Skip to main content
Log in

Insulin secretion: The effector system

  • Published:
Experientia Aims and scope Submit manuscript

Conclusions

Studies of the role of the microtubule-microfilamentous system in insulin secretion have been widened by continuing experimentation and analysis to provide a comprehensive working hypothesis which embraces ideas of the way in which the polymerization of microtubules and microfilaments may be regulated and how these cytoskeletal components may act together to enhance the process of granule movement. It is also possible to speculate about, but not yet to demonstrate, the way in which the activities of this effector system could be regulated by calcium and by cyclic AMP, which are essentially involved in the regulation of rates of secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, A.E., Bolton, W.E., and Brinkley, B.R., Microtubules and beta cell function: effects of cholchicine on microtubules and insulin secretion in vitro by mouse beta cells. J. Cell Biol.92 (1982) 425–434.

    Article  PubMed  Google Scholar 

  2. Colca, J.R., Brooks, C.L., Landt, M., and McDaniel, M.L., Correlation of Ca2+-and calmodulin-dependent protein kinase activity with secretion of insulin from islets of Langerhans. Biochem. J.212 (1983) 819–827.

    PubMed  Google Scholar 

  3. Dean, P.M., Ultrastructural morphometry of the pancreatic β-cell. Diabetologia9 (1973) 115–119.

    PubMed  Google Scholar 

  4. Dean, P.M., Exocytosis modelling: an electrostatic function for calcium in stimulus-secretion coupling. J. Theor. Biol.54 (1975) 289–308.

    PubMed  Google Scholar 

  5. Deery, W.J., Means, A.R., and Brinkley, B.R., Calmodulin-microtubule association in cultured mammalian cells. J. Cell Biol.98 (1984) 904–910.

    Article  PubMed  Google Scholar 

  6. Gabbiani, G., Malaisse-Lagae, F., Blondel, B., and Orci, L., Actin in pancreatic islet cells. Endocrinology95 (1974) 1630–1635.

    PubMed  Google Scholar 

  7. Griffith, L.M., and Pollard, T.D., Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J. Cell Biol.78 (1978) 958–965.

    Article  PubMed  Google Scholar 

  8. Grinstein, S., Van der Meulen, J., and Furuya, W., Possible role of H+-alkali cation counter-transport in secretory granule swelling during exocytosis. FEBS Lett.148 (1982) 1–4.

    Article  PubMed  Google Scholar 

  9. Harrison, D.E., and Ashcroft, S.J.H., Phosphorylation-dephosphorylation mechanisms and insulin secretion: Ca2+ dependent enzymes of protein and phospholipid metabolism of rat islets of Langerhans. Diabetologia23 (1982) 172–173.

    Google Scholar 

  10. Howell, S.L., Mechanism of insulin secretion. Diabetologia26 (1984) 319–327.

    Article  PubMed  Google Scholar 

  11. Howell, S.L., Hii, C.S.T., Shaikh, S., and Tyhurst, M., Effects of taxol and nocodazole on insulin secretion from isolated rat islets of Langerhans. Biochem. J.148 (1982) 237–243.

    Google Scholar 

  12. Howell, S.L., and Tyhurst, M., Distribution of anionic sites on the surface of B cell granule and plasma membranes: a study using cationic ferritin. J. Cell Sci.27 (1977) 289–301.

    PubMed  Google Scholar 

  13. Howell, S.L., and Tyhurst, M., Interaction between insulin storage granules and F-actin invitro. Biochem. J.178 (1979) 367–371.

    PubMed  Google Scholar 

  14. Howell, S.L., and Tyhurst, M., Actomyosin interactions with insulin storage granules in vitro. Biochem. J.206 (1982) 157–160.

    PubMed  Google Scholar 

  15. Hutton, J.C., and Peshavaria, M., Proton-translocating Mg2+ dependent ATPase activity in insulin secretory granules. Biochem. J.204 (1982) 161–170.

    PubMed  Google Scholar 

  16. Kakiuchi, S., and Sobue, K., Control of the cytoskeleton by calmodulin and calmodulin-binding proteins. TIBS Feb. (1983) 59–62.

