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TOPOLOGICAL INDEX CRITERIA IN DAE FOR WATER NETWORKS

MARC C. STEINBACH

ABSTRACT. The dynamics of pressurized water networks are naturally modeled by diffe-
rential-algebraic equations (DAE). This article investigates fundamental structural proper-
ties of such a DAE model under weak regularity assumptions. The usual algebraic index-1
condition is shown to be necessary and sufficient with respect to several index concepts,
as well as sufficient for solvability in a strong sense. Using the physical properties of non-
linear network elements and the inherent saddle point structure of network hydraulics, we
then derive purely topological index criteria in terms of the network graph and the choice
of control variables. Several examples illustrate the theoretical results and explore different
non-index-1 situations. A brief discussion of the implications for operative planning based
on discrete time DAE boundary value problems concludes the paper.

0. INTRODUCTION

Systems of differential-algebraic equations (DAE) are frequently involved in dynamic
modeling of complex technical systems. This is particularly true for network type models
where the mathematical equations are automatically generated from element submodels
and connectivity relations. A key property characterizing the degree of difficulty of the
theoretical analysis and numerical treatment of any DAE model is its index. Criteria that
determine the index are well investigated for network models in several application ar-
eas, including rigid body systems in descriptor form [20, 27, 28], modified nodal analysis
(MNA [10]) for electric circuits [9, 15, 29], and certain fields of chemical process engi-
neering [23, 8]; for a survey see [18].

To the knowledge of the author, no comparable theory exists for pressurized water net-
works. The purpose of the present article is to fill this gap, with the aim of employing the
structural results in the development of custom optimization algorithms for DAE boundary
value problems arising in water management. Mathematical decision support tools, such
as an optimization system used for operative planning by the municipal water supplier of
Berlin [4, 5], are expected to benefit from the increased computational efficiency.

Although water networks share some similarities with electric circuits, existing index
results for the latter are neither directly applicable nor easily adaptable. This is because
water network models contain several node types in addition to several arc types, leading
to more involved topological considerations. In particular, we need to analyze general
submatrices of the incidence matrix, rather than just subsets of columns.

The paper is organized as follows. In Section 1 we introduce some notation and basic
theoretical concepts. The hydraulic model of [4, 5] is presented in Section 2. Using the
incidence matrix, the algebraic structure and solvability of the resulting DAE are analyzed.
The main part, Section 3, provides an in-depth analysis of the DAE index. Several index
concepts are addressed, and algebraic as well as topological index-1 conditions are derived.
The theory is then explained by means of several examples in Section 4. A summary of
the results with comments on their practical relevance concludes the paper.

2000 Mathematics Subject Classification. 65L05, 94C15.
Key words and phrases. Water network, differential-algebraic equation, solvability, topological index criteria.
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1. PRELIMINARIES

For the subsequent analysis, we need some standard function spaces, basic concepts of
DAE theory, and the notion of a graph’s incidence matrix.

1.1. Function Spaces. Given an interval I ⊆ R and a normed space X, let Cr(I, X) denote
the vector space of r times continuously differentiable functions f : I → X. If I is compact,
then Cr(I, X) becomes itself a normed space under the natural norm

‖f‖Cr(I,X) :=

r∑

n=0

‖f(n)‖C0(I,X), ‖f‖C0(I,X) := max
t∈I

‖f(t)‖X.

If I and X are clear from the context, we also write Cr for Cr(I, X) and ‖ · ‖∞ for ‖ · ‖C0 .
In writing ‖f(n)‖C0(I,X), we use the fact that X0 := X with ‖ · ‖X is canonically isometric
to the image spaces of the derivative mappings f(n) with their respective operator norms,
Xn := L(R, Xn−1), n > 0, and hence ‖ · ‖C0(I,X) is defined on Cr−n(I, Xn) ⊂ C0(I, X).
The canonical isometry ιn : Xn−1 → Xn is defined by ιn(A)t := tA for t ∈ R.

1.2. Differential-Algebraic Equations. A differential-algebraic equation (DAE) is an
equation of the general form

(1) F(x ′(t), x(t), t) = 0

with Fx ′ ≡ ∂F/∂x ′ identically singular. In addition to the fully-implicit form (1), we will
also consider DAE in semi-explicit form

A(x(t), t)x ′1(t) = f1(x(t), t), x = (x1, x2),(2a)

0 = f2(x(t), t), A(x, t) nonsingular.(2b)

For further structural forms and special cases of (1) see, e.g., [3, §2].
In this article we adopt the technical setting of [22]. Assume that
• F : Rm ×D× I → Rm is continuous with continuous partial derivatives

Fx ′ , Fx : Rm ×D× I → Rm×m, D ⊆ Rm open, I an interval;
• the null space of Fx ′(y, x, t) is invariant for y and x,

ker(Fx ′(y, x, t)) = N(t), (y, x, t) ∈ Rm ×D× I;

• N(t) varies smoothly with t, having a smooth projector function

Q ∈ C1(I,Rm×m), Q(t)2 = Q(t), im(Q(t)) = N(t), t ∈ I.

Defining the complementary projector function P := I − Q, it can then be shown [22] that

F(y, x, t) = F(P(t)y, x, t), (y, x, t) ∈ Rm ×D× I,

F(x ′(t), x(t), t) = F(P(t)x ′(t), x(t), t)

= F((Px) ′(t) − P ′(t)x(t), x(t), t), x ∈ C1(I,Rm).

These facts are closely related to the natural geometric interpretation of (1) as a differential
equation on a manifold [26, 24] wherein only the derivative (Px) ′ appears but not (Qx) ′.
A natural solution space for the DAE (1) is therefore

C1
P(I,Rm) := {x ∈ C0(I,Rm) : Px ∈ C1(I,Rm)},

equipped with the natural norm

‖x‖C1
P

:= ‖x‖∞ + ‖(Px) ′‖∞.

Considering the semi-explicit DAE (2) and defining F := (−Ax ′1 + f1, f2), the smoothness
assumptions on F are satisfied iff A ∈ C0 and A, f1, f2 ∈ C1 with respect to the variables
x = (x1, x2) ∈ Rm1+m2 . The null space assumptions are intrinsically satisfied since
N(t) ≡ {0}× Rm2 , yielding

Q(t) ≡ Diag(0, I), P(t) ≡ Diag(I, 0), C1
P = {x ∈ C0 : x1 ∈ C1}.
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The most important quantity characterizing the analytical and numerical properties of
a DAE is its index. Loosely speaking, the index is a measure of difficulty in comparison
to (possibly implicit) ordinary differential equations (ODE), which have index 0. There
exist actually a plethora of index concepts; here we briefly recall only some of the most
well-known definitions. (See, e.g., [7, 13] for comparisons of various indices.)

