
Tropical Neighbourhood Search: A New Heuristic
for Periodic Timetabling
Enrico Bortoletto !

Zuse Institute Berlin, Germany

Niels Lindner !

Zuse Institute Berlin, Germany

Berenike Masing !

Zuse Institute Berlin, Germany

Abstract
Periodic timetabling is a central aspect of both the long-term organization and the day-to-day
operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the
combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is
an extremely hard problem, for which optimal solutions are hardly ever found in practice. The
most prominent solving strategies today are based on mixed-integer programming, and there is a
concurrent PESP solver employing a wide range of heuristics [3]. We present tropical neighborhood
search (tns), a novel PESP heuristic. The method is based on the relations between periodic
timetabling and tropical geometry [4]. We implement tns into the concurrent solver, and test it on
instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial
to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and
the overall share of improvement coming from tns is substantial compared to the other methods
available in the solver. Finally, we provide better primal bounds for five PESPlib instances.
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1 Introduction

Rhythm is to music what the timetable is for a public transit system. Periodicity of
transportation networks is a common characteristic, quite useful in practice, and so periodic
timetables are of particular importance. Setting up departure and arrival times in a feasible
way is quite complicated, and the standard framework to model and optimize such timetables
is that of the Periodic Event Scheduling Problem (PESP), first devised by Serafini and
Ukovich [29]. Other than public transportation, PESP is also useful in automated production
systems [11], and more generally in any case where periodicity constraints are in effect.
Deciding whether a PESP instance is feasible is known to be NP-hard for any fixed period
time T ≥ 3 [23, 26], or when the underlying graph is series-parallel [20].
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Other than a basic MIP formulation, in practice there have been many attempts to tackle
the problem by a plethora of techniques [6, 7, 8, 9, 18, 19, 21, 22, 25, 27]. However, the most
successful method in practice remains the concurrent solver of Borndörfer, Lindner, and
Roth [3], which, in parallel, implements MIP-based branch-and-cut [15], the modulo network
simplex algorithm (mns, [8, 25]) as a local improvement heuristic, and a maximum-cut based
heuristic [18], together with other features.

In this paper we introduce a novel heuristic, called Tropical Neighbourhood Search (tns).
The tns algorithm is based on the link between the space of feasible periodic timetables and
tropical geometry established in [4]. We will recall useful theoretical results in Section 2,
which provide geometrical insight to the algorithm then described in Section 3. Finally, we
will describe our implementation of tns in Section 4 and evaluate it in Section 5 on a subset
of the instances of the benchmarking library PESPlib [5]. We conclude the paper with an
outlook in Section 6.

2 Tropical Decomposition of Periodic Timetable Space

The goal of periodic timetabling in public transport is to assign timestamps to departure and
arrival events of, e.g., trains at stations, so that the time between such events is within some
given bounds. By the periodic nature, it suffices to consider timestamps modulo a period
time T . The standard mathematical model for periodic timetabling is the Periodic Event
Scheduling Problem (PESP) [29]. A PESP instance is comprised of a tuple (G, T, ℓ, u, w),
whose elements are:

An event-activity network G, a directed graph whose vertices V (G) represent events in
the network, and whose arcs A(G) represent activities between events. In the context of
periodic timetabling, these events describe the points in time of departures or arrivals,
while the activities model the time durations of driving between stations, dwelling at a
station, transferring between lines, turning at terminal stations, or fixing headways [16].
We will assume that G is simple and weakly connected, which is no restriction [15].
A period time T ∈ N, indicating after what time an event should occur again.
Vectors ℓ, u ∈ RA(G) of lower and upper bounds on the activities, such that 0 ≤ ℓa < T

and 0 ≤ ua − ℓa < T , indicating minimum and maximum durations of a ∈ A(G).
A vector w ∈ RA(G) of weights, often modelling an ascribed importance to a given activity,
for example represented by the number of passengers partaking in said activity.

The variables to determine are the periodic timetable, a vector π ∈ RV (G), and the periodic
tension, a vector x ∈ RA(G). A pair (π, x) of timetable and tension is said to be feasible if

∀(i, j) ∈ A(G) : πj − πi ≡ xij mod T and ℓij ≤ xij ≤ uij , (1)

where the first constraint models the periodicity property, while the second ensures that the
tension is within the given bounds. Note that due to 0 ≤ ua − ℓa ≤ T for all a ∈ A(G), for
any given π there is at most one x such that (π, x) is feasible. In this case, we will hence
speak of the tension associated to a timetable.

Given an appropriate tuple (G, T, ℓ, u, w), PESP consists in finding a feasible pair (π, x)
such that the weighted tension w⊤x is minimized. If ℓ and u are integral, which is true for
most practical purposes, by a result of [26] the feasibility of the instance implies the existence
of an integral optimal solution.

