Skip to main content
Log in

Molecular dynamics simulation of gold cluster collisions

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Molecular dynamics (MD) simulation with an embedded atom method (EAM) potential is used to study gas-phase collisions of two 55-atom gold clusters. The probability of formation of a long-lived collision complex and the structure of this complex, after it is quenched to OK, are determined for head-on collisions in which each collision partner is chosen randomly from an equilibrium thermal bath. Two sets of collisions are studied. In the first the clusters are initially at OK, and in the second they are initially at 300K. All collisions result in cluster aggregation with significant inelastic deformation of the original clusters. The major conversion of potential energy into internal kinetic energy in the collision occurs on the time scale of a single vibrational oscillation. When the clusters are initially at OK, the collision complex is a solid cluster. When the clusters are initially at 300K, the collision complex is a liquid cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Mackay, Acta Crystallogr.15, 916 (1962).

    Google Scholar 

  2. J.J. Burton, Nature229, 335, (1971).

    Google Scholar 

  3. M.R. Hoare, P. Pal, Adv. Phys.20, 161 (1971).

    Google Scholar 

  4. M.R. Hoare, P. Pal, Adv. Phys.24, 645 (1975).

    Google Scholar 

  5. J.A. Northby, J. Chem. Phys.87, 8166 (1987).

    Google Scholar 

  6. J. Farges, M.F. deFeraudy, B. Raoult, G. Torchet, J. Chem. Phys.78, 5067 (1983).

    Google Scholar 

  7. J. Farges, M.F. deFeraudy, B. Raoult, G. Torchet, J. Chem. Phys.84, 3491 (1986).

    Google Scholar 

  8. C.L. Briant, J.J. Burton, J. Chem. Phys.63, 2045 (1975).

    Google Scholar 

  9. G. Natanson, F. Amar, R.S. Berry, J. Chem. Phys.78, 399 (1983).

    Google Scholar 

  10. R.S. Berry, J. Jellinek, G. Natanson, Phys. Rev. A.30, 919 (1984).

    Google Scholar 

  11. J.D. Honeycutt, H.C. Andersen, J. Chem. Phys.91, 4950 (1987).

    Google Scholar 

  12. J.G. Gay, B.J. Berne, J. Colloid Interface Sci.109, 90 (1986).

    Google Scholar 

  13. E. Blaisten-Barojas, M.R. Zachariah, Phys. Rev. B.45, 4403 (1992).

    Google Scholar 

  14. P. Ballone, P. Milani, Z. Phys.D. — Atoms, Molecules and Clusters,19, 439 (1991).

    Google Scholar 

  15. M.S. Daw, and M.I. Baskes, Phys. Rev. B.29, 6443 (1984).

    Google Scholar 

  16. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B.33, 7983 (1986).

    Google Scholar 

  17. H.C. Andersen, J. Chem. Phys.72, 2384 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.C., Paithankar, D.Y., Talbot, J. et al. Molecular dynamics simulation of gold cluster collisions. Z Phys D - Atoms, Molecules and Clusters 26 (Suppl 1), 165–167 (1993). https://doi.org/10.1007/BF01425652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01425652

PACS

Navigation