The concept of differentiation index [12, 3] is based on the idea of deriving an ODE for
every component of x by differentiating (1) repeatedly with respect to time. To this end,
observe that the derivatives of (1) can be written

0 =
dk

dtk
F(x ′, x, t) =: Fk(x(k+1), . . . , x(1), x, t) =: Fk(xk+1, x, t)

(provided that F ∈ Ck), and consider for k ≥ 0 the derivative array equations [6],

0 = Fk(xk+1, x, t) :=




F0(x1, x, t)
...

Fk(xk+1, x, t)


 .

Definition 1 (Differentiation Index). The differentiation index of the DAE (1) is the small-
est integer νD ≥ 0 such that FνD = 0 uniquely determines the variable x ′ as a continuous
function of x and t.

The perturbation index [16, 17] measures the sensitivity of solutions of (1) to perturba-
tions of the right-hand side.

Definition 2 (Perturbation Index). The DAE (1) has perturbation index νP ≥ 1 along a
solution x on [a, b] if νP is the smallest integer such that for all functions x̃ having a defect

F(x̃ ′, x̃, t) = δ(t)

there exists on [a, b] an estimate

‖x̃(t) − x(t)‖ ≤ c
(
‖x̃(0) − x(0)‖+ ‖δ‖C(νP−1)([a,t],Rm)

)

whenever the expression in parentheses is sufficiently small.
The DAE (1) has perturbation index zero if there exists on [a, b] an estimate

‖x̃(t) − x(t)‖ ≤ c

(
‖x̃(0) − x(0)‖+ max

τ∈[a,t]

∥∥∥∥
∫τ

a

δ(s) ds

∥∥∥∥
)

.

In both cases, c denotes a constant that depends only on F, x, and the interval [a, b].

The strongest index concept considered here is the tractability index νT [14, 21, 22],
which is based on the relation of N(t) with the space

S(y, x, t) := {z ∈ Rm : Fx(y, x, t)z ∈ im(Fx ′(y, x, t))}, (y, x, t) ∈ Rm ×D× I.

To avoid unnecessary technical complexity we define only the index-1 case; for general-
izations see [21, 22].

Definition 3 (Tractability Index). The DAE (1) is index-1 tractable (or transferable) on
the open set G ⊆ Rm ×D× I if

N(t)⊕ S(y, x, t) = Rm, (y, x, t) ∈ G,

that is, N(t) + S(y, x, t) = Rm and N(t) ∩ S(y, x, t) = {0}.



4 M. C. STEINBACH

1.3. Incidence Matrix. The topology of a directed graph is conveniently represented by
its incidence matrix. We recall this concept and summarize some well-known structural
properties without proofs; the interested reader is referred to [11, 1]. Only simple graphs
will be considered throughout this paper, and the arc directions have no graph-theoretic
relevance; they only specify positive directions of flow.

Definition 4. The node-arc incidence matrix of a directed graph G = (N, A) is

E(G) ∈ R|N|×|A| where Eia(G) :=





−1 if node i is the tail of arc a,

0 if node i is not incident to a,

+1 if node i is the head of arc a.

Proposition 1. Let G consist of connected components G1, . . . , Gn, n ≥ 1. Then:
(1) Every column of E(G) contains precisely two entries: −1 and +1.
(2) The rows of E(G) sum up to zero.
(3) G has no isolated nodes ⇐⇒ E(G) has no zero rows.
(4) G is a tree ⇐⇒ E(G) has rank |A| = |N|− 1.
(5) G is connected ⇐⇒ E(G) has rank |N|− 1.
(6) G is connected ⇐⇒ every proper row subset of E(G) has full rank.
(7) E(G) = Diag({E(Gν)}).
(8) rank(E(G)) =

∑
ν rank(E(Gν)) = |N|− n.

(9) G is acyclic (i.e., a forest) ⇐⇒ E(G) has full column rank.

2. NETWORK DYNAMICS

2.1. Hydraulic Model. Our network model [4] is based on a directed graph G = (N, A)
whose node set consists of reservoirs, junctions, and tanks,

N = Nrs ∪Njc ∪Ntk,

and whose arc set consists of pipes, pumps, and valves,

A = Api ∪Apu ∪Avl.

The network behavior will be studied over some closed time interval Ī ⊆ R, I open, where
the case I = R is explicitly allowed. Dynamic variables on Ī include the node pressures
Hj (potential heads), arc flows Qij (volumetric flowrates), and pressure differences ∆Hij

across control elements:

H = (Hrs, Hjc, Htk) = (Hj)j∈N,

Q = (Qpi, Qpu, Qvl) = (Qij)ij∈A,

∆H = (∆Hpu, ∆Hvl) = (∆Hij)ij∈Apu∪Avl .

Arc directions indicate the positive direction of flow. The hydraulic model governing the
physical network behavior includes given reservoir heads, flow balance equations at all
other nodes, and pressure difference equations along arcs:

Hj = H̄j, j ∈ Nrs,∑

i : ij∈A

Qij −
∑

k : jk∈A

Qjk = Dj, j ∈ Njc,

∑

i : ij∈A

Qij −
∑

k : jk∈A

Qjk = Aj(Hj)H
′
j, j ∈ Ntk,

Hj − Hi = −ϕij(Qij), ij ∈ Api,

Hj − Hi = +∆Hij, ij ∈ Apu,

Hj − Hi = −∆Hij, ij ∈ Avl.
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We seek continuous solutions Hj, Qij, ∆Hij ∈ C0(Ī,R), with the tank filling levels being
continuously differentiable in addition, Hj ∈ C1(Ī,R) for j ∈ Ntk.

Externally given data include: H̄j(t), the water levels at reservoirs, Dj(t), the predicted
demands at junctions, Aj(Hj), the effective cross-sectional tank areas, and ϕij(Qij), the
approximate hydraulic pressure losses along pipe segments. (Details of the model are given
in [4]. There we also allow a piecewise continuous time-dependence of Aj.)

2.2. General Assumptions. Throughout this paper we impose the following topological
assumptions on the network graph:
(T1) G is connected.
(T2) G contains at least one reservoir or tank: Nrs ∪Ntk 6= ∅.
In addition, suitable properties are assumed of the data functions:
(D1) ∀j ∈ Nrs: H̄j ∈ C0(Ī,R).
(D2) ∀j ∈ Njc: Dj ∈ C0(Ī,R).
(D3) ∀j ∈ Ntk: Aj ∈ C0(R,R) is strictly positive (i.e., Aj ≥ δtk > 0 on R) and locally

Lipschitz continuous.
(D4) ∀ij ∈ Api: ϕij ∈ C1(R,R) is odd and strictly growing (i.e., ϕ ′

ij ≥ δpi > 0 on R).

2.3. Model Structure. For a concise formulation, we use the node-arc incidence matrix
of the network graph G, partitioned like H and Q by node and arc types:

E(G) = E =




Ers
Ejc
Etk


 =

(
Epi Epu Evl

)
=




Ers,pi Ers,pu Ers,vl
Ejc,pi Ejc,pu Ejc,vl
Etk,pi Etk,pu Etk,vl


 .

