount of heat and the required power. This can also be described using
characteristic curves. Economic components such as the power trading unit k9 impose
minimum and maximum sales and purchase limits. Moreover, selling and purchasing
power at the same time is not possible. The respective feasible operation region is
shown on the right side of figure 2. Similar operation regions apply for storages, which
are described in detail in section 2.1.

Costs are induced in a similar way as constraints. We denote the cost generated by
node k with

ψt,k(xt,Λ(k), zt,k), (5)

where ψt,k is a cost function specific for node k at time t that depends on the incident
flow variables and the status of the node. Costs can occur with the purchase of resources
or reflect variable operation and maintenance cost associated with the operation of a
power plant. In most cases, the cost is a linear or piecewise-linear function that depends
on the inflow or the outflow of the respective node.

Further Model Aspects
While the model aspects that were introduced in the previous section address con-
straints that are independent for each node and each time step, the constraints described
in this section link several nodes or time steps.

Storages
Energy resources such as heat and power can be conserved in storages. We denote the
set of such nodes by Kstorage ⊂ K. For each storage node k ∈ Kstorage, we introduce a
continuous variable ht,k modeling the storage level, which is bounded by a maximum
storage level hmax

k . The constraints induced by a storage unit are

ht+1,k = aloss
t,k ht,k + aload

t,k xt,lin(k) − aunload
t,k xt,lout(k) ∀t ∈ T, ∀k ∈ Kstorage, (6)
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where aloss
t,k , aload

t,k and aunload
t,k denote efficiency parameters in terms of storing, loading

and unloading of the storage. The variables xt,lin(k) and xt,lout(k) denote the total flow
into and out of the storage. A simultaneous loading and unloading of the storage is not
possible. This is included in the general constraint (4). Note that the loading, unloading
and storage variables have different units. The loading and unloading variables xt,lin(k)

and xt,lout(k) denote energy flows between the time point t and t + 1 and are given in
MW. The variable ht,k denotes a storage level at time point t and is given in MWh. For
this reason, the loading and unloading parameters are not only dependent of the outside
temperature, they also depend on the size of the time interval [t, t+1]. The same holds
for the storage loss parameter aloss

t,k .

Ramping
Certain power plants cannot change their energy output arbitrarily over time. Instead,
there is a limit on how much the output is allowed to change from one time step to the
next. We denote the set of nodes where such restrictions apply with K ramp. A common
way of setting upper and lower bounds on the variation of energy output from one time
step to the next is by using ramping constraints

xt+1,lout(k) − xt,lout(k) ≤ aramp-up
k ∀t ∈ T, ∀k ∈ K ramp, (7a)

xt,lout(k) − xt+1,lout(k) ≤ aramp-down
k ∀t ∈ T, ∀k ∈ K ramp. (7b)

The total energy output of node k at time t is denoted by the variable xt,lout(k). The
constraint (7a) limits the change of energy output in the positive direction and the con-
straint (7b) limits the change of energy output in the negative direction. The magnitude
of the limits on up-ramping and down-ramping aramp-up

k and aramp-up
k also depend on

the step size between the time points t and t + 1. For a coarse time-resolution, these
parameters can be so large that the ramping constraints become redundant.

Activation Constraints
We refer to the shift from an inactive to an active status of a power plant as an activation
or start-up. In practice, this can lead to additional cost and fuel consumption. We
denote the set of nodes with a start-up condition with Kactivation. For these nodes, we
introduce an additional binary variable st,k stating whether the binary status variable
zt,k changed from 0 in the last time step to 1 in the current time step, i. e.

st,k = 1 ⇐⇒ zt−1,k = 0 ∧ zt,k = 1 ∀t ∈ T, ∀k ∈ Kactivation, (8)

The logical constraint (8) can be reformulated using three inequalities

st,k ≥ (1− zt−1,k) + zt,k − 1 ∀t ∈ T, ∀k ∈ Kactivation, (9a)

st,k ≤ zt,k ∀t ∈ T, ∀k ∈ Kactivation, (9b)

st,k ≤ 1− zt−1,k ∀t ∈ T, ∀k ∈ Kactivation. (9c)

The activation of a node k ∈ Kactivation can be associated with a start-up cost, which
we denote by cactivation

k . For each time step t ∈ T , we add the term cactivation
k st,k to the

target function. Beside cost, the start-up of a node can require additional fuel input.
This means, the incoming flow of fuel has to be increased in the time step where the
activation happens. We denote the set of nodes with a start-up fuel requirement as
Kactivation fuel ⊂ Kactivation and introduce the constraint

xt,lfuel in(k) = xfuel usable
t,k + afuel requirement

t,k st,k ∀t ∈ T, ∀k ∈ Kactivation fuel, (10)
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where xt,lfuel in(k) denotes the total incoming fuel, afuel requirement
t,k denotes the amount of

fuel inflow necessary for the start-up and xfuel usable
t,k denotes the remaining fuel that can

be used to generate heat and power. The parameter afuel requirement
t,k is given in MW. It

describes the necessary rate of fuel inflow between the time points t and t + 1. The
parameter decreases with a growing time interval.