PESP can be formulated as a mixed-integer program by employing some auxiliary integer
variables p ∈ ZA(G) to model the modulo constraints by πj − πi + Tpij = xij for all
(i, j) ∈ A(G). Then, using the incidence matrix B ∈ {−1, 0, 1}V (G)×A(G) of G, the problem
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is as follows:

Minimise w⊤x

subject to −B⊤π + Tp = x

ℓ ≤ x ≤ u,

p ∈ ZA(G), π ∈ RV (G), x ∈ RA(G)

(2)

where each pij is called the (periodic) offset of the arc (i, j). If (π, x) is a feasible timetable-
tension-pair, it is straightforward to compute the unique corresponding vector of offsets.

Each of the three variables in the problem are of interest in themselves. The space of
periodic tensions x has been analysed in-depth, in particular the convex hull X of all feasible
tensions, see [2, 19, 23, 26]. Also the space of periodic offsets p has received attention, or
better that of periodic cycle offsets z, which are analogous to periodic offsets and arise in an
alternative MIP formulation of PESP, namely the cycle formulation

Minimise w⊤x

subject to Γx = Tz,

ℓ ≤ x ≤ u,

z ∈ ZB, x ∈ RA(G)

(3)

where B is some integral cycle basis with cycle matrix Γ ∈ {−1, 0, 1}B×A(G), and z is an
integer vector of so-called periodic cycle offsets, see, e.g., [15] for further details. In [4] the
polytope of feasible fractional cycle offset variables is recognised to be a zonotope, and several
properties of PESP are derived via tilings of said zonotope.

What is instead of main interest in this paper is the space of periodic timetables.

▶ Definition 1. For an instance (G, T, ℓ, u, w), the set Π of feasible periodic timetables can
be written as

Π :=
{

π ∈ RV (G)
∣∣∣ ∃p ∈ ZA(G), ∀(i, j) ∈ A(G) : ℓij ≤ πj − πi + Tpij ≤ uij

}
. (4)

In particular, by defining for each p ∈ ZA(G) the polyhedron

R(p) :=
{

π ∈ RV (G)
∣∣∣ ∀(i, j) ∈ A(G) : ℓij − Tpij ≤ πj − πi ≤ uij − Tpij

}
, (5)

the feasible timetable space can be expressed as the union

Π =
⋃

p∈ZA(G)

R(p). (6)

As introduced in [4], each R(p) is a weighted digraph polyhedron [14]. Namely, for any fixed
p ∈ ZA(G) it can be described as

R(p) =
{

π ∈ RV (G)
∣∣∣ ∀(i, j) ∈ A(G) : πj − πi ≤ κ(p)ij

}
, (7)

for the weighted digraph (G, κ(p)), with the following:
vertices V (G) := V (G),
arcs A(G) := A(G) ∪A(G⊤), where A(G⊤) = {(j, i)|(i, j) ∈ A(G)},
weights κ(p)ij := uij − Tpij for all (i, j) ∈ A(G), and κ(p)ij := Tpji − ℓji for all
(i, j) ∈ A(G⊤).

By construction, every (G, κ(p)) is strongly connected, therefore the lineality space of its
weighted digraph polyhedron is solely R1 [14].
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Figure 1 A PESP instance and its polytropal decomposition Π/R1 (T = 10, w arbitrary).

Let T := R ∪ {∞} be the tropical semiring, with the tropical sum a⊕ b := min{a, b} and
the tropical product a ⊙ b := a + b, see, e.g., [12] for more background. A set S ⊂ Tn is
tropically convex if (a⊙x)⊕ (b⊙ y) ∈ S for every x, y ∈ S, and any a, b ∈ T. It was shown in
[14] that weighted digraph polyhedra arise as the tropical convex hull of finitely many points
with coordinates in T. Moreover, when the underlying digraph is strongly connected, no
∞-coordinates appear. In this case, which is the one interesting to us, all weighted digraph
polyhedra can be seen as polytropes [13] by quotienting out the trivial lineality space, i.e.,
R1. We refer to [4] to see how general properties of polytropes translate to the context of
periodic timetabling, e.g., the relation between polytrope vertices, vertices of the tension
polytope X, and spanning tree structures. See also [24].

It is clear that R(p) ∩R(q) = ∅ holds for any two distinct offset vectors p and q, since
u − ℓ < T by hypothesis. If Π ̸= ∅, then the set Π/R1 is therefore a disjoint union of
infinitely many polytropes, as we have visualized for a small exemplary instance in Figure 1.
However numerous, these polytropes adhere to a certain structure, which we summarise in
the following proposition.

▶ Proposition 2 ([4], §3.3). Consider the PESP instance (G, T, ℓ, u, w) with timetable space
Π, denoting as B the incidence matrix of G, and as B an integral cycle basis of G, with
cycle matrix Γ. Then:

1. For any feasible timetable π ∈ Π all of its translations by integer multiples of T are
feasible: If π ∈ R(p)/R1, then π + Tq ∈ R(p + B⊤q)/R1 for all q ∈ ZV (G).

2. Two feasible timetables π, π′ ∈ Π have the same associated periodic tension if and only if
there exists q ∈ ZV (G) such that π′ = π + Tq.

