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Abstract
We propose a mixed-integer linear programming model to generate and optimize periodic
timetables with integrated track choice in the context of railway construction sites. When a
section of a railway network becomes unavailable, the nearby areas are typically operated
close to their capacity limits, and hence carefully modeling headways and allowing flexi-
ble routings becomes vital. We therefore discuss first how to integrate headway constraints
into the Periodic Event Scheduling Problem (PESP) that do not only prevent overtaking, but
also guarantee conflict-free timetables in general and particularly inside stations. Secondly,
we introduce a turn-sensitive event-activity network, which is able to integrate routing al-
ternatives for turnarounds at stations, e.g., turning at a platform vs. at a pocket track for
metro-like systems. We propose several model formulations to include track choice, and
finally evaluate them on six real construction site scenarios on the S-Bahn Berlin network.

Keywords
Railway Timetabling, Periodic Timetabling, Periodic Event Scheduling, Train Routing,
Turnarounds

1 Introduction

In almost all industrial and developing countries it is a political goal to perform a modal
shift from private car use to public transport, among others for environmental reasons. In
agglomerations, local railways and metro systems are of particular importance, because of
their large capacities. These systems are likely to be operated at a high frequency, e.g., every
5 minutes during peak hours, and often no more than 30 minutes off-peak.

In order to keep such systems in a safe condition, not only the trains, but also the tracks
are subject to regular maintenance. Small maintenance action is typically planned during
periods with no regular service, e.g., during nights that do not touch any weekend. However,
there is also maintenance work that exceeds such a short night break. Then, the regular
service is affected and needs to be rescheduled on the infrastructure that remains available.

The relevance of automated timetabling in particular for construction sites becomes even
more clear, when considering the planning process. Throughout an entire year, compared to
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the annual regular timetable, the planning staff might spend more time on planning timeta-
bles around all construction sites – but these timetables typically have relatively short valid-
ity periods (e.g., one weekend vs. 364 days for the annual timetable).

In the present paper we consider the problem of designing a periodic schedule around
railway construction sites. Our approach is based on the standard graph model for peri-
odic timetabling, the Periodic Event Scheduling Problem (PESP), introduced by Serafini
and Ukovich (1989). Compared to the classical periodic timetabling problem (see e.g.,
Liebchen, 2008; Kroon et al., 2009), there are certain key differences: At first, the actual
planning area (close to the construction site) is typically only a small part of the network, and
the timetable to be designed must fit to the regular (annual) timetable for the rest of the net-
work. Secondly, the volume of operations near the blocked construction site is likely close
to the tracks’ capacity, in particular regarding station capacity for turnarounds. Thirdly,
timetable regularity (even spaced headways) becomes even more important.

For example, when a standard metro station with one platform and two tracks is the last
one that can be served, there can already be multiple paths for the trains to change their
direction, see Figure 7. Moreover, if this station’s capacity is then highly occupied, then the
routing of the trains through this temporal terminus station becomes key.

In the area of railway optimization, the Dutch railways serve as a kind of reference (Kroon
et al., 2009). But even in their line of development, for complexity reasons it had been a very
early fundamental decision not to consider timetabling on the tracks between the stations
and the routing of the trains within a station in an integrated way (Kroon et al., 1997).

In more recent years, there had been proposed a way to model the integration of these
two planning steps. In Wüst et al. (2018), extra variables by which the optimization model
may turn on (off) PESP constraints that connect events which are related in (not) selected
routings, are added. Yet, these are not fully able to meet the practical requirements of
periodic timetabling for railway construction sites, in particular within stations and long
dwell times of the trains there, e.g., in the context of turnarounds. In Section 3, we propose
new ways to integrate track choice into periodic timetabling.

Enforcing conflict-free periodic timetables has received much attention in the litera-
ture. PESP-based methods can prevent overtaking of trains by ensuring minimum headway
times. Yet, during long dwell times at platforms or sidings another type of conflict can arise,
namely overlapping track occupation. To the best of our knowledge, this has never been
examined, and we describe four methods to overcome this issue.

Section 2 introduces our problem, recapitulates PESP, extensively discusses conflict-
freeness, and the aspect of regularity. We present a turn-sensitive event-activity network,
which allows to flexibly model routing choices and to formulate our full mixed-integer
programming model in Section 3. Section 4 compares the performance of our model and its
configurations, including several alternative headway formulations, on real-world railway
construction sites for the S-Bahn Berlin network. We conclude the paper in Section 5.

2 Periodic Timetabling Model

2.1 General Setting

We briefly describe the basic setting for our timetabling problem and refer to Sections 2
and 3 for details. We are given a graph G modeling the stations of a railway network and the
links between the stations on a macroscopic level. On G, we are given a line plan, i.e., a set
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L of simple paths together with frequencies f : LÑ N. Moreover, there is an infrastructure
graph I refining G and modeling the railway network on at least a mesoscopic level, e.g.,
with platform tracks as vertices. The task is now to find an optimal conflict-free mesoscopic
periodic timetable for the macroscopic lines in L respecting the frequency assignment f . In
particular, it is part of the timetabling task to determine a mesoscopic routing in I for each
line in L. The objective is measured in terms of operational and user costs.

As our approach is targeted towards railway construction sites, we introduce further
prerequisites and constraints: We denote by ZI a subgraph of I that signifies currently
unavailable infrastructure, and let ZG be the corresponding subgraph of G. We assume that
all lines in L are contained in GzZG. Moreover, we suppose that an original timetable is
given on I for an original set of lines in G. When only a small part of infrastructure is
affected, it is not reasonable to re-optimize the timetable of the full network. We therefore
consider a planning subgraph PI Ď IzZI and a corresponding planning subgraph PG Ď
GzZG, and demand that line routing and timetable are fixed to the original line routing
and timetable outside PG resp. PI. In particular, for the purpose of timetabling, we can
discard lines that do not touch the planning subgraph. Finally, we want to compute periodic
timetables for periodic vehicle circulations (Borndörfer et al., 2018; Van Lieshout, 2021),
i.e., we want each line l P L in GzZG to be routed as some closed walk in IzZI.

