Skip to main content
Log in

An Analysis of Unicellular Mass Transfer Using a Microfabricated Experimental Technique

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Using microfabrication technology, we have developed a new experimental apparatus and technique which allow isolation of individual cells and which facilitate the study of kinetic volume changes and membrane permeability. The key component of the apparatus is a microdiffusion chamber which was constructed using silicon microfabrication technology and standard photolithography. The central unit of the chamber is a 1 μ m thick silicon nitride membrane with a center hole on the order of 2–3 μ m in diameter. The device is novel in its analysis of a single cell, instead of the traditional array of cells, and its avoidance of the damage artifacts and computational difficulties which are inherent in other, commonly used methods of cellular analysis. The device is used in conjunction with a predictive computer model which simulates the response of the entire membrane or a portion of the membrane to various permeant and impermeant concentrations. This study introduces the apparatus and the model, and illustrates the effectiveness of the new procedure by determining several membrane permeability coefficients for HBL-100 (healthy human breast line). The empirical data and theoretical data were combined to yield a water permability (L p) of 1.1 ± 0.5μ m/(min-atm) (mean ± 1 standard deviation) (N= 5) during the uncoupled transport of water at 22 ±C. In the presence of 6 M glycerol, the water permeability (L p), permeability coefficient (P S), and the reflection coefficient (σS) were determined to be 2.0 ± 0.63 μ m/(min-atm), 2.7E-5 ± 6.1E-6 cm-sec-1, and 0.76 ± 0.5 (N = 6). No previous values of these coefficients could be found for HBL-100 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Benson, The Cell Membrane: A Lipoprotein Monolayer. Membrane Models and the Formation of Biological Membranes. (North-Holland Publishing Company, 1967), 190-202.

  2. L. Bousse, R.J. McREynolds, G. Kirk, T. Dawes, P. Lam, W.R. Bemiss, and J.W. Parce, Sensors and Actuators B 20, 145-150 (1994).

    Google Scholar 

  3. J.P Brody, T.D. Osborn, J.K. Forester, and P. Yager, Sensors And Actuators A (Physical) A54(1–3), 704-8 (1996).

    Google Scholar 

  4. G.D. Brum and L.K. McKane, Biology: Exploring Life, (John Wiley and Sons, NY, 1989).

    Google Scholar 

  5. A. Carruthers, Biochemistry 30, 3898-3906 (1991).

    Google Scholar 

  6. E.D.P. DeRobertis, W.W. Nowinski, and F.A. Saez, Cell Biology. (W.B. Saunders Company, 1965).

  7. T.A. Desai, M. Ferrari, K. Cheung, and Wen Hwa Chu, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA, 30 October–2 November 1997. Piscataway, NJ, USA: IEEE, 1997. pp. 2578-2581 vol. 6.6 vol. ix. + 2819 pp. 15.

    Google Scholar 

  8. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari, Biomedical Microdevices, 2(1), (Kluwer Academic Publishers, 1999), 11-40. 114.

  9. J. Farinas, V. Simanek, and A.S. Verkman, Biophysical Journal 68(4), 1613-1620 (1995).

    Google Scholar 

  10. J.B.C. Findlay and W.H. Evans, Biological Membranes: A Practical Approach (IRL Press, 1987).

  11. D.Y. Gao, C.T. Benson, C. Liu, J.J. Mcgrath, E.S. Cristser and J.K. Critser, Biophysical Journal 71(1), 443-450 (1996).

    Google Scholar 

  12. D.Y. Gao, J.J. McGrath, J. Tao, C. Benson, E.S. Critser, and J.K. Critser, J. Reprod. Fertil. 102, 385-392 (1994).

    Google Scholar 

  13. O.P. Hamill, A. Marty, E. Neher, B. Nsakmann, and F.J. Sigworth, Pflugers Arch. 391, 85-100 (1981).

    Google Scholar 

  14. D. Hansford, T. Desai, and M. Ferrari, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. No.99CH37015), (vol.2), Proceedings of the First Joint BMES/EMBS Conference, Atlanta, GA, USA, 13–16 Oct. 1999.) Piscataway, NJ, USA: IEEE, 1999. p. 736 vol. 2. 2 vol. vi + 1345 pp. 5.