The above hydraulic model can then be written as

(3)




0

0

0

0

0

Atk(Htk)H
′
tk




=




ϕpi(Qpi) +

EjcQ

EtkQ

E∗piH

E∗puH

E∗vlH

Hrs

− ∆Hpu
+ ∆Hvl




−




0

0

0

H̄rs
Djc
0




where the data are defined as

Atk(Htk) := Diag
(
Aj(Hj)

)
j∈Ntk

, H̄rs :=
(
H̄j

)
j∈Nrs

,

ϕpi(Qpi) :=
(
ϕij(Qij)

)
ij∈Api

, Djc :=
(
Dj

)
j∈Njc

.

By assumption (D3), the diagonal matrix Atk(Htk) is positive definite on R|Ntk| and has a
uniformly bounded inverse, Atk(Htk)

−1 ≤ δ−1
tk I.

A central object in the analysis of the model (3) is the Wronskian of the right-hand side,

(4) W(Qpi) :=




ϕ ′
pi(Qpi) E∗rs,pi E∗jc,pi E∗tk,pi 0 0

0 E∗rs,pu E∗jc,pu E∗tk,pu −I

0 E∗rs,vl E∗jc,vl E∗tk,vl +I

0 0 0 I

Ejc,pi Ejc,pu Ejc,vl 0

Etk,pi Etk,pu Etk,vl 0




.

Note that most of the entries are unity (±1). Non-unit entries appear only in the leading
diagonal block which, by assumption (D4), is positive definite on R|Api| with uniformly
bounded inverse,

ϕ ′
pi(Qpi) = Diag

(
ϕ ′

ij(Qij)
)
ij∈Api

≥ δpiI, ϕ ′
pi(Qpi)

−1 ≤ δ−1
pi I.
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The entry positions as well as their signs are therefore structural properties of the model.
Note also that the left six by six block of the Wronskian exhibits an almost perfect primal-
dual (saddle point, or KKT type) structure where Q corresponds to primal variables and H

corresponds to dual variables, with the exception of the prescribed reservoir heads Hrs.

2.3.1. Algebraic Variables and Control Variables. Each control element (pump or valve)
has two dynamic variables: flow Qij and pressure difference ∆Hij. To simulate the model,
either Qij or ∆Hij may be selected as the control variable (to be specified as model input);
the other quantity then becomes an algebraic variable (implicitly determined by the model).
In effect, this yields partitionings of the sets of pumps and valves into flow-controlled and
pressure-controlled elements,

Apu = AQ
pu ∪AH

pu, Avl = A
Q
vl ∪AH

vl .(5)

The associated vector components of Q and ∆H are picked by selection matrices having a
single unit entry per row,

ΣQ
pu ∈ R|A

Q
pu |×|Apu|, Σ

Q
vl ∈ R|A

Q
vl |×|Avl|,

ΣH
pu ∈ R|A

H
pu |×|Apu|, ΣH

vl ∈ R|A
H
vl |×|Avl|.

Defining corresponding orthogonal projection matrices Π
Q
pu := (ΣQ

pu)
∗(ΣQ

pu) etc.,

ΠQ
pu, Π

H
pu ∈ R|Apu|×|Apu|, Π

Q
vl , Π

H
vl ∈ R|Avl|×|Avl|,

control variables upu, uvl and algebraic variables xpu, xvl of pumps and valves are then
obtained by swapping elements between subvectors (Qpu, Qvl) and (∆Hpu, ∆Hvl),

upu := ΠQ
puQpu + ΠH

pu∆Hpu, xpu := ΠH
puQpu + ΠQ

pu∆Hpu,

uvl := Π
Q
vl Qvl + ΠH

vl ∆Hvl, xvl := ΠH
vl Qvl + Π

Q
vl ∆Hvl.

This yields a splitting of (Q,H, ∆H) into differential variables x1, algebraic variables x2,
and control variables u:

x1 := Htk, m1 = |Ntk|,
x2 :=

(
Qpi, xpu, xvl, Hrs, Hjc

)
, m2 = |A|+ |Nrs ∪Njc|,

u :=
(
upu, uvl

)
, mu = |Apu ∪Avl|.

With rows and columns permuted into variable order (x1, x2, u), the Wronskian becomes

W(Qpi) =



0 Etk,pi Etk,puΠ
H
pu Etk,vlΠ

H
vl 0 0 Etk,puΠ

Q
pu Etk,vlΠ

Q
vl

E∗tk,pi ϕ ′
pi(Qpi) E∗rs,pi E∗jc,pi 0 0

E∗tk,pu −Π
Q
pu E∗rs,pu E∗jc,pu −ΠH

pu

E∗tk,vl +Π
Q
vl E∗rs,vl E∗jc,vl +ΠH

vl
0 0 0 0 I 0 0

0 Ejc,pi Ejc,puΠ
H
pu Ejc,vlΠ

H
vl 0 Ejc,puΠ

Q
pu Ejc,vlΠ

Q
vl




.

2.3.2. DAE Formulation. By selecting control variables, our hydraulic model receives the
structure of a semi-explicit DAE over the network graph G,

Atk(x1)x ′1 = f1(x1, x2, t),(6a)

0 = f2(x1, x2, t),(6b)

where the control dependence of f1, f2 is hidden in the explicit time dependence,

fi(x1, x2, t) = f̄i(x1, x2, u(t), t), (x1, x2, t) ∈ Rm1+m2 × Ī.

General Assumption. Throughout the paper the control is continuous: u ∈ C0(Ī,Rmu).
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Proposition 2 (DAE structure). Consider the hydraulic model (3) in DAE form (6). Then
the following hold:

(i) The functions f1, f2 admit decompositions

f1(x1, x2, t) = L12x2 + f1t(t),

f2(x1, x2, t) = L21x1 + L22x2 + fpi(Qpi) + f2t(t),

fit(t) = Liuu(t) + f0
it(t), i = 1, 2,

where Lij ∈ Rmi×mj , Liu ∈ Rmi×mu , fpi ∈ C1(R|Api|,Rm2), f0
it ∈ C0(Ī,Rmi).

(ii) The partial derivative ∂f2/∂x2 admits the corresponding decomposition

∂f2

∂x2
(x1, x2, t) = f ′22(x2) = L22 + f ′pi(Qpi) =: W22(Qpi)

where f22(x2) := L22x2 + fpi(Qpi) and W22 ∈ C0(R|Api|,Rm2×m2).

Proof. Since Qpi belongs entirely to x2 and x1 = Htk, the claims are immediate from (3)
and the structure of W(Qpi) under continuity of u and assumptions (D1), (D2), (D4). The
six superblocks of W(Qpi) correspond to L11, L21, L12, W22(Qpi), L1u, and L2u. ¤

Remark 1. Item (i) implies that (6) satisfies the structural assumptions of Section 1.2,
except that we only need local Lipschitz continuity of Atk rather than Atk ∈ C1.