2.2 Periodic Event Scheduling

Periodic timetabling problems are usually modelled with the Periodic Event Scheduling
Problem (PESP), originally introduced by Serafini and Ukovich (1989). For an event-
activity network (simple digraph) N , a period time T P N, lower and upper bounds `ij , uij P
N, and weightswij P N for the activities pi, jq P ApN q, PESP can be formulated as follows:

Minimize
ÿ

pi,jqPApN q

wijyij (1)

s.t. πj ´ πi ` Tpij “ yij ` `ij pi, jq P ApN q (2)
0 ď yij ď uij ´ `ij pi, jq P ApN q (3)
0 ď πi ď T ´ 1 i P VpN q (4)

pij P Z pi, jq P ApN q (5)

The goal is to assign a timestamp πi to each event i P VpN q within the period time T
such that for each pair pi, jq P ApN q of activities, there is a periodic tension value xij
within the activity bounds `ij ď xij ď uij satisfying xij ” πj ´ πi mod T . These tension
values essentially model activity durations between the events’ points in time, which are
in turn given by the periodic timetable π. In the context of railway timetabling, events
are arrivals and departures, and typical activity types comprise, e.g., driving between two
stations, waiting at a platform, or turnarounds. With the help of periodic offset variables
pij P Z for pi, jq P ApN q, the modulo constraints can be linearized as xij “ πj´πi`Tpij .
Considering the periodic slack yij “ xij ´ `ij instead of xij for all arcs pi, jq P ApN q, we
arrive at the above MIP model (1)-(5).

If 0 ď uij ´ `ij ď T – what we always assume w.l.o.g. – then (5) can be replaced by
pij P t0, 1, 2u. If even uij ă T holds, pij can be further restricted to t0, 1u. We refer to
(Liebchen, 2006; Liebchen and Möhring, 2007; Nachtigall, 1998; Odijk, 1994; Lindner and
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Reisch, 2022) for an intensive treatment of MIP formulations, modeling capabilities, and
the hardness of PESP.

2.3 Modeling Conflict-Free Timetables

To model additional operational requirements, in particular that multiple trains are not
scheduled on the same tracks at the same time, one can add headway activities, e.g., to
ensure that a minimal distance between two successive trains is kept. These can be added
into N as additional arcs with lower and upper bounds and treated as any normal activity.
However, standard headway activities have a weakness, as they separate the occurrences of
two events only, not of their activities. This can lead to unwanted results, such as illegal
overtaking, which can occur, e.g., when two trains with different speeds use the same track:

Example 2.1 (Illegal overtaking). Consider Figure 1a for which we assume a period time T
of, say, T “ 10, and therein the two black activities pi1, j1q and pi2, j2q with bounds r2, 8s
each. Suppose that these activities use the same infrastructure, e.g., driving of trains on the
same physical track. If the minimum time distance between i1 and i2 resp. j1 and j2 is sup-
posed to be at least three, then this can be modeled with the two orange headway activities
with bounds r3, T ´ 3s each. For any feasible timetable, this guarantees |πi1 ´ πi2 | ě 3
and |πj1 ´ πj2 | ě 3. However, the timetable π indicated in blue is feasible, but the two
trains overtake each other on the same track. Note that pi1j1 ` pj1j2 “ 0 ` 1 “ 1 and
pi1i2 ` pi2j2 “ 0` 0 “ 0.

i1

0

j1

8

i2

3

j2

5

r2, 8s

r2, 8s

r3, T ´ 3s r3, T ´ 3s

(a) Illegal overtaking despite respecting mini-
mum headway times.

i1

0

v1

4

j1

8

i2

3

v2

4

j2

5

r1, 4s r1, 4s

r1, 4s r1, 4s

r3, T ´ 3s r3, T ´ 3s r3, T ´ 3s

(b) Preventing illegal overtaking by subdivi-
sion: The blue timetable from Figure 1a is no
longer feasible, as the tension between v1 and
v2 can impossibly lie within r3, T ´ 3s.

Figure 1: Overtaking problem with solution approach

Preventing overtaking trains has received much attention in the literature (Lindner, 2000;
Peeters, 2003; Schrijver and Steenbeek, 1993): One approach is to require an additional
constraint on the periodic offsets in a situation as in Example 2.1, namely

pi1j1 ` pj1j2 “ pi1i2 ` pi2j2 . (6)

Another method is to subdivide the arcs pi1, j1q and pi2, j2q as in Figure 1b until the span
becomes smaller than twice the minimum headway time (Liebchen and Möhring, 2007).
Observe that the former approach is formally leaving the graph model of PESP, while the
latter is staying immediately within PESP.
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i1

0

j1

8

i2

3

j2

1

r2, 8s

r2, 8s

r3, T ´ 3s r3, T ´ 3s

(a) Illegal occupation of tracks despite re-
specting minimum headway times and no
overtaking.

i1

0

v1

4

j1

8

i2

3

v2

7

j2

1

r1, 4s r1, 4s

r1, 4s r1, 4s

r3, T ´ 3s r3, T ´ 3s r3, T ´ 3s

(b) The subdivision approach for overtaking
cannot prevent illegal occupation: The blue
timetable from Figure 2a remains feasible, no
further subdivision will resolve this issue.

Figure 2: Track Occupation Problem

However, none of the solutions to the overtaking problem could finally address all issues
related to periodic railway scheduling, namely the track occupation problem.

Example 2.2 (Track occupation problem). Again, assume a period time T “ 10 and con-
sider the feasible timetable displayed in blue in Figure 2a. If the black arcs pi1, j1q, pi2, j2q
are driving activities of trains t1 and t2 on the same infrastructure, this might be a reason-
able schedule. In this case, it could be possible that t1 is reasonably far away from the
station for t2 to enter the tracks at time 3. In contrast, if the arcs are waiting or turnaround
activities on the same infrastructure, this schedule poses a problem: Train t2 is scheduled to
enter the tracks while t1 still occupies the tracks. Moreover, no amount of subdividing the
two problematic activities will resolve this issue as becomes evident from Figure 2b. The
constraint (6) is satisfied, too, as pi1j1 ` pj1j2 “ 0` 1 “ 1 and pi1i2 ` pi2j2 “ 0` 1 “ 1.

To the best of our knowledge, this issue has not yet been addressed in the literature.
In particular, recall from Kroon et al. (1997, 2009) that even in one of the most prominent
applications of mathematical optimization to railway planning a very clear separation is
practiced: At Dutch railways, since the very early beginning, on the one hand, the network-
wide timetable on the tracks is computed by the software module CADANS, while on the
other hand, conflict-free routings of the trains within a station are computed by STATIONS.