3. Two feasible timetables π, π′ ∈ Π have the same associated periodic tension if and only if
Γp = Γp′ for the associated offsets p, p′ ∈ ZA(G).
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The unbounded set Π/R1 then turns out to be simpler than expected, since its ambient
space can be restricted by another quotient, based on the equivalence relation

p ∼= p′ ⇐⇒ Γp = Γp′ (8)

implied in the above proposition. In view of the cycle formulation (3) of PESP, we consider
p and p′ equivalent whenever they correspond to the same cycle offset. With n := |V (G)|,
we define the torus of feasible periodic timetables T := (Rn/ (TZ)n) /R1. This is an (n− 1)-
dimensional torus of side length T , whose representative can be any full-dimensional hypercube
of side length T in Rn/R1, called fundamental domain. It now makes sense to also have
a shorthand notion to refer to the quotient of our weighted digraph polyhedra in T. We
choose (R(p)/(TZ)n)/R1 =: R(p) ⊆ T.

To conclude this recapitulatory section, it is now possible to describe how the polytropes
position themselves inside some fundamental domain, along the lines of [4]. Given a PESP
instance (G, T, ℓ, u, w), we define (in breach of our hypothesis of u− ℓ < T ) its limit instance,
where all upper bounds ua are substituted with ℓa + T , and denote it by (G, T, ℓ, w)∞. For
a polytrope R(p) of the base instance we denote as R′(p) the polytrope in the limit instance
that contains it. We now say that two non-empty polytropes R(p) and R(q) are neighbours
when R′(p) and R′(q) intersect in a common facet.

▶ Proposition 3 ([4], §3.7). Let p ∈ ZA(G) be an offset vector with R(p) ̸= ∅, k an integer,
and eij ∈ ZA(G) the canonical basis vector of the arc (i, j) ∈ A(G). Then:
1. If |k| > 2, then R(p + keij) is empty.
2. If |k| > 1, then R(p) and R(p + keij) are not neighbours.
3. If |k| = 1 and R(p + keij) ̸= ∅, then R(p) and R(p + keij) are neighbours, and one of

the two inequalities defined by the arc (i, j) is facet-defining for R(p): For k = 1 this
is the lower bound inequality πj − πi ≥ ℓij − Tpij, for k = −1 this is the upper bound
inequality πj − πi ≤ uij − Tpij.

4. Two non-empty polytropes R(p) and R(q) are neighbours whenever there exist represent-
atives of the equivalence classes of p and q whose difference is, up to sign, a canonical
basis vector. In other words, whenever there exists an arc (i, j) ∈ A(G) such that
[p]∼= − [q]∼= = [±eij ]∼=.

This allows the construction of the neighbourhood graph of an instance, whose nodes are
the equivalence classes of offsets, and two classes are adjacent if their respective polytropes
are neighbours in T. For the limit instance of the instance of Figure 1, the polytropal
decomposition is depicted in Figure 2 next to the neighbourhood graph derived from it:
Each dark blue triangle corresponds to the equivalence class [0, 0, 0]∼= and shares a facet only
with the hexagon, corresponding to the class [0, 0, 1]∼=. This, in turn, has both [0, 0, 0]∼= and
[0, 0, 2]∼= as neighbours.

3 Tropical Neighbourhood Search

We can now outline the core steps undertaken by the promised heuristic, which we call
Tropical Neighbourhood Search (tns). It is a local improvement heuristic that operates within
the framework of the concurrent solver [3]. The solver keeps a pool of the feasible solutions it
finds, ordered by objective value, and various local improvement heuristics use the pooled
solutions as starting points. In particular, tns, once given a starting solution (π⋆, x⋆, p⋆),
identifies the polytrope R(p⋆) and proceeds to explore some neighbouring polytropes, i.e., it
determines the optimal weighted tension over each R(p) for (a subset of) neighbours p of p⋆.
If an improving solution is found, it is added to the pool. Doing so, it in fact operates on the
neighbourhood graph of the given instance.

ATMOS 2022



3:6 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

0 0 0 -1 0 1

0 1 1 -1 1 2

0 0 1

-1 0 2

1 0 0

0 -1 0 -1 -1 1

0 1 21 1 1

0 0 21 0 1

0 -1 11 -1 0

fundamental domain of T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

π1

π2

[0 0 0]∼=

[0 0 1]∼=

[0 0 2]∼=

Figure 2 Limit instance and neighbourhood graph for the same instance as in Figure 1.

Algorithm 1 Tropical Neighbourhood Search tns.

