Skip to main content
Log in

Genetic polymorphism: from electrophoresis to DNA sequences

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Recent studies indicate that the amount of protein variation undetected by electrophoresis may be reasonably small. Nevertheless, at the protein level, a typical sexually-reproducing organism may be heterozygous at 20 or more percent of the gene loci. Although the evidence is limited, it appears that at the level of the DNA nucleotide sequence every individual is heterozygous at every locus — if introns as well as exons are taken into account. The evidence available does not support the hypothesis that, at least at the protein level, the variation is adaptively neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher, R.A., The Genetic Theory of Natural Selection, Dover, New York 1930.

    Book  Google Scholar 

  2. Ayala, F.J., Evolution of fitness in experimental populations ofDrosophila serrata Science150 (1965) 903–905.

    Article  CAS  PubMed  Google Scholar 

  3. Lewontin, R.C., The Genetic Basis of Evolutionary Change. Columbia University Press, New York 1974.

    Google Scholar 

  4. Dobzhansky, Th., Ayala, F.J., Steobins, G.L., and Valentine, J.W., Evolution, W.H. Freeman, San Francisco 1977.

    Google Scholar 

  5. Gottlieb, L.D., Electrophoretic evidence in plant populations. Phytochemistry7 (1981) 1–46.

    CAS  Google Scholar 

  6. Koehn, R.K., and Eanes, W.F., Molecular structure and protein variation within and among populations, in: Evolutionary Biology, vol. 11, pp. 39–100. Eds M.K. Hecht, W.C. Steere and B. Wallace. Plenum Press, New York 1978.

    Chapter  Google Scholar 

  7. Nevo, E., Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol.13 (1978) 121–177.

    Article  CAS  Google Scholar 

  8. Selander, R.K., Genetic variation in natural populations, in: Molecular Evolution, pp. 21–45. Ed. F.J. Ayala, Sinauer Associates. Massachusetts 1976.

    Google Scholar 

  9. Powell, J.R., Protein variation in natural populations of animals. Evol. Biol.8 (1975) 79–119.

    CAS  Google Scholar 

  10. Ayala, F.J., and Kiger, J.A., Modern Genetics. Benjamin/Cummings. San Mateo, California, 1980.

    Google Scholar 

  11. Marshall, D.R., and Brown, A.H.D., The charge-stage model of protein polymorphism in natural populations. J. molec. Evol.6 (1975) 149–163.

    Article  CAS  PubMed  Google Scholar 

  12. Ramshaw, J.A.M., Coyne, J.A., and Lewontin, R.C., The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics93 (1979) 1019–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coyne, J.A., Felton, A.A., and Lewontin, R.C., Extent of genetic variation at a highly polymorphic esterase locus inDrosophila pseudoobscura, Proc. natl Acad. Sci. USA75 (1978) 5090–5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh, R.S., Genetic heterogeneity within electrophoretic ‘alleles’ and the pattern of variation among loci inDrosophila pseudoobscura. Genetics93 (1979) 997–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coyne, J.A., and Felton, A.A., Genetic heterogeneity at two alcohol dehydrogenase loci inDrosophila pseudoobscura andDrosophila persimilis. Genetics87 (1977) 285–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beckenbach, A.T., and Prakash, S., Examination of allelic variation at the hexokinase loci ofD. pseudoobscura andD. persimilis by different methods, Genetics87 (1977) 743–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coyne, J.A., Eanes, W.F., Ramshaw, J.A.M., and Koehn, R.K., Electrophoretic heterogeneity of α-glycerophosphate dehydrogenase among many species ofDrosophila. Syst. Zool.28 (1979) 164–175.

    Article  CAS  Google Scholar 

  18. Kreitman, M., Assessment of variability within electromorphs of alcohol dehydrogenase inDrosophila melanogaster. Genetics95 (1980) 467–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cochrane, B.J., and Richmond, R.C., Studies of esterase-6 inDrosophila melanogaster. II. The genetics and frequency distributions of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics93 (1979) 461–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sampsell, B., Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations ofDrosophila melanogaster. Biochem. Genet.15 (1977) 971–988.

    Article  CAS  PubMed  Google Scholar 

  21. Trippa, G., Loverre, A., and Catamo, A., Thermostability studies for investigating non-electrophoretic polymorphic alleles inDrosophila melanogaster, Nature260 (1976) 42–43.