The track occupation problem mostly occurs when the time-interval of an activity block-
ing a part of the infrastructure is fairly large. Turnarounds take quite a bit of time, as the
train sometimes needs to be emptied and the driver usually needs to move from the front all
the way to the back. There can be further safety constraints, as the train might then operate
on the left-hand side of the tracks with fewer signals, etc. In conjunction with the limited
station capacities in construction site scenarios, turnarounds become hence a very difficult
aspect to schedule.

In practice, it is not enough to ensure that no two trains occupy the tracks at the same
time, but there are usually further safety or technical requirements: Each track needs to be
unoccupied for a certain amount ε ą 0 of time, before the next train may arrive. Moreover,
it is often desirable to separate two subsequent arrivals by at least h ą 0 units of time.

To address the track occupation problem including the safety requirements as given
by the parameters h and ε, we will first define occupation intervals, which represent the
physical occupation of the tracks by trains including safety buffers.

5



ε

h

ε
h

πpj1q

πpi1q

πpj2q

πpi2q

2

1

0

11

10

9

8

7

6

5

4

3

Figure 3: pε, hq-occupation intervals of two trains for T “ 12: The solid areas show the
physical blockage of a track by two trains, the dotted indicate the time span that the tracks
need to stay unoccupied by the safety parameters ε and h.

Definition 2.3 (Periodic Intervals). For a, b P R with a ă b we define the periodic interval

ra, brT :“ tx mod T | x P ra, bru Ď r0, T r,

i.e., the image of the half-open interval ra, br w.r.t. the modulo T map with values in r0, T r.

For example, r2, 8r10“ r2, 8r, r8, 12r10“ r0, 2rYr8, 10r, and r2, 18r10“ r0, 10r.

Definition 2.4 (pε, hq-Occupation Intervals). Let π be a periodic timetable w.r.t. an event-
activity network N , and let x be a corresponding periodic tension. For h, ε ą 0, the
pε, hq-occupation interval of an activity pi, jq P ApN q is the periodic interval

rπi,maxpπi ` h, πi ` xij ` εqrT .

Let H Ď ApN q ˆApN q denote the set of pairs of arcs in N whose activities make use
of a common piece of infrastructure. We will assume that if ppi1, j1q, pi2, j2qq P H, then
ppi2, j2q, pi1, j1qq R H.

Definition 2.5 (pε, hq-Conflict-Free Timetable). A periodic timetable of an event-activity
network N is pε, hq-conflict-free if the pε, hq-occupation intervals of pi1, j1q and pi2, j2q
are disjoint for any pair ppi1, j1q, pi2, j2qq P H.

For a better understanding of pε, hq-occupation intervals and conflict-freeness, consider
Figure 3, where the occupation of infrastructure by two trains is displayed on an abstract
clock for a pair ppi1, j1q, pi2, j2qq P H. For t P t1, 2u, πpitq marks the arrival of train t
and πpjtq its departure. The solid areas show how long the track is blocked by each train
physically, and the dotted areas show how much time is blocked by the safety parameters h
and ε. The entire shaded regions show the two pε, hq-occupation intervals of the two trains,
respectively. If these two areas do not intersect, those trains are scheduled conflict-free.

Remark 2.6. To be pε, hq-conflict-free, it is necessary for a periodic timetable π with ten-
sion x that both xi1j1 ă T ´ ε and xi2j2 ă T ´ ε hold for all pairs ppi1, j1q, pi2, j2qq P H.
Moreover, h needs to be larger than 0 and smaller than T .
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In the sequel, we present four approaches to model pε, hq-conflict-free timetables. Due
to Remark 2.6, we assume w.l.o.g. ui1j1 , ui2j2 ă T ´ ε for all ppi1, j1q, pi2, j2qq P H, and
furthermore 0 ă h ă T . We will need a technical lemma, whose proof will be omitted:

Lemma 2.7. Let a, b, c, d P R. Then ra, brTXrc, drT‰ H if and only if pc ´ aq mod T P
r0, b´ arT or pa´ cq mod T P r0, d´ crT .

Q3 – Triangular Headway Formulation
Our first approach introduces four activities and two constraints on the periodic offset vari-
ables per pair ppi1, j1q, pi2, j2qq P H.

i1 j1

i2 j2

r`i1j1 , ui1j1s

r`i2j2 , ui2j2s

rh, T ´ hsrh, T ´ hs

rε, T
´ εs

rε, T ´ εs

Figure 4: Q3 headway activities with lower and upper bounds

Proposition 2.8. For each pair ppi1, j1q, pi2, j2qq P H add four activities pi1, i2q, pi2, i1q,
pj1, i2q, pj2, i1q with bounds as in Figure 4. Then a periodic timetable is pε, hq-conflict-free
if and only if for the corresponding periodic offset vector p holds

pi1i2 “ pi1j1 ` pj1i2 and pi2i1 “ pi2j2 ` pj2i1 (7)

for all ppi1, j1q, pi2, j2qq P H.

Proof. Suppose that π is not pε, hq-conflict-free. Then we find ppi1, j1q, pi2, j2qq P H with

rπi1 ,maxpπi1 ` h, πi1 ` xi1j1 ` εqrTXrπi2 ,maxpπi2 ` h, πu2
` xi2j2 ` εqrT‰ H,

and this implies by Lemma 2.7 that pπi2 ´ πi1q mod T P r0,maxph, xi1j1 ` εqrT or
pπi1 ´ πi2q mod T P r0,maxph, xi2j2 ` εqrT . By Remark 2.6, we have h ă T ,
xi1j1 ă T ´ ε, and xi2j2 ă T ´ ε. Thus, the above periodic intervals are identical with the
standard half-open intervals.

Further, as xi1i2 , xi2i1 P rh, T ´ hs Ď r0, T r, we have h ď xi1i2 “ pπi2 ´ πi1q mod T
and h ď xi2i1 “ pπi1 ´ πi2q mod T . We infer xi1i2 ă xi1j1 ` ε or xi2i1 ă xi2j2 ` ε,
which implies by the lower bounds on xj1i2 and xj2i1 that xi1i2 ă xi1j1 ` xj1i2 or xi2i1 ă
xi2j2 ` xj2i1 . Inserting the constraint (3) and observing that the π-variables cancel out, we
obtain pi1i2 ă pi1j1 ` pj1i2 or pi2i1 ă pi2j2 ` pj2i1 , which violates (7).

