Skip to main content
Log in

Computer Simulation of Strong Ground Motion near a Fault Using Dynamic Fault Rupture Modeling: Spatial Distribution of the Peak Ground Velocity Vectors

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

—Computer simulation was used to study the nature of the strong ground motion near a strike-slip fault. The faulting process was modeled by stress release with fixed rupture velocity in a uniform elastic half-space or layered half-space. The fourth-order 3-D finite-difference method with staggered grids was employed to compute both ground motions and slip histories on the fault. The fault rupture was assumed to start from a point and propagate circularly with 0.8 times shear-wave velocity. In the present paper, we focused on the spatial pattern of ground velocity vectors, i.e., the direction of strong motions. In the case of bilateral rupture propagation, the strong fault parallel ground motion appeared near the center of the fault. The fault normal motions of ground velocity appeared near the edges of the fault. In the case of unilateral rupture, the fault parallel motion appeared near the starting point however, the amplitude was lower than that for the bilateral rupture case. The fault normal motion was predominant near the terminal point of the rupture. The results were applied to the earthquake damage data, especially the directions that simple bodies overturned and wooden houses collapsed, caused by the 1927 Tango, the 1930 Kita-Izu, and the 1948 Fukui earthquakes. The spatial distributions of the direction data were found to reflect the strong ground motions generated from the earthquake source process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received September 30, 1999; revised March 15, 2000; accepted April 6, 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyatake, T. Computer Simulation of Strong Ground Motion near a Fault Using Dynamic Fault Rupture Modeling: Spatial Distribution of the Peak Ground Velocity Vectors. Pure appl. geophys. 157, 2063–2081 (2000). https://doi.org/10.1007/PL00001075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00001075

Navigation