As a first consequence of the decomposability, we find by the following auxiliary result
that W22(Qpi) has constant rank.

Proposition 3. Consider a mapping f ∈ C1(Rn,Rn) with a linear part,

f(x) =

(
f1(x)
A2x

)
∈ Rn1+n2 .

Suppose that f1(0) = 0 and that f ′1 has full rank on ker(A2), rank(f ′1(x)) ≡ n1. Then f ′

has constant rank on Rn, rank(f ′(x)) ≡ n − k, and f−1({0}) is a k-dimensional subman-
ifold of Rn, where k := dim ker(A2) − n1 ≡ dim ker(f ′(x)).

Proof. Clearly, f−1({0}) = {x ∈ ker(A2) : f1(x) = 0}. Since f ′1(x) ∈ Rn1×n is surjective
for x ∈ ker(A2) and f1(0) = 0, f−1({0}) is an n1-codimensional submanifold of ker(A2),
and hence a k-dimensional submanifold of Rn. It follows that f ′ has constant rank. (See,
e.g., [19, Thm. 1.3.8] with M := ker(A2), N := Rn, N1 := {0}, and F := f1.) ¤

Corollary 1. The rank of W22(Qpi) is constant on R|Api|.

Proof. Apply Proposition 3 to f22 ∈ C1(Rm2 ,Rm2). Observe that only the pipe flow
components are nonlinear, that ϕpi(0) = 0 since ϕpi is odd, and that the derivative of the
nonlinear part has full rank on all of Rn since ϕ ′

pi(Qpi) ≥ δpiI. ¤

2.3.3. DAE Solvability. Under the nice structure just established, we find that invertibility
of W22 is a sufficient condition for the global existence and uniqueness of solutions.

Theorem 1. Consider again the hydraulic model (3) in DAE form (6). If W22(Qpi) is
nonsingular on R|Api|, then the following hold:

(i) One can globally solve f2 = 0 for x2 as a continuous function ψ(x1, t) that is C1

with respect to x1:

f2(x1, x2, t) = 0 ⇐⇒ x2 = ψ(x1, t), (x1, x2, t) ∈ Rm1+m2 × Ī.

(ii) Given any (x0
1, t0) ∈ Rm1 × Ī, the DAE has a unique C1

P-solution x on Ī satisfying
x(t0) = x0 with x0

2 := ψ(x0
1, t0).
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(iii) The mapping ψ ∈ C0(Rm1 ×I,Rm2) defines an (m1 +1)-dimensional C0-subman-
ifold of Rm × I consisting of the DAE solutions,

M := {(x1, ψ(x1, t), t) : (x1, t) ∈ Rm1 × I}.

Moreover, the following projections are m1-dimensional C1-submanifolds of Rm:

Mt := {(x1, ψ(x1, t)) : x1 ∈ Rm1 }, t ∈ I.

Proof. Since W22 ∈ C0 is nonsingular on R|Api|, the inverse (f ′22)−1 is continuous and
hence locally bounded on Rm2 . It follows that f22 is everywhere locally invertible and
hence globally invertible, f−1

22 ∈ C1(Rm2 ,Rm2). Then ψ(x1, t) := f−1
22 (−L21x1−f2t(t))

has the stated properties, and the C1
P-solutions of (6) have the form (x1(t), ψ(x1(t), t))

where x1 is a solution of the underlying explicit ODE:

(7) x ′1 = Atk(x1)−1f1(x1, ψ(x1, t), t), t ∈ Ī.

The right-hand side of (7) is continuous on Rm1 × Ī and, by the following proposition,
locally Lipschitz continuous with respect to x1. The theorem of Picard–Lindelöf together
with the continuation theorem thus guarantee the global existence and uniqueness of ODE
solutions x1 ∈ C1(Ī,Rm1), which implies the remaining statements. ¤
Proposition 4. Under the hypothesis of Theorem 1, the right-hand side of (7) is locally
Lipschitz continuous with respect to x1.

Proof. For (x, t) ∈ Rm1 × Ī, let V(x) := Atk(x)−1 and g(x, t) := f1(x,ψ(x, t), t). The
right-hand side of (7) then reads f(x, t) := V(x)g(x, t). For the maximum norm on Rm1

we obtain the estimate

‖f(x, t) − f(y, t)‖ = ‖V(x)[g(x, t) − g(y, t)] + [V(x) − V(y)]g(y, t)‖
≤ ‖V(x)‖ ‖g(x, t) − g(y, t)‖+ ‖V(x) − V(y)‖ ‖g(y, t)‖
≤ δ−1

tk ‖g(x, t) − g(y, t)‖+ δ−2
tk ‖Atk(x) − Atk(y)‖ ‖g(y, t)‖.

Here we have used that |a−1 − b−1| = |a − b|/|ab| ≤ δ−2|a − b| for all a, b ∈ R≥δ.
Since Atk is locally Lipschitz continuous and g is locally bounded, it remains to show that
g is locally Lipschitz continuous with respect to x. Statement (i) of Proposition 2 yields

‖g(x, t) − g(y, t)‖ = ‖L12[ψ(x, t) − ψ(y, t)]‖ ≤ ‖L12‖ ‖ψ(x, t) − ψ(y, t)‖.
Since ψ is C1 with respect to x1, ψ and thus g are locally Lipschitz continuous. ¤
Corollary 2. Under the hypothesis of Theorem 1, the DAE (6) is solvable on R2m × I in
the standard sense [3, Def. 2.2.1], except that we only require x ∈ C1

P rather than x ∈ C1.

Proof. Fix some t0 ∈ I and let X1(c, t) denote the unique solution of ODE (7) with initial
value x1(t0) = c. Then Definition 2.2.1 in [3] is satisfied with Ω := R2m × I, r := m1,
Ω̃ := Rr, and φ(t, c) := (X1(c, t), ψ(X1(c, t), t)) for (c, t) ∈ Ω̃ × I. That is, DAE (6)
has an m1-dimensional family of solutions φ(t, c), parameterized by c ∈ Rm1 . ¤
Remark 2. It is easily verified that the stronger regularity assumptions of [3, Def. 2.2.1]
will be satisfied in our model if we require all data to be continuously differentiable:

(*) Djc, H̄rs, Atk, u ∈ C1.

This implies that the mapping F and the solutions x will also be continuously differentiable.

Remark 3. Solvability is also known as regularity [25] or geometric solvability [7, Def. 1].
The DAE (6) is actually uniformly 1-solvable in the sense of [7, Def. 2] (with ε = ∞):
F(x ′(t), x(t), t) = δ(t) remains solvable for arbitrary defects δ ∈ C0(Ī,Rm), and the
solutions x ∈ C1

P depend continuously on δ ∈ C0. To verify this, we just have to redefine
ψ(x1, t) := f−1

22 (δ2(t)−L21x1 −f2t(t)) and x ′1 = Atk(x1)−1[f1(x1, ψ(x1, t), t)−δ1(t)]
in the proof of Theorem 1. Again, the stronger assumptions (*) are originally required.
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3. DAE INDEX

In the following we study the index of the DAE (6). Although we consider several index
concepts, they all coincide in the nice situation of Theorem 1, where the DAE solutions for
arbitrary forcing functions define a regular flow on a manifold M: the sufficient condition
for solvability turns out to be necessary and sufficient for index-1. We formally state the
identity for the index concepts defined above, and drop the distinction from then on.