Assume now that π is pε, hq-conflict-free. Using Lemma 2.7, we conclude that
pπi2´πi1q mod T R r0,maxph, xi1j1`εqr and pπi1´πi2q mod T R r0,maxph, xi2j2`εqr
for all ppi1, j1q, pi2, j2qq P H. If πi2 ą πi1 , then pi1i2 “ 0, pi2i1 “ 1, and

pi1j1 ` pj1i2 “
xi1j1 ` xj1i2 ` πi1 ´ πi2

T
ď
xj1i2 ´ ε

T
ď
T ´ 2ε

T
ă 1,

pi2j2 ` pj2i1 “
xi2j2 ` xj2i1 ` πi2 ´ πi1

T
ą
xj2i1
T

ě
ε

T
ą 0,
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and we conclude that (7) is satisfied due to the integrality of the periodic offset p. The case
πi1 ą πi2 is analogous, and the case πi1 “ πi2 is impossible, because of ε ą 0.

Q4 – Butterfly1 Headway Formulation
A drawback of the Q3 approach is the large amount of additional constraints: For each pair
in H two additional constraints on the integer variables p are needed. As an equivalent
alternative, one can also combine them so that only one constraint per pair is needed. The
following is a consequence of Proposition 2.8 and Odijk’s cycle inequalities:

Lemma 2.9. For each pair ppi1, j1q, pi2, j2qq P H add four activities pi1, i2q, pi2, i1q,
pj1, i2q, pj2, i1q with bounds as in Figure 4. Then a periodic timetable is pε, hq-conflict-
free if and only if for the corresponding periodic offset p and all ppi1, j1q, pi2, j2qq P H
holds pi1j1 ` pj1i2 ` pi2j2 ` pj2i1 “ 1.

QT – Traditional Headway Constraints
As shown before, Liebchen and Möhring (2007) solve the overtaking problem by refining
the graph without any additional constraints. In this section we show an approach similar in
spirit, in which we subdivide each of the problematic activities and add additional headway
arcs. For such a refinement approach, we first need to answer the question of how high of a
resolution is needed, however. To this end, we first consider a special case with particularly
small upper bounds in which the condition on the p-variables is automatically fulfilled, as
can be seen by an application of Odijk’s cycle inequalities:

Lemma 2.10. For each pair ppi1, j1q, pi2, j2qq P H add four activities pi1, i2q, pi2, i1q,
pj1, i2q, pj2, i1q with bounds as in Figure 4. If ui1j1 ă h` ε and ui2j2 ă h` ε hold for all
ppi1, j1q, pi2, j2qq P H, then any periodic timetable is pε, hq-conflict-free.

Lemma 2.10 can be used to prove the validity of the following refinement technique:

Lemma 2.11. Consider a refinement of a pair of activities ppi1, j1q, pi2, j2qq P H in the
following way: Subdivide both activities into k sub-activities pvl´1

r , vlrq with v0r “ ir and
vkr “ jr with integral bounds such that

0 ď `vl´1
r ,vl

r
ď uvl´1

r ,vl
r
ă minph` ε, 2εq, l P t1, . . . , ku, r P t1, 2u,

k
ÿ

l“1

`vl´1
r ,vl

r
“ `ir,jr , r P t1, 2u,

k
ÿ

l“1

uvl´1
r ,vl

r
“ uir,jr , r P t1, 2u,

cf. Figure 5. Then any feasible timetable on the refined instance restricts to a pε, hq-conflict-
free timetable on the original instance.

Q0 – Hyperedge Headway Formulation
It is also possible to model the track occupation problem directly, introducing a different
type of constraint which takes into account data from three vertices and two arcs (therefore

1We derive this name from the four used arcs in the new constraint forming a butterfly shape in Figure 4.
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i1 j1

i2 j2

v11 vk´1
1

r`{k, u{ks r`{k, u{ks

rh, T ´ hs

rε, T
´ εs

Figure 5: A refinement of arc pi1, j1q to prevent overlapping track occupation, assuming for
simplicity that ` and u are both divisible by k to maintain the integrality of the bounds.

“hyperedge”). A huge drawback of all the headway formulations above is the large amount
of additional integer variables: For the Q3 and Q4 formulations, we add four activities and
hence four integral variables to the model for each pair in H. This issue is exacerbated in
the QT-formulation due to the many headway arcs arising from the refinement. In contrast,
we propose to introduce only two new activities with corresponding binary offset variables.

Lemma 2.12. For each pair ppi1, j1q, pi2, j2qq P H add two activities pi1, i2q, pi2, i1q with
bounds rh, T ´ hs each. Then a periodic timetable π with corresponding tension x and
periodic offset p is pε, hq-conflict-free if and only if for all ppi1, j1q, pi2, j2qq P H holds

πi2 ` Tpi1i2 ě πi1 ` xi1j1 ` ε and πi1 ` Tpi2i1 ě πi2 ` xi2j2 ` ε. (8)

2.4 Objective and Regularity Recommendation

The main goal of construction scheduling is to provide a timetable which is viable from
an operational perspective. However, once feasibility is guaranteed, the goal is to provide
a good timetable. The operator’s objective are generally low operational costs, while the
passengers’ objective is frequent – preferably regular – and in particular fast service.

We model the operational costs as the sum of total cycle times per line, because these es-
sentially correspond to the number of trains that are required for operating that line, see e.g.,
Liebchen (2008). For the user costs, we suggest to consider only activities involving pas-
sengers, such as driving and waiting within non-terminal stations. If information on travel
chains or transfers is available, these may also be represented in the user costs. However,
such data could not be available, hence we suggest an alternative approach: regularity.

If, e.g., within a 20-min interval service is provided with frequency two, then an arrival
of trains every ten minutes is preferred over two trains arriving in short succession and then
a long waiting time before the next train departs again at the beginning of the next period:
The expected waiting time for passengers arriving uniformly at random is then shorter.

Also from the operator’s point of view, regularity is of value, as this means that the trains
are scheduled time-wise as far apart as possible, meaning that short delays can be absorbed
better and result in less knock-on delays for succeeding trains. While it is possible to enforce
regular timetables with the help of headway arcs a with fixed bounds `a “ ua, this often
risks to lead to infeasibility or undesired artificial waiting times. Soft constraints relaxing
these headway constraints have been introduced by Nachtigall (1996), but we propose to
include regularity in a more flexible way, hereby formally leaving the PESP graph model.