On top of the start-up aspects mentioned in this paragraph, it would be possible to
differentiate between different types of starts. Based on the time a power plant has been
inactive, it is possible to model hot, warm and cold starts all of which are associated
with different costs and fuel requirements. This is however beyond the scope of this
article.

Minimum up-time and down-time
When activated, certain nodes need to stay active for a minimum amount of time. When
deactivated, certain nodes need to stay inactive for a minimum amount time. The latter
can also be formulated as a minimum amount of time that a node needs to be inactive
before a start-up can happen. To model such constraints, we use the activation variable
st,k. For minimum up-time, we formulate the logical constraint

st,k = 1 =⇒
∧

τ∈T up
t,k

(zτ,k = 1) ∀t ∈ T, ∀k ∈ Kactivation, (11)

where T up
t,k ⊆ {t + 1, . . . , tend} denotes set of time steps for which the node needs to

be active after a start-up happened. This set depends on the minimum up-time of the
node and the time step t. Depending on the length of the time intervals, it is possible
that there are no minimum up-time constraints necessary. In this case set T up

t,k is empty,
the right-hand side of constraint (11) is evaluated to true and the constraint becomes
redundant. An arithmetic reformulation of (11) reads∑

τ∈T up
t,k

(st,k − zτ,k) ≤ 0 ∀t ∈ T, ∀k ∈ Kup. (12)

Minimum down-time can be modeled analogously. We use a constraint in which we
state that a node needs to be inactive for a minimum amount of time before it can be
activated, i. e.

st,k = 1 =⇒
∧

τ∈T down
t,k

(zτ,k = 0) ∀t ∈ T, ∀k ∈ Kactivation, (13)

Here, the set T down
t,k ⊆ {0, . . . , t− 1} contains the time steps for which the node needs

to be inactive before a start-up can happen. The logical constraint (13) can be reformu-
lated using the inequality∑

τ∈T down
t,k

(st,k + zτ,k − 1) ≤ 0 ∀t ∈ T, ∀k ∈ Kactivation. (14)

Operational Status Dependencies
The operational status of technological units can depend on each other. For instance,
an additional firing unit can only be operating when a preceding gas turbine is active
as well. It can also be the case that two specific generators cannot operate at the same
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time. Such operational dependencies can be modeled using the status variables zt,k.
For example, if node k1 can only be active when k2 is active, this can be modeled by
the constraint zt,k1

≤ zt,k2
. If node k1 and k2 cannot be active at the same time, this

would result in the constraint zt,k1 + zt,k2 ≤ 1. To generalize this for our model, we
define a set of hyper edges Ω representing the different sets of nodes for which a status
dependency hold. For each hyper edge ω ∈ Ω, we define a set of feasible operation
modes Mω ⊆ {0, 1}ω that defines the operational dependency of the respective nodes.
This leads to the constraint

zt,ω ∈ Mω ∀t ∈ T, ∀ω ∈ Ωstatus, (15)

where zt,ω = {zt,k}k∈ω denotes the vector of all status variables of the nodes adjacent
to the hyper edge ω ∈ Ω.

Investment Decisions
Investment decisions are a very important aspect in long-term energy production mod-
els. We consider investments with respect to technological units, which are represented
by nodes in our model. For instance, an investment planning scenario for the energy
system in figure 1 could be that the steam turbine k6 and the heat storage k13 are not
yet part of the network but can be integrated as investments.

To model investment decisions mathematically, we introduce a setK invest ⊂ K that
contains all potential investment nodes. For each of these nodes, we introduce a binary
variable ẑk. This variables serves as an upper bound on the status variable, i. e.

zt,k ≤ ẑk ∀t ∈ T, ∀k ∈ K invest. (16)

From a topological point of view this means that the node is already part of the network.
However, in order to use this node, the respective investment variable has to be set to
one. This is associated with an investment cost cinvest

k . Single investment variables
do not necessarily have to correspond to only one technological unit. For instances,
consider the steam cycle of k5, k6, k7 in figure 1. If this whole cycle is a single
investment, the corresponding investment variable can be attached only to k5. In case
the investment is not made, the steam generator k5 is always inactive and so are the
steam turbine k6 and heat condenser k7 as they get no steam input.