    Article  CAS  PubMed  Google Scholar 

  22. Loukas, M., Vergini, Y., and Krimbas, C.B., The genetics ofDrosophila subobscura populations. XVII. Further genetic heterogeneity within electromorphs by urea denaturation and the effect in the increased genic variability on linkage disequilibrium studies. Genetics97 (1981) 429–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Satoh, C., and Mohrenweiser, H.W., Genetic heterogeneity within an electrophoretic phenotype of phosphoglucose isomerase in a Japanese population. Ann. hum. Genet.42 (1979) 283–292

    Article  CAS  PubMed  Google Scholar 

  24. Ayala, F.J., Genetic variation in natural populations: Problem of electrophoretically cryptic alleles. Proc. natl Acad. Sci. USA79 (1982) 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fletcher, T.S., Ayala, F.J., Thatcher, D.R., and Chambers, G.K., Structural analysis of the ADHS electromorph ofDrosophila melanogaster, Proc. natl Acad. Sci. USA75 (1978) 5609–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward, R., and Hebert, P., Variability of alcohol dehydrogenase activity in a natural population ofDrosophila melanogaster. Nature New Biol.236 (1972) 243–244.

    Article  CAS  Google Scholar 

  27. Pipkin, S., and Hewitt, N., Variation of alcohol dehydrogenase levels inDrosophila species hybrids. J. Hered.63 (1972) 267.

    Article  CAS  PubMed  Google Scholar 

  28. Ward, R.D., Alcohol dehydrogenase inDrosophila melanogaster: a quantitative character, Genet. Res.26 (1975) 81–93.

    Article  CAS  PubMed  Google Scholar 

  29. McDonald, J.F., Chambers, G.K., David, J., and Ayala, F.J., Adaptive response due to changes in gene regulation: a study withDrosophila. Proc. natl Acad. Sci. USA74 (1977) 4562–4566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McDonald, J.F., and Ayala, F.J., Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase inDrosophila melanogaster. Genetics89 (1978) 371–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laurie-Ahlberg, C., and Wilton, A., personal communication.

  32. Slightom, J.L., Blechi, A.E., and Smithies, O., Human fetalGγ- andAγ-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell21 (1980) 626–638.

    Article  Google Scholar 

  33. Schreier, P.H., Bothwell, A.L.M., Mueller-Hill, B., and Baltimore, D., Multiple differences between the nucleic acid sequences of the IgG2aa and IgG2ab alleles in the mouse. Proc. natl Acad. Sci. USA78 (1981) 4495–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Britten, R.J., Cetta, A., and Davidson, E.H., The single-copy DNA sequence polymorphism of the sea urchinStrongylocentrotus purpuratus. Cell15 (1978) 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  35. Grula, J.W., Hall, T.J., Hunt. J.A., Guigni, T.D., Davidson, E.H., and Britten, R.J., Sea urchin DNA sequence polymorphism and reduced interspecies differences of the less polymorphic DNA sequences. Evolution36 (1982) 665–676.

    Article  CAS  PubMed  Google Scholar 

  36. Lawn, R.M., Fritsch, E.F., Parker, R.C., Blake, G., and Maniatis, T., The isolation and characterization of linked σ-and β-globin genes from a cloned library of human DNA. Cell15 (1978) 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  37. Tuan, D., Biro, P.A., deRiel, J.K., Lazarus, H., and Forget, B.G., Restriction endonuclease mapping of the human γ globin gene. Nucl. Acids Res.6 (1979) 2519–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lai, E.C., Woo, S.L.C., Dugaiczyk, A., and O'Malley, B.W., The ovoalbumin gene: alleles created by mutations in the intervening sequences of the natural gene. Cell16 (1979) 201–212.

    Article  CAS  PubMed  Google Scholar 

  39. Jeffreys, A.J., DNA sequence variants in theGγ-,Aγ-, σ-and β-globin genes of man. Cell18 (1979) 1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Ewens, W.J., Spielman, R.S., and Harris, H., Estimation of genetic variation at the DNA level from restriction endonuclease data. Proc. natl Acad. Sci. USA78 (1981) 3748–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferris, S.D., Sage, R.D., and Wilson, A.C., Mitochondrial DNA variation among house mice and the origins of inbred mice. Genetics, submitted.

  42. Ferris, S.D., Brown, W.M., Davidson, W.S., and Wilson, A.C., Extensive polymorphism in the mitochondrial DNA of apes. Proc. natl Acad. Sci. USA78 (1981) 6319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Upholt, W.B., and Dawid, I.B., Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region. Cell11 (1977) 571–584.