Theorem 2. The invertibility of ∂f2/∂x2 = W22 is necessary and sufficient for the DAE
(6) to be index-1 on Rm × Ī according to each of the three concepts above:

νD = νP = νT = 1.

Proof. (a) Differentiation index: for semi-explicit DAE it is well-known that νD = 1 if and
only if W22 is nonsingular. Briefly, F0 uniquely determines x ′1 (by the differential part)
but not x ′2. The latter is determined by F1 (the algebraic part) iff W22 is nonsingular.

(b) Tractability index: to see why νT = 1 we use the fact [22, §3] that transferability is
equivalent to nonsingularity of the matrix

G1(y, x, t) := Fx ′(y, x, t) + Fx(y, x, t)Q(t).

In the DAE (6) this is equivalent to nonsingularity of W22 since

G1(y, x, t) =

(
−Atk(x1)

0

)
+

(
∗ ∂f1

∂x2
(x1, x2, t)

∗ ∂f2

∂x2
(x1, x2, t)

) (
0

I

)

=

(
−Atk(x1) L12

0 W22(Qpi)

)
.

(c) Perturbation index: nonsingularity of W22 is a sufficient condition since any semi-
explicit DAE with νD = 1 and any transferable DAE also has νP = 1 along any solution
x : [a, b] → Rm; see, e.g., [17, §VII.1] and [22, Thm. 3.1]. It remains to show that the
condition is also necessary.

Assume that W22 is singular. If the DAE has no solution, nothing needs to be proved.
Otherwise, given any solution x : [a, b] → Rm and constants c > 0, ε > 0, we construct a
function x̃ := x + z and select t∗ ∈ [a, b] such that

‖δ‖C0([a,b],Rm) < ε, ‖z(t∗)‖ > c
(‖z(a)‖+ ‖δ‖C0([a,t∗],Rm)

)
,

where δ(t) := F(x̃ ′(t), x̃(t), t). Using x̃ = x + z and F(x ′, x, t) = 0, Proposition 2 yields

δ =

(
L12z2 + Atk(x1)x ′1 − Atk(x1 + z1)(x ′1 + z ′1)
L21z1 + L22z2 − fpi(Qpi) + fpi(Qpi + zpi)

)
=:

(
δ1

δ2

)
,

where zpi denotes the pipe flow component of z. Define g2 ∈ C1(Rm2 ,Rm2) by

g2(z2) := L22z2 + fpi(Qpi + zpi) − fpi(Qpi).

Then we have g2(0) = 0 and g ′2(z2) = W22(Qpi + zpi). By Proposition 3, Z := g−1
2 ({0})

is a C1-submanifold inRm2 of dimension dim ker(W22) > 0. For γ > 0 sufficiently small
we can thus find a curve z2 ∈ C1([a, b], Z) satisfying ‖z2(t)‖∞ = γ(t−a). Next, choose
z1 such that δ1 vanishes,

(8) z1(t) :=

∫t

a

[
Atk(x1(τ) + z1(τ))−1[L12z2(τ) + Atk(x1(τ))x ′1(τ)] − x ′1(τ)

]
dτ.

These choices imply z(a) = 0 and δ = (0, δ2) where δ2(t) = L21z1(t). Denote by L the
Lipschitz constant of Atk on a compact set containing x1([a, b]) ∪ x̃1([a, b]), observe that

Atk(x1 + z1)−1Atk(x1)x ′1 − x ′1 = Atk(x1 + z1)−1[Atk(x1) − Atk(x1 + z1)]x ′1,

and define

α := δ−1
tk ‖L12‖γ, β := δ−1

tk L‖x ′1‖C0([a,b],Rm1 ).
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(Here ‖ · ‖ again denotes the maximum norm on Rm, Rm1 , . . . ). Then we obtain

(9) ‖z1(t)‖ ≤
∫ t

a

[
α(s − a) + β‖z1(s)‖] ds =

α

2
(t − a)2 + β

∫t

a

‖z1(s)‖ds.

Case 1: If m1 = 0, we have δ = δ2 = 0 and z = z2 on [a, b], hence ‖δ‖C0 = 0 < ε

and ‖z(t∗)‖ = (t∗ − a)γ > c(0 + 0) for t∗ > a.
Case 2: If m1 6= 0 and L12 = 0, we have z1 = 0 on [a, b] by (8) since z1(a) = 0. This

yields δ = 0 and z = (0, z2) on [a, b], hence the same inequalities as in case 1.
Case 3: If m1 6= 0, L12 6= 0, and x ′1 = 0 on [a, b], we have α > 0 and β = 0, and (9)

simplifies to ‖z1(t)‖ ≤ α
2 (t − a)2 =: αζ(t). The proof continues after case 4.

Case 4: Otherwise we have α > 0 and β > 0. Apply the Lemma of Gronwall and then
a series of algebraic transformations to derive

‖z1(t)‖ ≤ α

2
(t − a)2 + β

∫ t

a

eβ(t−s) α

2
(s − a)2 ds

=
α

β2

(
eβ(t−a) − β(t − a) − 1

)
= α

∞∑

k=2

βk−2

k!
(t − a)k =: αζ(t).

Cases 3 and 4 both yield ‖z1(t)‖ ≤ αζ(t) on [a, b] with ζ(t) = Θ((t−a)2) for t → a.
Moreover, since m1 6= 0 we can assume that 0 6= (Etk 0)∗ = L21. (Otherwise G consists
of a single isolated tank and the DAE reduces to the ODE Atk(Htk)H

′
tk = 0, with index 0.)

By choosing γ < ε/
[
δ−1

tk ‖L12‖ ‖L21‖ζ(b)
]
, we thus ensure (via α) that ‖δ‖C0 < ε:

‖δ‖C0([a,b],Rm) = ‖δ2‖C0 ≤ ‖L21‖ ‖z1‖C0 ≤ ‖L21‖αζ(b) < ε.

Since ζ(t) = Θ((t − a)2), there exists t∗ > a such that ζ(t∗)/(t∗ − a) < γ/(cα‖L21‖),
which implies

‖z(t∗)‖ = ‖z2(t∗)‖ = (t∗ − a)γ > cα‖L21‖ζ(t∗) ≥ c
(
0 + ‖δ‖C0([a,t∗],Rm)

)
.

