Skip to main content
Log in

Abstract.

This paper shows in detail the application of a new stochastic approach for the characterization of surface height profiles, which is based on the theory of Markov processes. With this analysis we achieve a characterization of the scale dependent complexity of surface roughness by means of a Fokker-Planck or Langevin equation, providing the complete stochastic information of multiscale joint probabilities. The method is applied to several surfaces with different properties, for the purpose of showing the utility of this method in more detail. In particular we show evidence of the Markov properties, and we estimate the parameters of the Fokker-Planck equation by pure, parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction of the conditional probability density functions. The results are compared with those from the analysis of multi-affine and extended multi-affine scaling properties which is often used for surface topographies. The different surface structures analysed here show in detail the advantages and disadvantages of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Sayles, T.R. Thomas, Nature 271, 431-434 (1978)

    Google Scholar 

  2. T. Vicsek, Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore, 1992)

  3. A.-L. Barabási, H. Eugene Stanley, Fractal concepts in surface growth (Cambridge University Press, Cambridge, 1995)

  4. S. Davies, P. Hall, J. Royal Statistical Society B 61, 3-37 (1999)

    MATH  Google Scholar 

  5. U. Wendt, K. Stiebe-Lange, M. Smid, J. Microscopy 207, 169-179 (2002)

    Article  MathSciNet  Google Scholar 

  6. C.V. Dharmadhikari, R.B. Kshirsagar, S.V. Ghaisas, Europhys. Lett. 45, 215-221 (1999)

    Article  Google Scholar 

  7. M. Saitou, M. Hokama, W. Oshikawa, Appl. Surf. Sci. 185, 79-83 (2001)

    Article  Google Scholar 

  8. U. Sydow, M. Buhlert, P.J. Plath, Characterization of electropolished metal surfaces, Discrete Dynamics in Nature and Society (to be published)

  9. J. Feder, Fractals (Plenum Press, New York, London, 1988)

  10. Dynamics of fractal surfaces, edited by F. Family, T. Vicsek (World Scientific, Singapore, 1991)

  11. R. Friedrich, T. Galla, A. Naert, J. Peinke, Th. Schimmel, Disordered structures analysed by the theory of Markov processes in A Perspective Look at Nonlinear Media, Vol. 503 of Lecture Notes in Physics, edited by Jürgen Parisi, St. C. Müller, W. Zimmermann (Springer Verlag, Berlin, 1998), pp. 313-326

  12. M. Waechter, F. Riess, H. Kantz, J. Peinke, Europhys. Lett. 64, 579-585 (2003), see also preprints arxiv:physics/0203068 and arxiv:physics/0310159

    Article  Google Scholar 

  13. G.R. Jafari, S.M. Fazeli, F. Ghasemi, S.M. Vaez Allaei, M. Reza Rahimi Tabar, A. Iraji Zad, G. Kavei, Phys. Rev. Lett. 91, 226101 (2003)

    Article  Google Scholar 

  14. C. Renner, J. Peinke, R. Friedrich, J. Fluid Mechan. 433, 383-409 (2001)

    MATH  Google Scholar 

  15. S. Lueck, J. Peinke, R. Friedrich, Phys. Rev. Lett. 83, 5495-5498 (1999)

    Article  Google Scholar 

  16. R. Friedrich, J. Peinke, C. Renner, Phys. Rev. Lett. 84, 5224-5227 (2000)

    Article  Google Scholar 

  17. M. Ausloos, K. Ivanova, Phys. Rev. E 68, 046122 (2003)

    Article  Google Scholar 

  18. F. Ghasemi, A. Bahraminasab, S. Rahvar, M. Reza Rahimi Tabar, Stochastic nature of cosmic microwave background radiation, preprint arxiv:astro-phy/0312227, 2003

  19. Please note that there have been different definitions of increments, especially the left-justified increment h r (x)=h(x+r)−h(x). Here we use the symmetrical increment in order to avoid the introduction of spurious correlations between scales [40]

  20. M. Haase, Private communication (2003)

  21. C. Renner, Markovanalysen stochastisch fluktuierender Zeitserien. Ph.D. thesis, Carl-von-Ossietzky University, Oldenburg, Germany, 2001 http://docserver.bis.uni-oldenburg.de/ publikationen/dissertation/2002/r enmar02/ renmar02.html

  22. H. Risken, The Fokker-Planck equation (Springer, Berlin, 1984)

  23. In contrast to other applications (like financial data), in this case the process direction from large to smaller scales is unimportant and was chosen arbitrarily. When the process direction is reversed, the coefficients D (k) change only slightly, preserving both the form and behaviour of the Fokker-Planck equation. The logarithmic variable \(\rho\) was used in order to preserve consistency, see [11,14,16].

  24. A.N. Kolmogorov, Mathematische Annalen 104, 415-458 (1931)

    MATH  Google Scholar 

  25. M. Waechter, F. Riess, N. Zacharias, Vehicle System Dynamics 37, 3-28 (2002)

    Article  Google Scholar 

  26. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, 29 (1993)

    Article  Google Scholar 

  27. M. Alber, J. Peinke, Phys. Rev. E 57, 5489 (1998)

    Article  Google Scholar 

  28. R. Friedrich, J. Zeller, J. Peinke, Europhys. Lett. 41, 153 (1998)

    Article  Google Scholar 

  29. I.N. Bronstein, K.A. Semendjajew, Taschenbuch der Mathematik (Teubner, Stuttgart, 1991)

  30. R. Friedrich, J. Peinke, Physica D 102, 147 (1997)

    Article  MATH  Google Scholar 

  31. R. Friedrich, J. Peinke, Phys. Rev. Lett. 78, 863 (1997)

    Article  Google Scholar 

  32. M. Ragwitz, H. Kantz, Phys. Rev. Lett. 87, 254501 (2001)

    Article  Google Scholar 

  33. M. Siefert, A. Kittel, R. Friedrich, J. Peinke, Europhys. Lett. 61, 466 (2003)

    Article  Google Scholar 

  34. P. Marcq, A. Naert, Phys. Fluids 13, 2590-2595 (2001)

    Article  Google Scholar 

  35. R. Friedrich, S. Siegert, J. Peinke, S. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, G. Pfister, Phys. Lett. A 271, 217-222 (2000)

    Article  Google Scholar 

  36. R. Friedrich, C. Renner, M. Siefert, J. Peinke, Phys. Rev. Lett. 89, 149401 (2002)

    Article  Google Scholar 

  37. P. Sura, J. Barsugli, Phys. Lett. A 305, 304-311 (2002)

    Article  MATH  Google Scholar 

  38. C. Renner, J. Peinke, R. Friedrich, Physica A 298, 499-520 (2001)

    Article  MATH  Google Scholar 

  39. J. Honerkamp, Stochastische dynamische Systeme (VCH, Weinheim, 1990)

  40. M. Waechter, A. Kouzmitchev, J. Peinke, A note on increment definitions for scale dependent analysis of stochstic data, preprint arxiv:physics/0404021, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waechter.

Additional information

Received: 5 April 2004, Published online: 12 October 2004

PACS:

02.50.-r Probability theory, stochastic processes, and statistics - 02.50.Ga Markov processes - 68.35.Bs Surface structure and topography of clean surfaces

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waechter, M., Riess, F., Schimmel, T. et al. Stochastic analysis of different rough surfaces. Eur. Phys. J. B 41, 259–277 (2004). https://doi.org/10.1140/epjb/e2004-00317-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00317-4

Keywords

Navigation