To that end, for all pairs ppi1, j1q, pi2, j2qq P H of activities on the same infrastruc-
ture, we introduce two new continuous variables ξi1i2 and ξi2i1 . These regularity variables
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i10 j1 3

i215 j2 18

ξi1i2 “ 5 ξi2i1 “ 0

(a) Non-regular schedule

i10 j1 3

i210 j2 13

ξi1i2 “ 0 ξi2i1 “ 0

(b) Entirely regular schedule

Figure 6: Regularity values for two timetables of a line with frequency 2 and T “ 20.

measure every time unit by which the scheduled headway from ik to il exceeds the ideally
balanced headway ri1i2 for k, l P t1, 2u with k ‰ l. Formally, we bound ξikil by

ξikil ě πil ´ πik ` Tpikil ´ ri1i2 , and ξikil ě 0. (9)

The value for ri1i2 should be set to ri1i2 “ T {f̄ for f̄ being the aggregated frequency
of lines using the infrastructure of pi1, j1q (and thus pi2, j2q). Note that in all four head-
way formulations, the arc pik, ilq and hence pikil exist. Since πil ´ πik ` Tpikil ”
pπil ´ πikq mod T , the constraints model the positive deviation from the optimal timewise
distance ri1i2 .

Example 2.13. To illustrate the behaviour of ξ, we refer to Figure 6. Both subfigures show
exemplary timetables for frequency 2, such that the optimal time between two arrival events
would be ri1i2 “ 10 with period T “ 20. A schedule with optimal regularity can be seen
on the right-hand side, where i2 is scheduled at time 10, while i1 is scheduled at 0 with
aggregated regularity values ξi1i2 ` ξi2i1 “ 0. On the left however, we have a deviation
by 5 from the optimum, the regularity value is ξi1i2 ` ξi2i1 “ 5 ą 0. With respect to the
aggregated regularity, the right schedule is therefore preferred.

Remark 2.14. Note that pπi2 ´ πi1 ` Tpi1i2q ` pπi1 ´ πi2 ` Tpi2i1q “ T implies that
the non-negativity condition (9) on the regularity variable is essential. In fact, we have
ξi1i2 ` ξi2i1 ě T ´ 2ri1i2 , and equality holds if and only if the schedule is entirely regular.

We can measure the overall regularity simply by aggregation, i.e., by including the term
ř

ppi1,j1q,pi2,j2qqPH ξi1i2 ` ξi2i1 in our objective.

3 Integrating Track Choice

3.1 Event-Activity Network

At the heart of the scheduling problem is the event-activity network N . Its vertices corre-
spond to departure or arrival events of trains, while the arcs model the activities, such as
driving, waiting, turning events and is used to model time and location of the vehicles si-
multaneously. We extend the standard notion to encode vehicle directions when occupying
infrastructure to model the turnarounds realistically. Within PESP, safety and operational
requirements such as a headway between vehicles are also modelled with headway arcs as
part of the set of activities. We will treat headways separately however, and do not consider
them as part of N . Moreover, we will ignore transfer activities and any other activities that
connect events belonging to different lines for the ease of exposition. As a byproduct, N
decomposes into several connected components, one component N plq for each line l P L.
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We demand that N plq should reflect any route that a train can feasibly drive. As our lines
are to be routed as closed walks, this includes routes for turnarounds in stations. However,
we assume that when not in the process of turnarounds, trains use only right-hand tracks,
unless declared otherwise on small sections of the network.

In the following, we assume that the infrastructure graph I contains platform vertices,
which single out tracks at platform in stations, and pocket track vertices, which model tracks
that are not located at passengers’ platforms, but are suitable for changing the direction of a
vehicle. The infrastructure network is allowed to be much finer, but we restrict to those two
classes of vertices to extract the essential information for the network N .

Definition 3.1 (Turn-Sensitive Event-Activity Network). The turn-sensitive event-activity
network N plq of a single line l P L can be constructed as a digraph with the following arcs:

• For every platform p and direction of travel ω P tŽ, Żu, add a waiting activity
pparr, p, ωq, pdep, p, ωqq if there is a routing of the line l in the infrastructure graph
such that platform p is used in direction ω without turning.

• For two successive stations with platforms p and p1 in line l in direction ω, add a
driving activity ppdep, p, ωq, parr, p1, ωqq if there is a routing of line l such that the
train can depart platform p and arrive at p1 in direction ω without travelling over
other platforms or pocket tracks.

• For every pocket track s at a turning station of line l add a turnaround activity
pparr, p, Żq, pdep, p, Žqq if there is a routing of l via s.

• For every platform p at a turning station and ω P tŽ, Żu, add a turnaround activity
pparr, p, ωq, pdep, p,´ωqq if there exists a routing of l such that p can be used to
change direction from ω to ´ω.

• For every platform - pocket track pair pp, sq at a turning station, add a driving activity
ppdep, p, ωq, parr, s, Żqq if there is a routing of the line l going over platform p in
direction ω directly to the pocket track s.

• For every platform - pocket track pair pp, sq at a turning station, add a driving activity
ppdep, s, Žq, parr, p, ωqq if there is a routing of the line l going from pocket track s
directly to platform p in direction ω.

The entire N is the union of the disjoint event-activity networks w.r.t. the line plan, i.e., fplq
distinct copies for each event-activity network N plqpkq, k P t1, . . . , fplqu, l P L.

Example 3.2. To illustrate the construction of N , consider the section of an exemplary
track layout displayed in Figure 7. Suppose line l P L goes from Station 1, turns at Station
2 and goes back to Station 1. We assume that l does not turn in Station 1, thus, it would have
to get from platform P1 to P2. To do so, it can use either platforms P3, P4 or the pocket
track S5 to turn, which results in the six routings displayed in Figure 9.

Figure 8 then shows the resulting N . S5 is only used for turning, thus there is one
turning activity connecting an arrival and departure event. On platform P3, there are three
options: A train either turns, or waits before continuing in or against standard direction of
travel (lowest two blue arcs), similarly for P4. Each path from the leftmost white node to
the nearby yellow node corresponding to arrival at P1 and departure at P2, respectively,
corresponds to one of the turning maneuvers described above. It is important to distinguish
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Station 1 Station 2

P1

P2

P3

P4

S5

Figure 7: Track layout

Ż Ż

ŽŽ

Ż Ż

ŽŽ

ŽŽ

Ż Ż

Ż

Ž

Figure 8: Event-activity network for a line operating on the track layout of Figure 7 and
turning at Station 2. Departure events are marked in yellow, and arrivals in white. Driving
activities are black, waiting activities are blue, and turnarounds are red. The triangles inside
the nodes indicate ω, the direction of travel of the train.
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P3
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P1

P2

P3
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Station 1 Station 2

P1

P2

P3
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S5 Station 1 Station 2

P1

P2

P3

P4

S5

Figure 9: Possible vehicle routes for a turn in Station 2

the different directions of the events, as there might be different activity bounds. More
importantly, this is needed for completeness, as otherwise, not all turns could be expressed
by paths.