Require: PESP instance (G, T, ℓ, u, w)
1: (π⋆, x⋆, p⋆)← pick a starting solution from the pool
2: xtns ← x⋆

3: for arc (i, j) and direction k ∈ {−1, +1} in exploreList do
4: fix offset p← p⋆ + keij

5: solve PESP|
p

6: if PESP|
p

feasible then
7: (πopt, xopt, popt)← optimal solution of PESP|

p

8: improv← (w⊤xtns − w⊤xopt)/(w⊤xtns)
9: if improv > 0 then

10: Add (πopt, xopt, popt) to the pool
11: if improv > qualityFactor then
12: break
13: xtns ← xopt

Formally, our heuristic can be described by Algorithm 1, where
PESP|p is simply PESP restricted to the specific offset vector p, i.e., we solve (2) with all
integer variables fixed to p. This is a linear program, which is dual to an uncapacitated
minimum cost network flow problem [25].
exploreList is a list of arc-direction tuples, indicating which neighbours to explore. It
may contain only a subset of all possibilities.
The solution picking method could vary in principle, although in our implementation it
always selects the solution in the pool with smallest weighted tension.
qualityFactor ∈ [0, 1] is a factor utilized as a preemptive exit condition, which triggers
when the percentage improvement of a newly found solution exceeds this factor.
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Note that Algorithm 1 is a description of tns with the incidence matrix formulation of
PESP (2). One can equivalently work with the cycle formulation (3) instead, which changes
the LP subproblem of PESP to PESP|

z
for a vector z of periodic cycle offsets. This poses

no issue, and we refer to the next section for more details.
It is known that tns can be used to escape local minima reached via the modulo network

simplex, as there even exist such instances where the neighbourhood graph has none [4].

4 Implementation details

As anticipated, there are various elements in Algorithm 1 that may alter the overall behaviour
and performance of the algorithm depending on how they are adjusted. Therefore, before
moving forward with the computational experiments, we will now detail the characteristics
of such elements, what settings and strategies we decided to employ, the motivations that
moved us, and other minor implementation details.

4.1 Preparing the exploreList
A deciding factor for both the speed and the behaviour of our tns heuristic is determining
the search space. Clearly, choosing which or how many neighbouring polytropes to explore is
a factor that deserves consideration, but even the order of exploration may affect the overall
performance, since it has potentially positive interplay with concurrency.

As we know from Proposition 3, only arcs (i, j) whose inequalities are facet-defining for
R(p⋆) can yield feasible neighbours, and only in the appropriate direction. Unfortunately,
knowing a priori which inequalities are facet-defining is not trivial, and we therefore detail
two strategies: one precise but slow, one fast but imprecise. When setting up exploreList in
our tests, we decided to either scan all possible neighbours, i.e., all pairs (a, +1) and (a,−1)
for all arcs a ∈ A(G), or to restrict ourselves to a subset of the facet-defining inequalities,
namely those that are tight in the starting solution (π⋆, x⋆, p⋆), i.e., pairs (a, +1) if x⋆

a = ℓa

and pairs (a,−1) if x⋆
a = ua. This second way only the faces on a particular side of the

polytrope are considered. We mark the first exploreList strategy by all, and the second
one by side. The side strategy is quick to set up, but has the defect of not considering all
facet-defining inequalities. Note that when a simplex-based LP solver is invoked on PESP|

p

or PESP|
z
, then (π⋆, x⋆, p⋆) will be a vertex of R(p⋆).

Given the equivalence relation ∼= (8), we know that polytropes are uniquely determined
by their cycle offset z = Γp. Given then neighbouring periodic offsets p + ei1j1 and p + ei2j2 ,
for arcs (i1, j1) and (i2, j2) in A(G), it may happen that Γ(p + ei1j1) = Γ(p + ei2j2) and
the two explorations end up being identical. Therefore, another way of avoiding irrelevant
explorations is to fix any cycle matrix Γ of the instance graph and pre-process all arcs, storing
a unique representative for all arcs whose columns in Γ are identical.

4.2 Sorting the exploreList
Another choice to be made while preparing exploreList is the order in which to consider the
arc-direction pairs. This can be influential because if a good solution is put into the pool
earlier, then it is earlier available to other methods in the concurrent solver. In particular,
in combination with the quality factor, this can lead to tns-loops that are shorter but still
improvement-dense. We decided to use four different strategies to sort the arcs:
s1 descending weight wa, to prioritize exploration of heavy and hence influential arcs;
s2 descending span ua − ℓa, to prioritize exploration of neighbours that are close-by, and

therefore more likely feasible, since two neighbouring polytropes R(p) and R(p ± eij)
have distance at most T − (uij − ℓij);

ATMOS 2022
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s3 descending weighted span wa(ua − ℓa), to combine the two sorting strategies above;
s4 descending average improvement, so as to prioritize exploration via arcs that on average

have given good improvements in previous iterations. While the previous three strategies
are pre-processed at the beginning, this is a dynamic sorting strategy, which keeps track
of the average (positive and negative) improvements given by each arc throughout the
various iterations. The rationale behind this is to prioritize all those arcs which provided
net improvements but not the best improvement overall. Initially all averages are set to
0, and no changes is made in case of infeasibility. This is similar to pseudocost branching
in mixed-integer programming [1].

4.3 The qualityFactor

The quality factor can be interpreted as a percentage, based on which the tns-loop is
terminated early in case of a percentage-improvement that exceeds the given bound. As limit
cases this means that any positive improvement whatsoever is enough to conclude the search
when the factor is set to 0%, and that no quality-based exit can happen when the factor is
set to 100% or more. In our tests, we perform our tests using two quality factors:

q0.001, meaning 0.1% quality factor.
q1, meaning 100% quality factor: every arc-direction tuple of exploreList is considered.