This completes the proof. ¤

To derive criteria for the index-1 case, i.e., for nonsingularity of the matrix W22(Qpi),
let us define the following submatrices:

D(Qpi) := Diag(ϕ ′
pi(Qpi),−ΠQ

pu, +Π
Q
vl ) ∈ R|A|×|A|,

Ẽjc,0 :=
(
Ejc,pi Ejc,puΠ

H
pu Ejc,vlΠ

H
vl

) ∈ R|Njc|×|A|,

Ejc,0 :=
(
Ejc,pu(Σ

H
pu)

∗ Ejc,vl(Σ
H
vl )
∗ ) ∈ R|Njc|×|AH

pu∪AH
vl |.

Note that Ejc,0 is obtained from Ẽjc,0 by removing Ejc,pi and the zero columns associated
with flow-controlled arcs.

Proposition 5. The inverse W22(Qpi)
−1 exists if and only if

(a) Ẽjc,0 has full row rank, i.e., rank(Ẽjc,0) = |Njc|;
(b) Ejc,0 has full column rank, i.e., rank(Ejc,0) = |AH

pu ∪AH
vl |.

Proof. From the structure of W(Qpi) it is apparent that

W22(Qpi) =




D(Qpi) E∗rs E∗jc
0 I

Ẽjc,0 0


 .

Due to the unit diagonal block associated with the reservoirs, nonsingularity of W22 is
equivalent to nonsingularity of the submatrix

(10)
(

D(Qpi) E∗jc
Ẽjc,0 0

)
.
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The order of this matrix is |A| + |Njc| where |A| ≥ |Njc| by the topological assumptions
(T1), (T2) and Proposition 1. Since Ẽjc,0 is obtained from Ejc by zeroing out some columns
(the ones associated with flow-controlled arcs), standard saddle point theory [2] thus im-
plies that (10) is nonsingular iff:

(a) Ẽjc,0 has full row rank (implying full column rank of E∗jc);
(b ′) D(Qpi) is nonsingular on the null space ker(Ẽjc,0).

Now, by definition of the projection matrices Π
Q
pu, Π

Q
vl , Π

H
pu, Π

H
vl and since ϕ ′

pi(Qpi) > 0,
condition (b ′) is equivalent to (b): full column rank of Ejc,0. ¤
Remark 4. The proof confirms Proposition 3 in that nonsingularity of W22(Qpi) is a struc-
tural property: W22(Qpi)

−1 either exists everywhere on R|Api| or nowhere.

Remark 5. Item (a) in the proof makes use of the fact that the relevant submatrix (10) has a
near-perfect KKT structure. A more detailed derivation would use the unit diagonal entries
of −Π

Q
pu, +Π

Q
vl in D(Qpi) to eliminate “flow-controlled” rows and columns, showing that

nonsingularity of (10) is equivalent to nonsingularity of the perfect KKT submatrix



ϕ ′
pi(Qpi) E∗jc,pi

0 ΣH
puE

∗
jc,pu

0 ΣH
vl E

∗
jc,vl

Ejc,pi Ejc,pu(Σ
H
pu)

∗ Ejc,vl(Σ
H
vl )
∗ 0


 =




ϕ ′
pi(Qpi) E∗jc,pi

0 E∗jc,0
Ejc,pi Ejc,0 0


 .

In this form, the invertibility conditions (a), (b) become even more apparent.

Having derived algebraic conditions for nonsingularity of W(Qpi), we are now ready
to state purely topological index criteria for the DAE. To this end, consider the network
subgraph G0 induced by the pressure-controlled arcs AH

pu ∪AH
vl (columns of Ejc,0), and

the larger subgraph G̃0 induced by Api ∪AH
pu ∪AH

vl (nonzero columns of Ẽjc,0):

G0 = G(AH
pu ∪AH

vl ),

G̃0 = G(Api ∪AH
pu ∪AH

vl ).

Theorem 3. Let G0 consist of connected components G1, . . . , Gn, and let G̃0 consist of
components G̃1, . . . , G̃ñ. Then the DAE (6) is index-1 if and only if
(a*) G̃0 contains Njc and satisfies |G̃ν ∩ (Nrs ∪Ntk)| ≥ 1 for ν = 1, . . . , ñ;
(b*) G0 is acyclic and satisfies |Gν ∩ (Nrs ∪Ntk)| ≤ 1 for ν = 1, . . . , n.

Proof. Using Proposition 1, we show that (a*) ⇔ (a) and (b*) ⇔ (b).
(b) ⇒ (b*): Let Ējc,0 denote the nonzero rows of Ejc,0, determining the column rank.

These rows correspond precisely to the junctions in G0, and thus to a row subset of E(G0).
Now E(G0) has full column rank iff G0 is acyclic, which is thus necessary for full column
rank of Ejc,0. Observe next that Ējc,0 admits a decomposition Ējc,0 = Diag({Ējc,ν}) induced
by the components Gν. If some Gν contains two reservoirs or tanks, then we can connect
them by a path P ⊆ Gν of length l ≥ 1, traversing l − 1 junctions. Thus E(P) ∈ R(l+1)×l

has rank l whereas the common (l − 1, l)-submatrix of E(P) and Ējc,ν has only rank l − 1.
Since Ējc,ν and Ejc,ν have no further entries in these l columns, Ejc,0 cannot have full
column rank.

(b*) ⇒ (b): If |Gν ∩ (Nrs ∪Ntk)| ≤ 1 for all ν, then each Ejc,ν is obtained from E(Gν)
by deleting at most one row. Thus

rank(Ejc,ν) = rank(E(Gν)).

By virtue of the block decompositions of Ejc,0 and E(G0), this implies

rank(Ejc,0) =

n∑

ν=1

rank(Ejc,ν) =

n∑

ν=1

rank(E(Gν)) = rank(E(G0)).

If, in addition, G0 is acyclic, we finally obtain rank(Ejc,0) = rank(E(G0)) = |AH
pu ∪AH

vl |.
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(a) ⇒ (a*): Full row rank of Ẽjc,0 clearly requires that G̃0 contains Njc (otherwise Ẽjc,0

has a zero row) and that every component G̃ν contains a non-junction node (otherwise the
subset of rows associated with the junctions of G̃ν will be rank-deficient).

(a*) ⇒ (a): The stated conditions are also sufficient, since the components G̃ν induce
a decomposition Ẽjc,0 = Diag({Ẽjc,ν}) where each Ẽjc,ν, comprising a proper row subset
of E(G̃ν), has full row rank. This completes the proof. ¤

Remark 6. Condition (b*) has a simple physical interpretation: the pressure differences
around each cycle sum up to zero, and the total pressure difference along a path between
two reservoirs and/or tanks is uniquely determined by H̄rs (reservoirs) or continuity of the
differential variables Htk (tanks). However, the pressure difference along a cycle or path
consisting exclusively of pressure-controlled pumps and/or valves is given by the control
input, and hence will not match the proper value in general.

Corollary 3. Under conditions (a*), (b*) of Theorem 3 the following hold.