Remark 3.3. As our focus is on construction scenarios, we include only platform and
pocket track vertices of infrastructure within the planning subgraph PI in N plq. Outside of
the planning area changes are not allowed, such that for any line leaving PI, all events are
fixed to the original timetable and can be aggregated into a single node.

3.2 Routing Alternatives

The standard PESP model assumes that the routing of lines is predetermined. However, as
is evident from the small example in Figure 8, the exact track choice of a line is not trivial
to decide, and the routing choice of one line can make the routing of another impossible.
Particularly in construction scenarios, the available space needs to be administered and as-
signed efficiently to offer as much service as possible. It is thus essential to include the
routing of the lines as part of the optimization process.

A feasible routing of a line l corresponds to a simple cycle in N plq. An enumeration of
all simple cycles however, does not seem efficient. We therefore propose a partial enumer-
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ation only. The main idea is to identify activities or events that are part of every routing of l
and then enumerate all paths between two inevitable events.

The set of inevitable arcs Ainev, i.e., arcs that are part of every routing choice, is a
feedback arc set. To determine this feedback arc set, we proceed as follows: For each arc
a P N plq, we consider the subgraph N plqa :“ N plqztau and check if there still is a cycle
in N plqa that contains a driving activity for each pair of subsequent stations in l. This can
be done by solving a flow-type problem on N plqa.

Let Splq denote the subgraph of N plq that arises from removing all arcs in Ainevplq.
Each connected component of Splq is acyclic, has a unique source s with in-degree 0, and a
unique sink t with out-degree 0, so that we can label each component by Cpl, s, tq.

Definition 3.4 (Sheaf of Alternatives). For a line l and a component Cpl, s, tq of Splq, we
call the set S of all s-t-paths of Cpl, s, tq a sheaf of alternatives for l.

We define Sinev :“ t
Ť

lPL Ainevplqu and denote by S the set comprised of Sinev and all
sheaves of alternatives for all lines. Each element of S is a set of subsets of arcs of N , and
each arc in N belongs to exactly one S P S, although it might be part of several sets in S.

Example 3.5. Returning to the excerpt of a line network N plq depicted in Figure 8, one
can envision the concept of sheaves of alternatives nicely: As platform P1 needs to be used
when driving towards and P2 when coming from Station 2, the two left most waiting arcs are
inevitable ones. Each of the six described paths uses them both. The sheaf of alternatives in
this case are the sub-paths of the previously described ones, starting at the departure node
(yellow, Ż) at P1, ending the arrival node (white, Ž) at P2.

Remark 3.6. N and S can easily be adapted to model routing choices beyond turnarounds
by expanding the graph, e.g., if several platform tracks should be considered at a larger
station, or if driving on the left track for a certain driving activity should be an option.

3.3 Model Formulation

We expand the model introduced in Section 2 to include track choice. Our approach gener-
alizes the model introduced by Wüst et al. (2018), but can cover more practical situations:
To our understanding, Wüst et al. (2018) make a track choice based on events grouped in
so-called operation points, and headways (and only headways) are activated whenever two
events are assigned to the same track. However, their model does not cover routing intricate
paths within an operation point, and turnarounds do not play any role. For example, the
decision if a train should be turned at a platform or at a siding, cannot be modeled.

Our main idea is to solve a “standard” PESP model on the entire network N and to
introduce two new kinds of variables for each arc pi, jq P ApN q, namely (implicit) bi-
nary variables hij indicating whether the arc pi, jq is part of a chosen routing – and the
corresponding PESP constraints being thus active –, as well as ȳij reflecting the periodic
slack on an arc if it is chosen, and zero otherwise. For each alternative path F per sheaf of
alternatives S P S, a binary variable bF P t0, 1u indicates whether F is chosen or not.

The track choice can be tied to the timetabling constraints in different ways, some of
which we will discuss in detail. Our entire model reads as follows, where the constraints
modeling the SLACK ASSIGNMENT (11), ARC ACTIVATION (16) and HEADWAY CONDI-
TIONS (17) can be expressed in multiple ways, which we discuss below. We also refer to
the end of this section for details about the OBJECTIVE (10).
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min OBJECTIVE (10)
s.t. SLACK ASSIGNMENT pIB{ABq (11)

yij ďuij ´ `ij ` pT ´ 1´ uij ` `ijqp1´ hijq pi, jq P ApN q (12)
yij ďpuij ´ `ijqhij pi, jq P ApN q (13)

yij ě yij ´ pT ´ 1qp1´ hijq pi, jq P ApN q (14)
ÿ

FPS

bF “ 1 S P S (15)

ARC ACTIVATION pB{Hq (16)
HEADWAY CONDITIONS pQ0{Q3{Q4{QTq (17)

ξi1i2 ěπi2´πi1´Tpi1i2`ri1i2`Mphi1j1`hi2j2´2q ppi1, j1q, pi2, j2qq P H (18)

ξi1i2 ďMhi1j1 ppi1, j1q, pi2, j2qq P H (19)

ξi1i2 ďMhi2j2 ppi1, j1q, pi2, j2qq P H (20)
0 ďπi ď T ´ 1 i P VpN q (21)
0 ďhij ď 1 pi, jq P ApN q (22)

yij ě 0 pi, jq P ApN q (23)
ȳij ě 0 pi, jq P ApN q (24)
pij P t0, 1, 2u pi, jq P ApN q (25)
bF P t0, 1u F P S, S P S (26)

ξi1i2 ě 0 ppi1, j1q, pi2, j2qq P H (27)

Constraint (15) ensures that exactly one of the alternative paths F per sheaf S is chosen.
The arc activation constraint (16) ensures that if an arc pi, jq is part of a chosen alternative,
then hij will be set to 1, cf. Section 3.3.

The variables yij and pij model the periodic slack and offsets on the entire network,
even on unactivated arcs. Similarly, the timetable values πi are set even for unused events
i P VpN q. If hij “ 1, then (12) corresponds to the standard PESP slack constraint (3).
For non-chosen arcs, i.e., those with hij “ 0, the right-hand side in (12) results in T ´ 1,
meaning that for any choice of πi and πj , valid yij and pij can be chosen.