4.4 Subproblem Formulation: Arc Offsets vs. Cycle Offsets

As mentioned, Algorithm 1 is tns with respect to the incidence formulation of PESP (2),
but one can equivalently perform tns using the cycle formulation (3) instead. The algorithm
then reads the same as Algorithm 1, except that the cycle offsets are computed and used
instead, with line 4 changing to z ← z⋆ + kΓeij , and line 5 now solving PESP|

z
. Notice that

Γeij is indeed the (i, j)-th column of the cycle matrix. In this, the choice of which cycle
basis to use can be quite influential on the solving speed of the linear programs PESP|

z
.

Preliminary tests showed that for each instance there can be impressive differences, up to a
factor 14, between the average solving times of different problem formulations and different
cycle bases.

In order to choose which formulation to use for each instance, we compared the average
for-loop iteration time of each of them and then simply picked the fastest one. The
formulations tested were the incidence matrix formulation, and four variants of the cycle
matrix formulation. One used a minimum width cycle basis [17], whereas three used different
fundamental cycle bases: from a minimum span, minimum weight, and a minimum weighted
span spanning tree, respectively. Since the average iteration time appeared very consistent
throughout the tests and short even in the worst cases, tests of less than a minute per
formulation are more than enough to process hundreds of linear programs and thereby
compute an applicable average iteration time. In particular, the cycle formulation performed
well overall, with the fundamental cycle bases of a minimum weighted span spanning tree
being the fastest in all but two instances, where the fundamental cycle bases of a minimum
span spanning tree were best instead.

Regardless of the specific cycle bases used in our tests, these evaluations were fast to
obtain, and it can be suggested that a similar pre-evaluation strategy could be systematically
used in the future.

We use Gurobi 9.5 [10] to solve each iteration’s linear program.
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4.5 Hashing Visited Polytropes
Throughout repeated use of tns, in particular in the exploration of different neighbourhoods,
it is possible to explore the same polytrope multiple times, since the neighbourhoods of any
two polytropes may have non-trivial intersection. A way to prevent this from happening is
then to progressively keep a record of every processed offset vector and skip it whenever it is
encountered again. In our preliminary performance evaluations this tracking method seemed
to have little effect, positive or negative. We therefore decided to maintain it, hoping for a
stronger impact in longer tests.

5 Computational Experiments and Results

We conducted several tests on eight PESPlib instances [5] of varying size, namely R1L1, R2L2,
R3L3, R4L4, R1L1v, R4L4v, BL1, BL3. The last two are bus timetabling instances, whereas
the rest are based on railway networks. For each we used both warm starts, employing initial
solutions close to the PESPlib current best primal bounds (cf. Table 1), and cold starts
without any initial solution.

Table 1 Initial solution values for the warm starts.

R1L1 31 099 786 R2L2 43 404 232 R3L3 44 837 461 R4L4 38 836 756
R1L1v 43 258 386 R4L4v 64 408 523 BL1 8 457 513 BL3 8 502 382

Table 2 Parameter combinations for tns.

Instances exploreList arcs exploreList sort qualityFactor Initial Solution
R1L1, R2L2, s1
R3L3, R4L4, all s2 q0.001 cold

R1L1v, R4L4v, side s3 q1 warm
BL1 , BL3 s4

Overall the various tns parameters are summarised in Table 2. Each combination was
tested within the concurrent solver [3]. Going forward we will refer to mns tests when
the modulo network simplex method works alone, tns+mns tests when the two heuristics
run concurrently, and complete tests when tns and all the methods implemented in the
concurrent solver are used together.

5.1 Impact of Parameter Choices for tns

In a first step, we want to evaluate how much the choice of arc-direction tuples and their
sorting influence our results. We run tns+mns and compare it to mns alone, for all parameter
combinations, see Table 2. For a meaningful comparison of the test runs, we disabled
multi-node cuts within the mns implementation, because of their randomizing character. To
complete the analysis we also run complete tests. The computation time per configuration
is one hour wall time each, performed on an Intel i7-9700K CPU with 64 GB RAM.

5.1.1 mns+tns vs. mns

We can make the following observations: In combination with mns, our new heuristic was
able to beat mns alone for all instances, as becomes evident from Table 6. Highlighted entries
correspond to the best objective in comparison to the other parameter choices per instance.
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The last column, corresponding to the objective value obtained by mns alone is never in the
first place, while any other column is the winner at least once.

We point out that for one instance, namely the warm-started R4L4, mns was not able to
find any improvement, while all four sortings of all arcs with low qualityFactor found the
same improvement. This supports our claim that tns can be used to escape local minima.

To assess each heuristic’s performance, we rank them by their objective value after 6
minutes (i.e., 10% of the total running time) and after 1 hour (100%), such that the best
objective is ranked in first place, and assign the same placement number for equal objectives.
When comparing the average ranking values, it is hard to discern a clear ranking in between
the tns parameter choices: all with pseudocost-like improvement (s4) and qualityFactor q1
seems best on average, but is a clear winner only for the cold R3L3 instance.