(a†) G contains no junction to which only flow-controlled arcs are incident.
(b†) If all pumps and valves are flow-controlled, AH

pu ∪ AH
vl = ∅, then the DAE is index-1

iff G̃0 ≡ G(Api) contains Njc and satisfies |G̃ν ∩ (Nrs ∪Ntk)| ≥ 1 for ν = 1, . . . , ñ.
In specific, at least one reservoir or tank is connected to a pipe.

(c†) If all pumps and valves are pressure-controlled, A
Q
pu ∪ A

Q
vl = ∅, then the DAE is

index-1 iff G0 is acyclic and satisfies |Gν ∩ (Nrs ∪Ntk)| ≤ 1 for ν = 1, . . . , n.

Proof. Item (a†) follows immediately from (a*). If AH
pu ∪AH

vl = ∅, then (b*) is trivially
satisfied, implying (b†). If, finally, A

Q
pu ∪ A

Q
vl = ∅, then (a*) is trivially satisfied due to

assumptions (T1) and (T2): G = G̃0 = G̃1 (ñ = 1), yielding (c†). ¤

Remark 7. Statement (a†) also has a simple physical interpretation: if all arcs incident
to a junction are flow-controlled, then the flow balance condition at that junction will be
violated in general. Finally, the special cases addressed in (b†) and (c†) turn out to be
uncommon in practice: reservoirs and tanks are typically connected to pumps or valves
(in contrast to b†), and groundwater reservoirs in specific are often connected to tanks via
pumps (in contrast to c†).

To generalize the results of Theorem 3, let us finally extend the model by allowing loss-
less pipes A◦pi ⊆ Api satisfying ϕij(Qij) ≡ 0. Clearly, ϕ ′

pi(Qpi) is now only positive
semidefinite since each lossless pipe introduces a zero diagonal entry—and hence a poten-
tial rank deficiency of W22(Qpi). Recall that G̃0 denotes the subgraph of G induced by
all pipes and pressure-controlled arcs (nonzero columns of Ẽjc,0), and replace G0 with G◦0,
the subgraph of G induced by lossless pipes and pressure-controlled arcs,

G̃0 := G(Api ∪AH
pu ∪AH

vl ),

G◦0 := G(A◦pi ∪AH
pu ∪AH

vl ).

The submatrix of W22 associated with G◦0 is

E◦jc,0 :=
(
E◦jc,pi Ejc,pu(Σ

H
pu)

∗ Ejc,vl(Σ
H
vl )
∗ )

.

Theorem 4 (Main result). Let G◦0 consist of connected components G◦1, . . . , G◦n◦ , and let
G̃0 consist of components G̃1, . . . , G̃ñ. Then the DAE (6) is index-1 if and only if

(a‡) G̃0 contains Njc and satisfies |G̃ν ∩ (Nrs ∪Ntk)| ≥ 1 for ν = 1, . . . , ñ;
(b‡) G◦0 is acyclic and satisfies |G◦ν ∩ (Nrs ∪Ntk)| ≤ 1 for ν = 1, . . . , n◦.

Proof. This is proved exactly as Theorem 3, except that G0 is replaced with the larger
subgraph G◦0, the submatrix Ejc,0 is replaced with E◦jc,0, and full column rank amounts to
rank(E◦jc,0) = |A◦pi ∪AH

pu ∪AH
vl |. ¤



TOPOLOGICAL INDEX CRITERIA IN DAE FOR WATER NETWORKS 13

2

1

3

2

1

3 5

4

FIGURE 1. Parallel pumps in multigraph and graph representation

(1) (2) (3) (4)

FIGURE 2. Simple networks analyzed in examples (1)–(4).

Remark 8. Lossless pipes are primarily useful to convert multigraphs (with parallel arcs)
into simple graphs by introducing fictitious zero-length pipes. Groups of pumps operated
in parallel present a typical situation of this kind; see Fig. 1. Condition (b‡) here implies
that at most one pump in the group may be pressure-controlled; all others must be flow-
controlled to avoid cycles of pressure-controlled arcs.

Another situation where lossless pipes might seem useful is ill-conditioning of ϕ ′
pi(Qpi)

caused by very short pipes with negligible pressure loss. Such ill-conditioning should
generally not be prevented by declaring the short pipes lossless, however: it is typically
possible (and better) to remove them entirely from the model.

Corollary 4. If all pipes are lossless, A◦pi = Api, then the DAE (6) is index-1 if and only if
G◦0 is acyclic, contains Njc, and every component G◦ν contains precisely one reservoir or
tank, |G◦ν ∩ (Nrs ∪Ntk)| = 1 for ν = 1, . . . , n◦.

Proof. This is immediate from Theorem 4 since G◦0 = G̃0. ¤

Remark 9. The corollary applies to networks of small spatial dimensions where all pipe
friction losses are negligible in absolute terms. However, unless the very special conditions
on the network subgraph G◦0 are satisfied, relative losses do matter, and simply neglecting
them will introduce artificial singularities.

4. EXAMPLES

To illustrate the theoretical results, we analyze the four sample networks in Fig. 2.

Example 1. Consider first the most trivial water network possible, consisting of a reser-
voir, a pipe, and a junction (customer). By Theorem 4, the associated “DAE” is always
index-1, regardless of whether the pipe is lossless or not: we have G̃0 = G(Api) = G

(which contains Njc and a reservoir) and G◦0 = G(A◦pi) ∈ {∅, G} (which is acyclic and con-
tains no more than one tank or reservoir). This result is also immediate from the equations.
With x = x2 = (Qpi, Hrs, Hjc), the hydraulic model (3) and its invertible matrix W22 read

F(x ′, x, t) =




ϕpi(Qpi) − Hrs + Hjc
Hrs − H̄rs
Qpi − Djc


 , W22(Qpi) =




ϕ ′
pi(Qpi) −1 1

0 1 0

1 0 0


 ,

yielding the unique C0-solution x = (Djc, H̄rs, H̄rs − ϕpi(Djc)).

Example 2. In the second example we replace the reservoir with a tank. Again we have
G̃0 = G(Api) = G (containing Njc and a tank) and G◦0 = G(A◦pi) ∈ {∅, G} (being acyclic
and containing just one tank), so that the DAE is always index-1. Letting x1 = Htk and
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x2 = (Qpi, Hjc), the model (3) and invertible matrix W22 now read

F(x ′, x, t) =




−Atk(Htk)H
′
tk − Qpi

−Htk + ϕpi(Qpi) + Hjc
Qpi − Djc


 , W22(Qpi) =

(
ϕ ′

pi(Qpi) 1

1 0

)
.

We obtain a set of unique C1
P-solutions parameterized by Htk(t0), t0 ∈ Ī (the initial value

of the ODE): x = (Htk, Djc, Htk − ϕpi(Djc)) where

Htk(t) = Htk(t0) −

∫ t

t0

Atk(Htk(s))
−1Djc(s) ds.