The constraints (13) and (14) set ȳij to zero if pi, jq P ApN q is not part of the routing
and to ȳij ě yij otherwise, meaning that ȳij models the periodic slack of active arcs.

The constraints (18), (19) and (20) incorporate track choice into our modeling ap-
proach of regularity as introduced in Section 2.4. Regular arrivals should obviously only
be included along chosen routes. By introducing big-M constraints, in particular, for
M ě 2T ´ 1, the constraints (19) and (20) set ξi1i2 to zero if, for a pair of arcs on the
same infrastructure ppi1, j1q, pi2, j2qq P H, not both pi1, j1q and pi2, j2q are part of an active
route, while (18) results in the original regularity constraints (9) if both arcs are active.

Finally, (21)-(27) describe the variable bounds, cf. (3)-(5).
Since we only want to re-schedule on the infrastructure of the planning subgraph PI,

events in N which use infrastructure outside of PI are fixed to the regular annual timetable.
It should be pointed out that neither the regularity variables, nor the active slack vari-

ables ȳij are necessary for feasibility. However, they are important for the objective func-
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tion, as the goal is to evaluate the timetable depending on the route choice.

Slack Assignment
We have evaluated two different approaches to model the slack assignment. Firstly, one can
stick to the standard PESP approach, namely by setting

pIBq yij ` `ij “ πj ´ πi ` Tpij .

To keep the constraint structure for non-activated arcs, free upper bounds uij “ `ij `T ´ 1
must be used, leaving pij P t0, 1, 2u for most arcs. But for non-activated arcs, `ij “ 0 and
uij “ T ´ 1 ă T suffice. Thus, we propose the following bound-activation variant on `ij

pABq yij ` `ijhij “ πj ´ πi ` Tpij .

Together with (12) and in function of hij , this allows us to refine (25) to pij P t0, 1u, only.

Arc Activation
We propose to handle arc activation in two ways. The first is the intuitive approach of
explicitly setting hij as binary variables which should be set to 1 if and only if an alternative
using said arc pi, jq is active. As exactly one alternative F per sheaf S is chosen, we can
use an aggregated form:

pBq hij “
ÿ

SPS

ÿ

FPS:pi,jqPF

bF and hij P t0, 1u.

In order to reduce the number of integral variables, one can also consider a relaxed version,
such that the variables hij are only implicitly binary:

pHq hijě
ÿ

SPS

ÿ

FPS:pi,jqPF

bF and hij ď 1.

This constraint ensures that hij is 1 if any of the chosen alternatives uses pi, jq. As for all
arcs pi, jq P ApN q all hij are part of the objective (cf. Section 3.3), hij is set to 0 in an
optimal solution if pi, jq is not used.

Headway Conditions
For each of the headway formulations to model pε, hq-conflict-free timetables, track acti-
vation needs to be handled in a slightly different manner. With the exception of the QT-
formulation, which we want to keep as close to the standard PESP framework as possible,
we want to introduce as few new variables as possible. Recall that we do not consider head-
ways to be part of N , except for QT. For the formulations of Q0, Q3, and Q4, we only
introduce the corresponding offset variables, but the slacks are modelled only implicitly,
and headway activation is handled via big-M constraints. As a discussion of all four model
formulation would include many technical details, we will show how to include track choice
for Q3 only. The other formulations can be modeled in a similar fashion.

Q3 The headway constraints of Q3 should be active for a pair of arcs on the same infras-
tructure ppi1, j1q, pi2, j2qq P H only if both arcs pi1, j1q and pi2, j2q are part of a chosen
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alternative. If one of them is not used, we turn this constraint insignificant as follows:

pQ3q hphi1j1 ` hi2j2 ´ 1q ď πi2 ´ πi1 ` Tpi1i2 ď pT ´ hqp3´ hi1j1 ´ hi2j2q (28)
εphi1j1 ` hi2j2 ´ 1q ď πj2 ´ πi1 ` Tpi1j2 ď pT ´ εqp3´ hi1j1 ´ hi2j2q (29)
´p2´ hi1j1 ´ hi2j2q ď pi1j1 ` pj1i2 ´ pi1i2 ď 2p2´ hi1j1 ´ hi2j2q (30)
pi1i2 , pj1i2 P t0, 1u (31)

Here (28) and (29) bound the (implicit) slack on the arcs pi1, i2q and pj1, i2q respectively if
both arcs of the pair ppi1, j1q, pi2, j2qq are active. Otherwise, this constraint can be fulfilled
trivially as for any choice of πi1 , πi2 P r0, T ´ 1s. The inequality (30) turns exactly into

pi1j1 ` pj1i2 ´ pi1i2 “ 0, (32)

thus ensuring that the timetable is conflict-free by Proposition 2.8 if both infrastructure arcs
pi1, j1q and pi2, j2q are active. The left term of (32) is between ´1 and 2, so that condition
(30) is fulfilled by default if at least one of the arcs is not active, i.e., hi1j1 ` hi2j2 ď 1.

Objective
We model the objective as a combination of user and operator costs, and include the regular-
ity values. Like introduced in Section 2.4 in the basic model, we consider operator costs to
be the sum of cycle times per line and the user costs as the aggregated user-related activity
durations for all chosen arcs. More precisely, we model operator and user costs by

coperator “
ÿ

pi,jqPApN q

ȳij ` `ijhij , cuser “
ÿ

pi,jqPU

ȳij ` `ijhij ,

respectively, where U Ď ApN q is the set of driving and waiting arcs, which are not within
a terminal station of a line. Note that we minimize the periodic tension and not the periodic
slack in the user and operator costs. In contrast to the standard PESP model, slack and
tension cannot be used equivalently: As arc-choice is part of our optimization, it might be
more cost efficient to use an alternative with smaller lower bounds and larger slack than an
alternative with small slack if the lower bounds are then significantly larger.

As we are interested in regular timetables, our full objective then minimizes
ÿ

pi,jqPApN q

ȳij ` `ijhij `
ÿ

pi,jqPU

ȳij ` `ijhij `
ÿ

ppi1,j1q,pi2,j2qqPH

ξi1i2 .