The two exemplary plots for the two instances R1L1v and BL3, see Figure 3, show the
development of the objective for mns vs. tns+mns. It is evident that each of the parameter
choices is reasonable, and depending on the instance may perform well or not. For example,
side-s1-q1 is the best for BL3-cold, yet one of the worst heuristics in the R1L1v-cold run.

Another property which can be seen in the figures is that in the beginning, the side
instances tend to perform better. After a while however, the all-runs become competitive.

5.1.2 complete Runs
This phenomenon is even stronger when evaluating the parameter choices in the complete
runs: When comparing the average ranking of the methods after 6 minutes with the final
state after an hour, as indicated in Table 7, one can observe that – with the exception of
all-s3-q0.001 – the all-heuristics rank better, while side methods worsen.

This behaviour can be also observed when looking at the graphs for the complete case in
Figure 4. What catches the eye in these figures is that the all runs seem to have the same
shape in objective development as the side runs, but lag behind. After a while however, the
dark (all) strands catch up to the light (side) strands. A similar pattern can be observed in
most of the instances, particularly for the larger ones. An explanation for this could be that
in the beginning, improvements are easily found, and side will quickly update the pool and
restart with a better solution, while all will continue to iterate through all options, even
though better solutions have already been obtained (possibly) by other concurrent methods.
In contrast, in the later stages, when improving solutions are hard to find, it pays off to
search through all of the neighbouring polytropes. In contrast to mns+tns, in complete a
low quality factor produces better results on average. This can be explained in a similar way
as above: A low quality factor disrupts unnecessary explorations when larger improvements
are found in the beginning. With time, the improvements in objective become smaller, such
that qualityFactor has less of an impact, so that most of the arc-direction pairs in exploreList
are explored anyway.

We conclude that all sorting factors are relevant, as each one performs well for some
instances. Which one is the best choice is hard to predict in advance, and overall – particularly
in the interplay with other concurrent heuristics – their influence is not large. Both side
and all are valid choices for exploreList: The former is better suited for earlier stages of
solving, while the latter performs well once improvements become hard to find.

5.2 Contribution of tns in Comparison to Other Methods
Aside from the behaviour as discussed in the previous section, we want to analyze the quality
of the contributions of tns in the scope of the concurrent solver. To this end, we compare the
improvement of the objective value obtained by the different algorithms in the complete runs.
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Table 3 tns’ contribution to the improvement gained in the complete runs in %.

warm cold
avg. min max avg. min max

BL1 7.43 0.0 17.97 3.68 0.02 8.52
BL3 4.68 0.0 14.59 2.92 0.0 6.04
R1L1 7.66 6.38 10.04 2.95 0.04 5.15
R1L1v 0.81 0.0 5.02 2.96 0.03 5.92
R2L2 6.89 0.0 31.64 2.76 0.05 5.46
R3L3 15.05 6.98 21.71 2.95 1.05 6.21
R4L4 9.52 1.16 12.45 1.89 0.89 3.23
R4L4v 0.56 0.0 1.5 1.48 0.0 3.76

What should be noted first, is that the total improvements of cold starts are significantly
larger than those of warm starts, and this also holds for tns in the complete runs. In relation
to the total improvements however, the contribution of tns is larger for warm starts. We see
evidence of that in Table 3: It shows the average, minimum and maximum improvement found
by any of the exploreList’s choices in relation to the total improvement in the complete run
in percent. With the exception of R4L4v and R1L1v, the average (and in most cases also the
maximal) values of the warm started instances is larger than of the cold started ones. Table 4
displays the same, except that the first 6 minutes are excluded from the improvements. One
can observe that compared to Table 3 the contribution of tns increases for the cold instances.
This observation suggests that tns is particularly well suited for the later stages of solving a
PESP instance, namely when improvements increment more slowly. At the beginning, when
still far from a (local) minimum, tns is dominated by other algorithms in the solver.

Table 4 tns’ contribution to the improvement gained in the complete runs in % after 6 minutes.

warm cold
avg. min. max. avg. min. max.

BL1 4.97 0.06 11.87 4.73 0.0 13.78
BL3 6.74 0.0 26.61 5.32 0.01 26.48
R1L1 0.0 0.0 0.0 8.28 0.0 41.78
R1L1v 9.46 0.0 72.64 7.41 1.15 28.49
R2L2 2.76 0.0 11.18 2.22 0.0 10.61
R3L3 1.79 0.47 4.02 7.15 0.0 37.09
R4L4 2.84 0.0 15.62 1.37 0.0 3.45
R4L4v 0.42 0.0 1.38 2.59 0.0 14.44

Very noticeable in Table 3 and Table 4 is the wide range of tns’ contribution for the
different choices of exploreList. In almost all instances there is at least one choice which
provides close to zero improvement, while the maximum value goes up to double-digit
percentages. This property can also be observed in Figure 5. Here, we have chosen the
exemplary instance R3L3 and displayed the fractional contributions of all used heuristics in
the complete solver. The warm started instance (left) has significantly more contribution
through tns (green parts) in comparison to the cold started one. The top plots display
the contributions for the whole time frame, while the lower plots show them for the last 54
minutes. When comparing the upper to the lower plots, it becomes evident, that some of
exploreList’s choices gain in importance, while others seem to perform particularly badly.
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E.g., for the cold run, each of the sortings with low qualityFactor seem to contribute similarly
in the beginning, but after the first 6 minutes have passed, s4 clearly contributes the most
to the concurrent solution, yet the largest total improvement is found by s1, with only little
direct tns contribution. Which one of the sortings provide the best solution is not clear
however, our experiments did not show any clear indication. We therefore conclude that it
may be worth it to try different sorting techniques in tns if no good improvements are found.

