Skip to main content
Log in

Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Optical methods for monitoring neuron activity were developed because these methods lend themselves to simultaneous multiple-site measurements. With the use of new voltage-sensitive dyes, the dye-related pharmacology and photodynamic damage appear to be relatively unimportant. Using multiple-site measurements made with a 124-element photodiode array, we estimated that approximately 30 of the 200 neurons present in theNavanax buccal ganglion make action potentials during feeding and that approximately 300 of the 1100 neurons present in theNavanax buccal ganglion make are active during the gill-withdrawal reflex. The fact that a light mechanical touch to the siphon skin activated such a large number of neurons in the abdominal ganglion suggests that understanding the neuronal basis of the gill-withdrawal reflex and its behavioral plasticity may be forbiddingly difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Boyle, M. B., Cohen, L. B., Macagno, E. R., and Orbach, H. S., The number and size of neurons in the CNS of gastropod molluscs and their suitability for optical recording of activity. Brain Res.266 (1983) 305–317.

    Article  CAS  PubMed  Google Scholar 

  2. Coggeshall, R. E., A light and electron microscope study of the abdominal ganglion ofAplysia californica. J. Neurophysiol.30 (1967) 1263–1287.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, L. B., and Lesher, S., Optical monitoring of membrane potential: methods of multisite optical measurement. Soc. gen. Physiol. Ser.40 (1986) 71–99.

    CAS  PubMed  Google Scholar 

  4. Cohen, L. B., and Salzberg, B. M., Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmac.83 (1978) 35–88.

    Article  CAS  Google Scholar 

  5. Grinvald, A., Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. A. Rev. Neurosci.8 (1985) 263–305.

    Article  CAS  Google Scholar 

  6. Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J. Neurophysiol.45 (1981) 829–840.

    Article  CAS  PubMed  Google Scholar 

  7. Kupfermann, I., Pinsker, H., Castellucci, V., and Kandel, E. R., Central and peripheral control of gill movements inAplysia. Science174 (1971) 1252–1256.

    Article  CAS  PubMed  Google Scholar 

  8. Levitan, H., Tauc, L., and Segundo, J. P., Electrical transmission among neurons of a mollusc,Navanax inermis. J. gen. Physiol.55 (1970) 484–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. London, J. A., Cohen, L. B., and Zecevic, D., Simultaneous optical recording from many cells fromAplysia abdominal ganglia during the gill-withdrawal reflex. Soc. Neurosci. Abstr.12 (1986) 397.

    Google Scholar 

  10. London, J. A., Zecevic, D., and Cohen, L. B., Simultaneous optical recording of activity from many neurons during feeding inNavanax. J. Neurosci.7 (1987) 649–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Macagno, E., Number and distribution of neurons in leech segmental ganglia. J. comp. Neurol.190 (1980) 283–302.

    Article  CAS  PubMed  Google Scholar 

  12. Paine, R. T., Food recognition and predation on opisthobranchs byNavanax inermis. Veliger6 (1961) 1–9.

    Google Scholar 

  13. Salzberg, B. M., Optical recording of electrical activity in neurons using molecular probes, in: Current Methods in Cellular Neurobiology, pp. 139–187. Eds. J. L. Barker and J. F. McKelvy. Wiley, New York 1983.

    Google Scholar 

  14. Salzberg, B. M., Davila, H. V., and Cohen, L. B., Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature246 (1973) 508–509.

    Article  CAS  PubMed  Google Scholar 

  15. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N., Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol.40 (1977) 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  16. Spira, M. E., Spray, D. C., and Bennett, M. V. L., Synaptic organization of expansion motoneurons ofNavanax inermis. Brain Res.195 (1980) 241–269.

    Article  CAS  PubMed  Google Scholar 

  17. Woolacott, M., Patterned neural activity associated with prey capture inNavanax. J. comp. Physiol.94 (1974) 69–84.

    Article  Google Scholar 

  18. Wu, J.-Y., Zecevic, D., London, J. A., Rioult, M., and Cohen, L. B., Optical measurement of neuron activity during the gill withdrawal reflex inAplysia. Soc. Neurosci. Abstr.13 (1987) 817.

    Google Scholar 

  19. Zecevic, D., London, J. A., and Cohen, L. B., Simultaneous optical recording from many cells fromAplysia abdominal ganglia using fluorescence. Neurosci. Lett. Suppl.22 (1985) 370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J.Y., London, J.A., Zecevic, D. et al. Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors. Experientia 44, 369–376 (1988). https://doi.org/10.1007/BF01940529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940529

Key words

Navigation