4 Computational Experiments

4.1 Overview

We implemented our model for generating and optimizing periodic timetables with inte-
grated track choice for railway construction choice, including the various modeling vari-
ations described in Section 2 and Section 3. DB Netz AG, Germany’s largest railway in-
frastructure manager, provided us with real-world data from the S-Bahn Berlin network.
This suburban railway network comprises 168 stations in the Berlin metropolitan area and
is operated with 16 lines, where each line is running at an interval of 5, 10 or 20 minutes.
Already on this network, there are several hundred construction sites per year.
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Figure 10: Construction site scenarios on the S-Bahn Berlin network. The red parts are
unavailable (ZG), the cyan parts are the planning subgraph pPGq.

ZG PGzZG N
Scenario |V | |E| |V | |E| |V| |A| |H| |S|

ř

SPS |S|
ř

lPL fl

1 4 4 1 0 16 18 3 3 4 2
2 4 4 7 6 121 145 82 9 24 5
3 8 10 22 20 262 317 155 19 99 14
4 1 2 13 11 361 467 512 34 443 10
5 3 6 45 43 835 950 1079 46 166 22
6 4 5 41 42 996 1137 1152 67 240 16

Table 1: Size metrics of our scenarios: Vertices and edges of the unavailable subgraph
ZG, the planning subgraph PG, and the resulting turn-sensitive event-activity network N ;
activity pairs using the same infrastructure H, sheaves of alternatives S, total number of
alternatives and sum of scheduled line-frequencies.

We investigate six real construction scenarios of various sizes in 2021 and 2022, see Ta-
ble 1 and Figure 10. For each of these scenarios, we consider the line plan that was actually
put into operation, and try to compute and optimize a conflict-free periodic timetable with
turnaround routings according to our model. The period time is 20 minutes, but as DB Netz
AG is planning timetables with a resolution of 0.1 minutes, we scale by a factor of 10 to
maintain integrality, so that T “ 200.

We evaluate the performance and compare our various modeling features on our choice
of six scenarios in the subsequent subsection. Let us mention that a discussion of the char-
acterisics of the computed timetables is beyond the scope of this submission, both, due to
space restrictions and ongoing work in progress with the practitioners.

4.2 Computational Results

We compared each of the 16 model configurations described in Section 3.3 on the six sce-
narios. We solved each scenario-model pair with the MIP solver Gurobi 9.1.2 (Gurobi
Optimization, LLC, 2022) on an Intel i7-9700K CPU machine with 64 GB RAM with a
wall time limit of 90 minutes. We were able to find a solution for all of our scenarios – in
all but the last one even within the first 30 seconds. The three smallest scenarios could be
solved to optimality. The other three instances terminated with optimality gaps below 7%.

For a qualitative comparison of the different model configurations, we examined when
a first solution is found, as quickly finding any solution can be of interest, particularly to
answer the question if a given line concept can be operated at all. Figure 11 displays when
the first solution is found, with marks at8 if none was found. The model configurations are
denoted by their SLACK ASSIGNMENT, HEADWAY CONDITIONS, and ARC ACTIVATION.
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Figure 11: Time to first found solution in seconds

In the tiny first scenario, all models find the optimal solution directly, while with increas-
ing complexity of the instance, differences emerge: E.g., in Scenario 5, all of the models
find a solution within the first 90 seconds, except for QT-models, for which the values range
from 242 up to 1359 seconds. In fact, we observe that QT performs badly in comparison
with the other formulations as well: In Scenario 4, a solution is found significantly later for
both QT with B- formulations; for QT in combination with the H-form, no solution is found
at all. In the largest scenario, Scenario 6, none of the QT-models produced a solution.

When it comes to comparing the bound activation, there do not seem to be any clear
winners with respect to time to the first solution, as both IB and AB perform similarly
for the same HEADWAY CONDITIONS and ARC ACTIVATION. A preferred choice for ARC
ACTIVATION is not evident either: In Scenario 5, for example, the B- seems to behave better
than the H-formulation in combination with IB, while the opposite is true for AB.

Interesting is also the behaviour in Scenario 6: Here, only five of the configurations are
solvable at all. In this instance, IB Q4 B finds a primal solution significantly earlier than
the other four, yet none of the other three Q4-formulations provide a solution in the given
time. In contrast, three Q3-formulations find a solution.

These results support our assumption that the headway constraints are one of the main
difficulties when solving track-choice PESP: The more activity pairs H on the same infras-
tructure, the later a primal solution is found. However, there also seems to be a correlation
to the number of alternatives: The two scenarios with the largest amount of alternatives in
total, namely Scenarios 4 and 6, were the only ones in which some model formulations did
not find any feasible solution within 90 minutes.

Apart from feasible solutions, we are interested in optimality. Figure 12 displays the
relative best dual bounds of each model after 90 minutes, i.e., dualpmq{dualpmbestq, where
dualpmq is the lower bound of model m and dualpmbestq is the maximum lower bound of
all models of that scenario. Most prominent is the weak performance of QT: As before,
it behaves significantly worse than the other formulations. When comparing IB with AB,
our results are inconclusive again. However, for the arc-activation formulation – with a few
singular exceptions – the B-form seems to provide better results than the H-form.

When comparing the quality of the primal solutions after the run time of 90 min, all
model formulations, except for QT are comparable: In Scenarios 1-3, which we were able
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Figure 12: Relative best dual values dualpmq{dualpmbestq

to solve to optimality, all formulation found the optimal solution. In Scenarios 4 and 5, the
worst solution was less than 0.01% worse than the best. The models that found a feasible
solution in Scenario 6 differed by less than 3% from the best found solution, which was
provided by model AB Q0 H.

We conclude that including track choice in periodic timetabling for our construction site
scenarios is well feasible: For small scenarios all of our models performed similarly well.
For larger scenarios, however, we do not recommend QT – the large increase of integral
variables caused by the refinement seems to have a large negative impact. In particular,
for our application case this underlines the benefit of MIP models that go beyond pure
implementations of PESP. In contrast, while Q0 with the least amount of integral variables
performed well, it provided qualitatively similar results as other headway formulations. If
a certificate of optimality is of importance, we suggest one of the B formulations, as they
consistently provided good dual bounds.

5 Outlook

We demonstrated that the automatic generation of conflict-free periodic timetables for rail-
way constructions sites is feasible in practice. However, two main issues remain: The choice
of a line plan is essential and not at all clear. We therefore aim to integrate the timetabling
model into a larger framework that also includes line planning focusing on both passengers’
and operators’ perspectives. Moreover, given that a large quantity of heuristics is known
for PESP (see, e.g., Borndörfer et al., 2020), it is a natural question whether and how these
methods extend to our model. We believe that using primal heuristics should be able to
speed up the solution process significantly.
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