Skip to main content
Log in

On the state of stress in the near-surface of the earth's crust

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models—the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy—are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amadei, B., andSavage, W. Z. (1985),Gravitational Stresses in Regularly Jointed Rock Masses, Proc. of the Int. Symp. on Fundamentals of Rock Joints, 463–473, Bjorkliden, Sweden.

  • Amadei, B., andSavage, W. Z. (1989),Anisotropic Nature of Jointed Rock Mass Strength, J. of Mech. of ASCE115, 525–542.

    Google Scholar 

  • Amadei, B., Savage, W. Z., andSwolfs, H. S. (1987),Gravitational Stresses in Anisotropic Rock Masses, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.24, 5–14.

    Google Scholar 

  • Amadei, B., Swolfs, H. S., andSavage, W. Z. (1988),Gravity-induced Stresses in Stratified Rock Masses, Rock Mech.21, 1–20.

    Google Scholar 

  • Anderson, E. M.,The Dynamics of Faulting and Dyke Formation with Applications to Britain (Oliver and Boyd, Edinburgh 1951).

    Google Scholar 

  • Biot, M. A.,Mechanics of Incremental Deformation (Wiley, New York 1965).

    Google Scholar 

  • Brace, W. F., andKohlstedt, D. L. (1980),Limits on Lithospheric Stress Imposed by Laboratory Measurements, J. Geophys. Res.85, 6248–6252.

    Google Scholar 

  • Brown, E. T., andHoek, E. (1978),Trends in Relationships between Measured In Situ Stresses and Depth, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.15, 211–215.

    Google Scholar 

  • Budding, K. E., Schwartz, D. P., andOppenheimer, D. H. (1991),Slip Rate, Earthquake Recurrence, and Seismogenic Potential of the Rodgers Creek Fault Zone, Northern California—Initial Results, Geophys. Res. Lett.18, 447–450.

    Google Scholar 

  • Dahlen, F. A. (1984),Noncohesive Critical Coulomb Wedges: An Exact Solution, J. Geophys. Res.89, 10,125–10,133.

    Google Scholar 

  • Dahlen, F. A., Suppe, J., andDavis, D. M. (1984),Mechanics of Fold and Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory, J. Geophys. Res.89, 10087–10101.

    Google Scholar 

  • Davis, D. M., Suppe, J., andDahlen, F. A. (1983),Mechanics of Fold and Thrust Belts and Accretionary Wedges, J. Geophys. Res.88, 1153–1172.

    Google Scholar 

  • Denlinger, R. P., andSavage, W. Z. (1989),Thermal Stresses Due to Cooling of Viscoelastic Oceanic Lithosphere, J. Geophys. Res.94, 744–752.

    Google Scholar 

  • Drucker, D. C., andPrager, W. (1952),Soil Mechanics and Plastic Analysis or Limit Design, Quart. of Appl. Math.14, 35–42.

    Google Scholar 

  • Engelder, T., andSbar, M. L. (1984),Near-surface In Situ Stress: Introduction, J. Geophys. Res.89, 9321–9322.

    Google Scholar 

  • Gough, D. I., andGough, W. I. (1987),Stress Near the Surface of the Earth, Ann. Rev. Earth Planet Sci.15, 545–566.

    Google Scholar 

  • Griggs, D. T. (1939),Creep of Rocks, J. Geol.47, 225–251.

    Google Scholar 

  • Handin, J. (1966),Strength and ductility. InHandbook of Physical Constants, Geol. Soc. Am. Mem.97, 238–289.

  • Heard, H. C. (1963),Effect of Large Changes in Strain Rate in the Experimental Deformation of Yule Marble, J. Geol.71, 162–195.

    Google Scholar 

  • Hill, R. (1950),The Mathematical Theory of Plasticity (Oxford, London 1950).

    Google Scholar 

  • Houlsby, G. T., andWroth, C. P. (1980),Strain and Displacement Discontinuities in Soil, ASCE Proc. J. of the Eng. Mech. Div.106, 753–771.

    Google Scholar 

  • Jaeger, J. C., andCook, N. G. W.,Fundamentals of Rock Mechanics (Halsted, New York 1976).

    Google Scholar 

  • Mandl, G., andFernandez-Luque, R. (1970),Fully Developed Plastic Shear Flow of Granular Materials, Geotechnique20, 277–307.

    Google Scholar 

  • McGarr, A. (1980),Some Constraints on Levels of Shear Stress in the Crust from Observations and Theory, J. Geophys. Res.85, 6231–6238.

    Google Scholar 

  • McGarr, A. (1988),On the State of Lithospheric Stress in the Absence of Applied Tectonic Forces, J. Geophys. Res.93, 13, 609–13, 617.