Example 3. In the next example, the water is pumped from the reservoir to the customer.
(a) If the pump is pressure-controlled, we have G̃0 = G◦0 = G(Apu) = G, which is

acyclic and contains Njc and precisely one reservoir. Thus the model is again index-1 by
Theorem 4. With x = x2 = (Qpu, Hrs, Hjc) and u = ∆Hpu, the DAE (6) now becomes
linear with constant coefficients (in fact, a family of linear equation systems over I),

F(x ′, x, t) = Ax ′ + Bx − r(t),

where

A = 0, B = W22 =




0 −1 1

0 1 0

1 0 0


 , r =




∆Hpu
H̄rs
Djc


 .

The unique C0-solution is x = (Djc, H̄rs, H̄rs + ∆Hpu). Of course, linear DAE theory
(see, e.g., [3, §2.3]) yields the same results here: since det(B) 6= 0, the matrix pencil
{λA + B : λ ∈ C} ≡ {B} is regular, which implies solvability. Further, the DAE is index-1
since A has nilpotency one (A1 = 0 but A0 6= 0).

(b) If the pump is flow-controlled, we have G̃0 = G◦0 = ∅, and hence the DAE is not
index-1. In fact, it is not even solvable in this case: with x = x2 = (∆Hpu, Hrs, Hjc) and
u = Qpu, the DAE (6) again becomes linear with constant coefficients,

A = 0, B = W22 =




−1 −1 1

0 1 0

0 0 0


 , r =




0

H̄rs
Djc − Qpu


 .

Here, since det(B) = 0, the matrix pencil {λA+B} is not regular. Therefore the DAE is not
solvable and the index is undefined. From the structure of B and r it is apparent that Hjc
and ∆Hpu are undetermined (only the difference Hjc − ∆Hpu is uniquely determined), and
that the third equation is inconsistent unless Qpu ≡ Djc (in which case it is superfluous).
This reflects the obvious fact that one simply cannot control the pump flow Qpu whenever
Djc is given.

Example 4. In the final example we insert a tank and a pipe between pump and customer.
(a) If the pump is flow-controlled, we have G̃0 = G(Api) (containing Njc and the tank)

and G◦0 = G(A◦pi) ∈ {∅, G̃0} (being acyclic and containing at most one tank); the model is
again index-1. Letting x1 = Htk, x2 = (Qpi, ∆Hpu, Hrs, Hjc), and u = Qpu, the DAE (6)
and invertible matrix W22 read

F =




−Atk(Htk)H
′
tk − Qpi + Qpu

−Htk + ϕpi(Qpi) + Hjc
Htk − ∆Hpu − Hrs

Hrs − H̄rs
Qpi − Djc




, W22 =




ϕ ′
pi(Qpi) 0 0 1

0 −1 −1 0

0 0 1 0

1 0 0 0


 ,

yielding the unique C1
P-solutions x = (Htk, Djc, Htk − H̄rs, H̄rs, Htk − ϕpi(Djc)) where

Htk(t) = Htk(t0) +

∫t

t0

Atk(Htk(s))
−1

[
Qpu(s) − Djc(s)

]
ds.
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(b) If the pump is pressure-controlled, we have G̃0 = G(Api ∪ Apu) = G (containing
Njc, a reservoir, and a tank) and G◦0 = G(A◦pi ∪ Apu) ∈ {G(Apu), G} (being acyclic but
containing the reservoir and the tank in any case); thus the model is not index-1. Here we
encounter a more subtle type of singularity. Letting x1 = Htk, x2 = (Qpi, Qpu, Hrs, Hjc),
and u = ∆Hpu, the DAE (6) and matrix W22 read

F =




−Atk(Htk)H
′
tk − Qpi + Qpu

−Htk + ϕpi(Qpi) + Hjc
Htk − Hrs − ∆Hpu

Hrs − H̄rs
Qpi − Djc




, W22 =




ϕ ′
pi(Qpi) 0 0 1

0 0 −1 0

0 0 1 0

1 0 0 0


 .

Of course, F has the same form as in the flow-controlled case, but W22 becomes singular
since only the pressure difference ∆Hpu appears in the pump equation but not the flow Qpu.
A (unique) solution still exists, x = (Htk, Djc, Atk(Htk)H

′
tk + Djc, H̄rs, Htk − ϕpi(Djc)),

where Htk = H̄rs + ∆Hpu. However, for this to be a C1
P-solution one must require that

H̄rs + ∆Hpu ∈ C1(Ī,R): the control ∆Hpu is restricted to an affine subspace of C0(Ī,R).
Moreover, the solution here is not parameterized by Htk(t0). A closer inspection reveals
that the DAE in this case has differentiation index 2.

5. CONCLUSIONS

The results of this article show that our hydraulic DAE model possesses highly desirable
properties under weak assumptions on data regularity and network topology: the DAE is
index-1 by several criteria and on the entire domain of definition. Although we have studied
the model under weak regularity assumptions, even weaker requirements are appropriate
in application models [4]: the data functions are generally only piecewise continuous with
respect to an equidistant time grid Γ . This means that our analysis applies only to the
subintervals of Γ , and that jumps in the algebraic variable x2 and in the derivative x ′1 may
occur at the grid points. There are several sources of discontinuities:

(a) The predicted demand Djc is typically modeled as a piecewise constant function.
(b) Pumps and valves are usually operated with piecewise constant control, Qj or ∆Hj.
(c) Conceptual tanks j ∈ Ntk may consist of several physical tanks jν, ν = 1, . . . , Nj,

each of which may be temporarily unavailable. The effective tank areas thus become
discontinuous in time, Aj(Hj, t) =

∑
ν Yjν(t)Ajν(Hj) with Yjν(t) ∈ {0, 1}.

(d) Pumps and valves may be pressure-controlled during certain periods of time and flow-
controlled during other periods. The sets A

Q
pu, A

Q
vl , AH

pu, AH
vl and the entry positions of

W22 are only piecewise constant in this case, inducing structural changes in the model.

All these issues also occur in operative planning for real-world water networks [4, 5].
Planning models of this type are naturally formulated as DAE boundary value problems
(BVP), and the discontinuity issues (a)–(d) are conveniently handled by a full discretiza-
tion approach (“discretize-then-optimize”) using the given time grid Γ , or a refinement.
However, there are some significant differences in comparison to DAE simulation.

First, in the BVP context there is no need to select control variables: they are dynamic
variables just like the states. Consequently, the full Wronskian W (in a discretized version)
becomes more relevant than W22. A BVP solver may actually determine possible control
variables on the fly by suitable pivoting on W. Moreover, in a full discretization approach
the entire planning horizon is treated simultaneously, involving a different copy of W (and
of further linearized constraints) in each time step. In such a context, the theoretical results
of this paper provide a basis for constructing sophisticated solution algorithms that employ
structural pivoting strategies largely based on the network topology rather than the data of
the current iterate.
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