    Article  CAS  PubMed  Google Scholar 

  44. Avise, J.C., Lansman, R.A., and Shade, R.O., The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics92 (1979) 279–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Avise, J.C., Giblin-Davidson, C., Laern, J., Patton, J.C., and Lansman, R.A., Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher,Geomys pinetis. Proc. natl Acad. Sci. USA76 (1979) 6694–6698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, G.G., and Simpson, M.V., Intra- and interspecific variation of the mitochondrial genome inRattus norvegicus andRattus rattus: restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships. Genetics97 (1981) 125–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langley, C.H., and Fitch, W.M., An examination of the constancy of the rate of molecular evolution. J. molec. Evol.3 (1974) 161–177.

    Article  CAS  PubMed  Google Scholar 

  48. Gillespie, J.H., and Langley, C.H., Are evolutionary rates really variable? J. molec. Evol.13 (1979) 24–34.

    Article  Google Scholar 

  49. Gillespie, J.H., Polymorphism and molecular evolution in a random environment. Genetics93 (1979) 737–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimura, M., Evolutionary rate at the molecular level. Nature217 (1968) 624–626

    Article  CAS  PubMed  Google Scholar 

  51. Leder, P., Hansen, J.N., Konkel, D., Leder, A., Nishioka, Y., and Talkington, C., Mouse globin system: a functional and evolutionary analysis. Science209 (1980) 1336–1342.

    Article  CAS  PubMed  Google Scholar 

  52. Maniatis, T., Fritsch, E.F., Lauer, J., and Lawn, R.M., The molecular genetics of human hemoglobins. A. Rev. Genet.14 (1980) 145–178.

    Article  CAS  Google Scholar 

  53. Proudfoot, N.J., Shander, M.H.M., Manley, J.L., Gefter, M.L., and Maniatis, T., Structure and in vitro transcription of human globin genes. Science209 (1980) 1329–1336.

    Article  CAS  PubMed  Google Scholar 

  54. Sved, J.A., Reed, T.E., and Bodmer, W.F., The number of balanced polymorphisms that can be maintained in a natural population. Genetics55 (1967) 469–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. King, J.L., The gene interaction component of the genetic load. Genetics53 (1966) 403–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobzhansky, T., and Spassky, B., Genetics of natural populations. XXXIV Adaptive norm, genetic load and genetic elite inD. pseudoobscura. Genetics48 (1963) 1467–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gowen, J.W., ed., Heterosis. Iowa State College Press, Ames 1952.

    Google Scholar 

  58. Marinkovic, D., Genetic loads affecting fertility in natural populations ofDrosophila pseudoobscura. Genetics57 (1967) 701–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Latter, B.D.H., and Robertson, A., The effects of inbreeding and artificial selection on reproductive fitness. Genet. Res.3 (1962) 110–138.

    Article  Google Scholar 

  60. Sved, J.A., and Ayala, F.J., A population cage test for heterosis inDrosophila pseudoobscura. Genetics66 (1970) 97–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mourao, C.A., Ayala, F.J., and Anderson, W.W., Darwinian fitness and adaptedness in experimental populations ofDrosophila willistoni. Genetica43 (1972) 552–574.

    Article  CAS  PubMed  Google Scholar 

  62. Wilton, A.N., and Sved, J.A., X-chromosomal heterosis inDrosophila melanogaster. Genet. Res.34 (1979) 303–315.

    Article  CAS  PubMed  Google Scholar 

  63. Sved, J.A., An estimate of heterosis inDrosophila melanogaster. Genet. Res.18 (1971) 97–105.

    Article  CAS  PubMed  Google Scholar 

  64. Tracey, M.L., and Ayala, F.J., Genetic load in natural populations: Is it compatible with the hypothesis that many polymorphisms are maintained by natural selection? Genetics77 (1974) 569–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seager, R.D., Fitness interactions and genetic load inDrosophila melanogaster. Ph.D. thesis, University of California, Davis 1979.

    Google Scholar 

  66. Sved, J.A., Fitness of third chromosome homozygotes inDrosophila melanogaster. Genet. Res.25 (1975) 197–200.

    Article  CAS  PubMed  Google Scholar 

  67. Lewontin, R.C., and Hubby, J.L., A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations ofDrosophila pseudoobscura. Genetics54 (1966) 595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hedrick, P.W., Maintenance of genetic variation with a frequency-dependent solution model as compared to the overdominant model. Genetics72 (1972) 771–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant GM 22221 from the PHS (USA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala, F.J. Genetic polymorphism: from electrophoresis to DNA sequences. Experientia 39, 813–823 (1983). https://doi.org/10.1007/BF01990397

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990397

Keywords

Navigation