  17. Lacy, P.E., Finke, E.H., and Codilla, R.C., Cinemicrographic studies on β granule movement in monolayer culture of islet cells. Lab. Invest.33 (1975) 570–576.

    PubMed  Google Scholar 

  18. Lacy, P.E., Howell, S.L., Young, D.A., and Fink, C.J., New hypothesis of insulin secretion. Nature, Lond.219 (1968) 1177–1179.

    Google Scholar 

  19. Lacy, P.E., Walker, M.M., and Fink, C.J., Perifusion of isolated rat islets in vitro. Participation of the microtubular system in the phasic mechanism of insulin release. Diabetes21 (1972) 987–998.

    PubMed  Google Scholar 

  20. McDonald, M.J., and Kowluru, A., Calcium-calmodulin dependent myosin phosphorylation by pancreatic islets. Diabetes31 (1982) 566–570.

    PubMed  Google Scholar 

  21. Malaisse, W.J., Malaisse-Lagae, F., Van Obberghen, E., Somers, G., Devis, G., Ravazzola, M., and Orci, L., Role of microtubules in the phasic pattern of insulin release. Anals N.Y. Acad. Sci.253 (1975) 630–652.

    Google Scholar 

  22. Malaisse, W.J., Malaisse-Lagae, F., Walker, M.O., and Lacy, P.E., The stimulus-secretion coupling of glucose-induced insulin release. V. The participation of a microtubular-microfilamentous system. Diabetes20 (1971) 257–265.

    PubMed  Google Scholar 

  23. Malaisse-Lagae, F., Amherdt, M., Ravazzola, M., Sener, A., Hutton, J.C., Orci, L., and Malaisse, W.J., Role of microtubules in the synthesis, conversion and release of (pro)insulin. A biochemical and radioautographic study in rat islets. J. clin. Invest.63 (1979) 1284–1296.

    PubMed  Google Scholar 

  24. Montague, W., Howell, S.L., and Green, I.C., Insulin release and the microtubular system of the islets of Langerhans: Effects of insulin secretagogues on microtubule subunit pool size. Horm. Metab. Res.8 (1976) 166–169.

    PubMed  Google Scholar 

  25. Nishida, E., Kuwaki, T., and Sakai, H., Phosphorylation of microtubule-associated proteins (MAP's) and pH of the medium control interaction between MAP's and actin filaments. J. Biochem.90 (1981) 575–578.

    PubMed  Google Scholar 

  26. Orci, L., Amherdt, M., Malaisse-Lagae, F., Rouiller, C., and Renold, A.E., Insulin release by emiocytosis: demonstration with freeze etching technique. Science179 (1973) 82–84.

    PubMed  Google Scholar 

  27. Orci, L., and Malaisse, W.J., Diabetes29 (1980) 943–944.

    PubMed  Google Scholar 

  28. Osborn, M., and Weber, K., The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles. Exp. Cell Res.106 (1977) 339–349.

    Article  PubMed  Google Scholar 

  29. Ostlund, R.E., Leung, J.T., and Kipnis, D.M., Myosins of secretory tissues. J. Cell Biol.77 (1978) 827–836.

    Article  PubMed  Google Scholar 

  30. Pace, C.S., and Smith, J.S., The role of chemiosmotic lysis in the exocytotic release of insulin. Endocrinology113 (1983) 964–969.

    PubMed  Google Scholar 

  31. Penn, E.J., Brocklehurst, K.W., Sopwith, A.M., Hales, C.N., and Hutton, J.C., Ca2+-calmodulin dependent myosin light chain phosphorylating activity in insulin secreting tissue. FEBS Lett.139 (1982) 4–8.

    Article  PubMed  Google Scholar 

  32. Pipeleers, D.G., Harnie, N., Heylen, L., and Wauters, G., Microtubule interaction in islets of Langerhans, in: Biochemistry and biophysics of the pancreatic B cell, pp. 163–167. Eds W.J. Malaisse and I.B. Taljedal. European Workshop, Brussels. Georg Thieme Verlag, Stuttgart 1979.