Based on Figure 5, we observe that the runs with high qualityFactor result in less
improvement than with low qualityFactor , and the tns contribution is also often higher for
low quality factors. While not the case for each instance and sorting, this seems to be a
general tendency. When comparing tns’ influence over time, this hierarchy is less prominent.

This supports again our interpretation of the previous section: Low quality factors are
advantageous in the beginning. At a later stage, when the objective improvements become
smaller, the qualityFactor exit condition is rarely triggered, regardless of low or large choice.

5.3 New PESPlib Incumbents
Based on the observation that tns contributes significantly to finding better solutions for
PESP instances within the framework of the concurrent solver, we were able to compute
new best primal solutions for 5 out of the 8 considered PESPlib instances. For some of these
instances, we could find such a solution already within one hour in our complete experiments
(see, e.g., BL3 in Table 7). We then let the solver run for another 8 hours to further improve
the timetables. We summarize the objective values of these new incumbents in Table 5.

Table 5 New incumbents for 5 PESPlib instances found with the help of tns. The old values are
as of July 7, 2022. The last column shows the (wall) time of discovery.

Instance New Value Old Value Time (s)
BL3 6 675 098 6 999 313 25 732
R1L1v 42 591 141 42 667 746 9 110
R3L3 40 483 617 40 849 585 3 547
R4L4 36 703 391 36 728 402 11 122
R4L4v 61 968 380 64 327 217 3 625

6 Outlook

The tns algorithm turns out to be a valuable supplement to the already enormous zoo
of periodic timetabling heuristics, being capable to provide timely and practical schedule
improvements. For future research, it seems reasonable to embed tns in a metaheuristic such
as tabu search or simulated annealing in order to overcome local optima. Another branch of
research would be to employ automated algorithm configuration techniques [28] to find out
which parameters work best for a given instance.
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A Appendix

Table 6 Objective values of tns and mns in parallel after 1h wall time, in comparison to mns
alone.

all
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 8258561 8235826 8186321 8300527 8182495 8238180 8208581 8213667
BL1-cold 8477888 8403606 8549631 8857331 8275775 8520448 8817740 8346471
BL3-warm 8359354 8348109 8098761 8312052 8062572 8348109 8327236 8379410
BL3-cold 8842185 9239538 9075754 8684087 8999692 8522210 9012239 8861540
R1L1-warm 30678496 30610793 30600296 30588100 30678496 30578866 30600296 30583524
R1L1-cold 35788003 35103477 35300490 35646174 35588509 35374751 35589367 35382965
R1L1v-warm 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42943355
R1L1v-cold 46122798 46465421 46212022 46696787 46504815 46425825 46467141 46678146
R2L2-warm 43398483 43382565 43382736 43382736 43398483 43382565 43398483 43382736
R2L2-cold 45545963 46106414 44143731 45270818 45016237 45032259 44405920 44233438
R3L3-warm 44546204 44544442 44591244 44539593 44544442 44544948 44548577 44593350
R3L3-cold 44296073 43407015 42430742 42488680 43840438 42806733 42610123 42176416
R4L4-warm 37387179 37460489 37405396 37492682 37312244 37367970 37366297 37363497
R4L4-cold 42975571 41336513 42929915 42261165 42627952 41546954 42003636 42335060
R4L4v-warm 64403669 64408523 64403669 64406909 64403669 64408523 64403669 64408523
R4L4v-cold 65376186 66594246 66351066 66694524 65949084 66391164 66296248 65823105
6 min. ranking 9.88 10.62 7.25 8.38 8.62 9.12 8.38 6.69
final ranking 9.0 8.06 6.75 9.0 7.06 6.5 7.62 6.19

