Skip to main content
Log in

Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract:

The size evolution of the surface plasmon resonance was investigated for free and embedded silver particles between about 2 to 10 nm in size. The crystal lattice of such particles as analyzed by high resolution electron microscopy show linear contraction with reciprocal particle size. Based on this, a model was presented by combining the lattice contraction of particles and the free path effect of electrons to predict the size evolution of the resonance. The results reveal a contribution of the lattice contraction to the resonance shift according to a roughly linear relation that changes slightly with particle radius (> 1.0 nm) and surrounding media. This surface plasmon resonance shift proceeds linearly with reciprocal size for Ag particles in vacuum and argon, but for Ag particles embedded in glass it appears to be independent of the radius down to nearly 1 nm. All predictions are quantitatively compared to previously reported experimental data and a good agreement is obtained. An unusual red-shift observed for Ag particles in glass may be attributed to a thermal expansion mismatch induced lattice dilatation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 26 July 2000 and Received in final form 14 September 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Hofmeister, H. & Dubiel, M. Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur. Phys. J. D 13, 245–253 (2001). https://doi.org/10.1007/s100530170273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530170273

Navigation