    Google Scholar 

  • McGarr, A., andGay, N. C. (1978),State of Stress in the Earth's Crust, Ann. Rev. Earth Planet. Sci.6, 405–436.

    Google Scholar 

  • McTigue, D. F., andMei, C. C. (1981),Gravity-induced Stresses near Topography of Small Slope, J. Geophys. Res.86, 9268–9278.

    Google Scholar 

  • Ode, H. (1960),Faulting as a velocity discontinuity in plastic deformation. InRock Deformation, Geol. Soc. Am. Mem.79, 293–321.

  • Rice, J. R. (1973),The Initiation and Growth of Shear Bands, Plasticity and Soil Mech., Cambridge, Cambridge Univ. Eng. Dept. 263–274.

    Google Scholar 

  • Robertson, E. C. (1960),Creep of Solenhofen limestone under moderate hydrostatic pressure. InRock Deformation, Geol. Soc. Am. Mem.79, 227–244.

  • Rudnicki, J. W., andRice, J. R. (1975),Conditions for Localization of Deformation in Pressure-sensitive Dilatant Materials, J. of Mech. and Phys. of Solids23, 371–394.

    Google Scholar 

  • Rummel, F., Mohring-Ermann, G., andBaumgartner, J. (1986),Stress Constraints and Hydrofracturing Stress Data for the Continental Crust, Pure and Appl. Geophys.124, 875–895.

    Google Scholar 

  • Salencon, J.,Applications of the Theory of Plasticity in Soil Mechanics (Wiley, New York 1977).

    Google Scholar 

  • Savage, J. C. (1983),Strain Accumulation in Western United States, Ann. Rev. Earth Planet Sci.11, 11–43.

    Google Scholar 

  • Savage, J. C., Prescott, W. H., andLisowski, M. (1987),Deformation Along the San Andreas Fault 1982–1986 as Indicated by Frequent Geodolite Measurements, J. Geophys. Res.92, 4785–4797.

    Google Scholar 

  • Savage, W. Z., Amadei, B., andSwolfs, H. S. (1986),Influence of Rock Fabric on Gravity Induced Stresses, Proc. Int. Symp. on Rock Stresses and Measurements, 99–110, Stockholm, Sweden.

  • Savage, W. Z., andSmith, W. K. (1986),A Model for the Plastic Flow of Landslides, U.S. Geol. Surv. Prof. Paper 1385, 32 pp.

  • Savage, W. Z., andSwolfs, H. S. (1986),Tectonic and Gravitational Stress in Long Symmetric Ridges and Valleys, J. Geophys. Res.91, 3677–3685.

    Google Scholar 

  • Schapery, R. A. (1967),Stress Analysis of Viscoelastic Composite Materials, J. of Composite Materials1, 228–267.

    Google Scholar 

  • Shield, R. T. (1955),On Coulomb's Law of Failure in Soils, J. of Mech. and Phys. of Solids4, 10–16.

    Google Scholar 

  • Sokolovski, V. V.,Statics of Soil Media (Butterworths, London 1960).

    Google Scholar 

  • Swolfs, H. S. (1984),The Triangular Stress Diagram—A Graphical Representation of Crustal Stress Measurements, U.S. Geol. Surv. Prof. Paper 1291, 19 pp.

  • Turcotte, D. L., andSchubert, G.,Geodynamics (Wiley, New York 1982).

    Google Scholar 

  • Whitten, C. A. (1956),Crustal Movement in California and Nevada, Am. Geophys. Union Trans.37, 393–398.

    Google Scholar 

  • Zhao, W. L., Davis, D. M., Dahlen, F. A., andSuppe, J. (1986),Origin of Convex Accretionary Wedges: Evidence from Barbados, J. Geophys. Res.91, 10246–10258.

    Google Scholar 

  • Zoback, M. L., andZoback, M. D. (1980),State of Stress in the Coterminous United States, J. Geophys. Res.85, 6113–6156.

    Google Scholar 

  • Zoback, M. L., andZoback, M. D. (1989),Tectonic Stress Field of the Continental United States, GSA Memoir172, 523–539.

    Google Scholar 

  • Zoback, M. L., Zoback, M. D., Adams, J., Assumpcao, S., Bell, S., Bergman, E. A., Blumling, P., Brereton, N. R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregerson, S., Gupta, H. K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J. L., Muller, B. C., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udias, A., Xu, Z. H., andZhizhin, M. (1989),Global Patterns of Tectonic Stress, Nature341, 291–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, W.Z., Swolfs, H.S. & Amadei, B. On the state of stress in the near-surface of the earth's crust. PAGEOPH 138, 207–228 (1992). https://doi.org/10.1007/BF00878896

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878896

Key words

Navigation