side
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1 MNS

BL1-warm 8156407 8217310 8273813 8197344 8204102 8214464 8145927 8177211 8362237
BL1-cold 8790388 8464797 8523165 8509967 8681972 8375229 8688826 8676485 8973473
BL3-warm 8376740 8263350 8408354 8065263 8408354 7946851 8193045 8029258 8359914
BL3-cold 8780061 8479738 8664483 8715578 8692029 8873040 8821544 8985128 8895307
R1L1-warm 30674972 30658531 30691866 30688021 30756833 30688021 30756833 30681160 30684785
R1L1-cold 36423144 35686177 36133582 35353728 36044751 36078420 36541854 35633823 36390414
R1L1v-warm 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42946450
R1L1v-cold 46961984 47270557 47182681 46530813 46658767 47345018 47409082 46555105 47600910
R2L2-warm 43398483 43364985 43398483 43386980 43386980 43398483 43398483 43364985 43385954
R2L2-cold 44667116 44593903 44502873 44640728 44496851 44428158 44403440 44522515 44504010
R3L3-warm 44795451 44795451 44795451 44795451 44795451 44795451 44795451 44795451 44810246
R3L3-cold 42187095 43170308 44316260 43665920 43376728 43507592 43430305 43574669 45577898
R4L4-warm 37415040 37399063 37356432 37386139 37314559 37288889 37363831 37311361 37444171
R4L4-cold 42846346 42044976 41788252 41528536 41952148 41772120 42575956 42763956 42622532
R4L4v-warm 64408523 64408523 64408523 64408523 64408523 64408523 64408523 64408523 64408523
R4L4v-cold 66228809 65578506 65739359 65741111 66134278 66032110 65175140 65877024 66270894
6 min. ranking 8.12 6.19 7.75 6.88 8.62 6.56 7.56 7.88 6.81
final ranking 9.94 7.06 9.5 7.19 8.69 7.81 8.69 7.5 13.44
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Figure 3 Examples of the objective progression in comparison to different parameter choices for
parallel mns+tns in comparison to mns.
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Table 7 Objective values after 1h runtime with the complete strategy.

all
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 6792526 6935103 6547850 6697639 6572855 6740896 6562891 7025590
BL1-cold 7621147 7457877 6465738 6758000 7144032 6699148 7147572 6911380
BL3-warm 7334701 7140000 7259769 7023881 6974763 7206833 7553069 7164378
BL3-cold 7406444 7727433 7629390 7753854 7768767 7233719 7462949 7716933
R1L1-warm 30426994 30423140 30423140 30426994 30426994 30426994 30431036 30426994
R1L1-cold 34020450 33522247 31692344 34177686 31856836 33795188 34125594 33794486
R1L1v-warm 42943355 42943355 42943355 42814750 42801531 42943355 42943355 42943355
R1L1v-cold 46169674 46551486 46041342 46326249 45768586 46341535 47172536 45813504
R2L2-warm 43207702 43319135 43206244 43275789 43263142 43329691 43047738 43329691
R2L2-cold 42361958 42416233 41640213 43131819 42337570 42512473 42586419 41960342
R3L3-warm 44408363 44397465 44379012 44399516 44378435 44371830 44397486 44411156
R3L3-cold 41222660 42739161 41228048 42440292 42384919 40483617 42758160 44132022
R4L4-warm 36909735 36916544 36901735 36935621 36928689 36960219 36997153 36990506
R4L4-cold 41823843 41243736 43339597 42061213 42174340 40282996 43336050 41504147
R4L4v-warm 64330043 64328991 64340252 64285960 64340252 64339747 64339747 64340252
R4L4v-cold 63222568 64090696 64580054 62632707 63302814 64225355 63173171 64649625
6 min. ranking 12.5 8.62 9.5 9.88 7.56 10.19 10.38 10.31
final ranking 8.69 9.19 6.75 9.19 7.94 8.06 11.0 10.5

side
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 6527346 6593280 6429697 6504754 6483936 6508182 6570960 6533503
BL1-cold 6542043 7101531 6650416 7195907 6455312 6791979 6808078 6649762
BL3-warm 6871983 7308628 7341305 7030706 7362216 7040927 6909267 6903738
BL3-cold 7163591 7504180 7349736 7614397 7514692 7232455 7212076 7247561
R1L1-warm 30426994 30426994 30426994 30423140 30425260 30426994 30426994 30425260
R1L1-cold 32816267 33578895 33551641 33642348 33857174 33321098 33785910 33708393
R1L1v-warm 42886458 42943355 42943355 42943355 42943355 42943355 42943355 42943355
R1L1v-cold 44544618 46040263 46330633 45723589 46295094 45923497 46228814 46390710
R2L2-warm 43203025 43318930 43191843 43004597 43318930 43222313 43100634 43047991
R2L2-cold 41095503 42522032 41856192 42195345 42390560 42168432 41914851 42347940
R3L3-warm 44430322 44382720 44433727 44414666 44321035 44404928 44385201 44400190
R3L3-cold 41391010 41773723 41985509 41473233 40993187 42284859 40959638 44300876
R4L4-warm 36974381 36923867 36953228 36915142 36935274 37064318 36913014 36814620
R4L4-cold 42207683 41930820 41605374 42155011 41124227 41549938 41784069 40541428
R4L4v-warm 64340252 64340252 64250155 64339747 64339747 64339747 64339747 64339747
R4L4v-cold 64389979 64026343 61968380 64348631 63482236 63127690 63036902 62757263
6 min. ranking 4.19 6.31 5.69 5.31 4.75 6.06 5.31 6.25
final ranking 6.5 9.0 6.69 7.06 7.0 6.81 5.56 6.06
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Figure 4 Examples objective progression in comparison to different heuristics in the complete
concurrent solver.
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Figure 5 Contribution of the individual methods in the concurrent solver and tns (green) for the
instance R3L3.
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