Note that all investment decisions are binary and can only be made with respect to
nodes. The general idea of this model class is to differentiate between technological
units and their technical characteristics individually. Therefore, each investment deci-
sion variable corresponds to one specific technological unit or combination of them.
In practice, energy providers often have to chose between technologies of a fixed size
and cannot chose a generation, transport or storage capacity arbitrarily. For this reason,
we only model binary and no continuous investment decisions. While investment de-
cisions are not defined with respect to arcs, it is nevertheless possible to model energy
transport capacity extensions as nodes can also represent transport technologies such
as the circulation pump k14 in figure 1.

For investment decisions, there can be additional restrictions. For instance, only
one out of two specific investment candidates can be selected. Or there is the question
of either constructing one large or three small generators. Such dependencies between
investment candidates can modeled using the binary investment variables ẑk in a similar
way as the operational status dependencies introduced in the previous paragraph.

On top of the aspects mentioned above, there is the option of making investment
decisions time-dependent. This means, for each investment candidate k ∈ K invest, there
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is a set of investment times T invest
k ⊂ T to indicate when the investment can be made.

For each investment time point t ∈ T invest
k , we introduce a binary variable z̃t,k. Each of

these variables is associated with its own investment cost cinvest
t,k at the respective time

point. To indicate that the investment can only be made at one of these time steps, we
use the constraint ∑

t∈T invest
k

z̃t,k = ẑk ∀k ∈ K invest. (17)

The variable ẑk is still required for modeling restrictions with respect to other invest-
ment candidates as described above. When considering time-dependent investment
decisions, the investment constraints (16) are replaced by the constraints

zt,k ≤
∑

τ∈T̃t,k

z̃τ,k ∀t ∈ T, ∀k ∈ K invest (18)

where T̃t,k = {τ ∈ T invest
k | τ ≤ t} defines the set of investment time points that occur

before time point t.

System-wide Constraints
There may be further restrictions that are related to the full energy system. For instance,
there can be a maximum limit of CO2 emissions for the full horizon. There can also be
other environmental quotas, such as a minimum percentage of green heat, or technical
quotas, such as a desired primary energy factor or a or minimum percentage of power
generated by CHP plants. In the following two paragraphs, we give two examples for
such system-wide constraints.

CO2 Limits
A crucial aspect for long-term energy planning models is CO2 emissions. We denote
the set of nodes associated to CO2 emissions with Kemission ⊂ K For each of those
nodes, we introduce emission variables et,k. They are given as a function of the inflow
and outflow variables of every node, i. e.

et,k = ζemission
t,k (xt,Λ(k)) ∀t ∈ T, ∀k ∈ Kemission, (19)

where ζemission
t,k is a time-dependent function that is specific for every node. Emissions

can be associated with the produced energy of a power plant. Alternatively, they can
be connected to the output of each fuel purchase contract as certain heat power plants
for instance can be run by different types of fuel all of which have a different level
of CO2 emissions. In most cases, the function ζemission

t,k is linear and given by a fuel
specific parameter. To model a limit on the total amount of emitted CO2 for the full
time horizon amax emission, we use the constraint∑

t∈T

∑
k∈Kemission

et,k ≤ amax emission. (20)

Such limits could also be defined with respect to each year.
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Percentage of CHP power
There can also be goals to increase specific technical measures of the energy system
such as the percentage of CHP power. To model aspects like this, we can again intro-
duce sets of nodes that produce power Kpower and nodes that produce heat and power
KCHP. For each of those nodes, we define functions ζpower

t,k and ζCHP
t,k modeling the

power generated in total and the amount of power generated by CHP units. Similarly
to the emissions constraints above, we can use the constraint∑

t∈T

∑
k∈KCHP

ζCHP
t,k (xt,Λ(k)) ≥ aCHP

∑
t∈T

∑
k∈Kpower

ζpower
t,k (xt,Λ(k)), (21)

where aCHP denotes the desired fraction of CHP power.

3 Conclusion
In this article, we introduce a new model class for investment and portfolio production
planning for multi-energy systems. The model class is based on a generalized form
of UC problem on a network with investment decisions. It is designed to capture all
relevant aspects for industrial energy production portfolios such as the detailed and
flexible modeling of generation units, their topological dependency as well as opera-
tional dependencies. Despite the high level of detail, the model remains tractable for
long-term planning when using representative time periods and the abstract formula-
tion on a network allows for the development of effective solution methods. Future
work will cover a case study for a real, large-scale industrial investment and portfolio
optimization problem .
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