    Google Scholar 

  33. Pollard, H.B., Pazoles, C.J., Creutz, C.E., and Zinder, O., The chromaffin granule and possible mechanisms of exocytosis. Int. Rev. Cytol.58 (1979) 159–197.

    PubMed  Google Scholar 

  34. Schubart, U.K., Regulation of protein phosphorylation in hamster insulinoma cells. Identification of Ca2+ regulated cytoskeletal and cAMP-regulated cytosolic phosphoproteins by two-dimensional electrophoresis. J. biol. Chem.257 (1982) 12231–12238.

    PubMed  Google Scholar 

  35. Schubart, U.K., and Fields, K.L., Identification of a calcium-regulated insulinoma cell phosphoprotein as an islet cell keratin. J. Cell Biol.98 (1984) 1001–1009.

    Article  PubMed  Google Scholar 

  36. Shah, J.H., Stevens, B., and Sorensen, B.J., Dissociation of the effects of vincristine on stimulated insulin release and the pancreatic B-cell microtubular structures in the intact rat. Diabetes30 (1981) 539–544.

    PubMed  Google Scholar 

  37. Sheetz, M.P., and Spudich, J.A., Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, Lond.303 (1983) 31–35.

    Google Scholar 

  38. Somers, G., Blondel, B., Orci, L., and Malaisse, W.J., Motile events in pancreatic endocrine cells. Endocrinology104 (1979) 255–264.

    PubMed  Google Scholar 

  39. Steiner, D.F., Kemmler, W., Clark, J.L., Oyer, P.E., and Rubenstein, A.H., The biosynthesis of insulin, in: The Handbook of Physiology, section 7, vol 1, pp. 175–198. Eds. D.F. Steiner and N. Freinkel. American Physiological Society 1972.

  40. Stutchfield, J., and Howell, S.L., Effects of phalloidin on insulin secretion in permeabilized isolated islets of Langerhans. FEBS Letters (1984) in press.

  41. Suprenant, K.A., and Dentler, W.L., Association between endocrine pancreatic secretory granules nad in vitro assembled microtubules is dependent upon microtubule-associated proteins. J. Cell Biol.93 (1982) 164–174.

    Article  PubMed  Google Scholar 

  42. Trotter, J.A., Foerder, B.A., and Keller, J.M., Intracellular fibres in cultured cells: analysis by scanning and transmission electron microscopy and by SDS-polyacrylamide gel electrophoresis. J. Cell Sci.31 (1978) 369–392.

    PubMed  Google Scholar 

  43. Van Obberghen, E., Somers, G., Devis, G., Rayazzola, M., Malaisse-Lagae, F., Orci, L., and Malaisse, W.J., Dynamics of insulin release of the microtubular-microfilamentous system. VI Effects of D2O. Endocrinology95 (1975) 1518–1528.

    Google Scholar 

  44. Van Obberghen, E., Somers, G., Devis, G., Vaughan, G.D., Malaisse-Lagae, F., Orci, L., and Malaisse, W.J., Dynamics of insulin release of microtubular-microfilamentous system. I Effect of cytochalasin B. J. clin. Invest.32 (1973) 1041–1051.

    Google Scholar 

  45. Wollheim, C.B., and Pozzan, T., Correlation between cytosolic free Ca2+ and insulin release in an insulin secreting cell line. J. biol. Chem.259 (1984) 2262–2267.

    PubMed  Google Scholar 

  46. Yaseen, M.A., Pedley, K.C., and Howell, S.L., Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge. Biochem. J.206 (1982) 81–87.

    PubMed  Google Scholar 

  47. Yaseen, M.A., Smith, J.E., Doolabh, N., and Howell, S.L., Insulin secretion by exocytosis from permeabilized islets of Langerhans. Diabetologia25 (1983), Abstract 416.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, S.L., Tyhurst, M. Insulin secretion: The effector system. Experientia 40, 1098–1105 (1984). https://doi.org/10.1007/BF01971457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01971457

Key words

Navigation