    Google Scholar 

  15. C.R. House, Water Transport in Cells and Tissues (Edward Arnold Publishers Ltd, 1974).

  16. M.K. Jain, Introduction to Biological Membranes (Wiley, 1998).

  17. R.M. Johnson, Biophysical Journal 67, 1876-1881 (1994).

    Google Scholar 

  18. P.L. Jørgensen and R. Verna, Advances in Biotechnology of Membrane Ion Transport, (Raven Press, 1988).

  19. K.V.L.S. Kaler, A. Docoslis, N. Kalogerakis, and L.A. Behie, in IAS'96. Conference Record of the 1996 IEEE Industry, IEEE 4, 1932-1939 (1996).

  20. O. Kedem and A. Katchalsky, Biochimica et Biophysica Acta. 27, 229-246 (1958).

    Google Scholar 

  21. C.H. Kim, Advances in Membrane Biochemistry and Bioenergetics (Plenum Press, 1987).

  22. F.W. Kleinhans, V.S. Travis, J. Du, P.M. Villines, K.E. Colvin, and J.K. Critser, J. Androl. 13, 498-506 (1992).

    Google Scholar 

  23. S.S. Kulkarni, M.G. Kulkarni, and S. Nene, Sadhana 18, 105-124 (1993).

    Google Scholar 

  24. C.H. Kutchini, Cellular Membranes and Transmembrane Transport of Solutes and Water (Physiology, C.V. Mosby Co. 1983), 3-22.

  25. J. Liu, M.A.J. Zieger, J.R.T. Lakey, E.J. Woods, and J.K. Critser, Cryobiology 35, 1-13 (1997).

    Google Scholar 

  26. R.I. Macey and R.E.L. Farmer, Biochim. Biophys. Acta 211, 104-120 (1970).

    Google Scholar 

  27. A.D.C. MacKnight. Isosmotic Volume Maintenance. Current Topics in Membranes and Transport (A. Kleinzeller, (ed)) Academic Press 30, 11-43 (1987).

  28. L.E. McGann, A.R. Turner, and J.M. Turc, Med. Biol. Eng. Comput. 20, 117-120 (1982).

    Google Scholar 

  29. J.J. McGrath and K.R. Diller, (ed). Low Temperature Biotechnology: Emerging Applications and Engineering Contributions. (American Society of Mechanical Engineers New York, NY, 1988).

    Google Scholar 

  30. H.T. Meryman, The frozen cell Ciba foundation Symposium (Churchill, London, 1970), 51-64.

    Google Scholar 

  31. S. Middleman, Transport Phenomena in the Cardiovascular System (Wiley-Interscience, 1972).

  32. R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, and R.M. White (eds), Microsensors (IEEE Press, NY, 1991).

    Google Scholar 

  33. P. Narayan and R. Dahiya, J. Urol. 148, 1600-1604 (1992).

    Google Scholar 

  34. E.E. Noiles, K.A. Thompson, and B.T. Storey, Cryobiology 35, 79-92 (1997).

    Google Scholar 

  35. S. Papa and J.M. Tager, Biochemistry of Cell Membranes: A Compendium of Selected Topics, (Birkhäuser Verlag, 1995).

  36. D.E. Pegg, Cryobiology 21, 234-239 (1984).

    Google Scholar 

  37. F. Pennicnckx, S. Poelmans, R. Kerremans, and W. De Loecker, Cryobiololgy 21, 25-32 (1984).

    Google Scholar 

  38. M. Shinitzky, Biomembranes (VCH, 1992).

  39. H. Takamatsu and B. Rubinsky, Cryobiology (submitted 1997).

  40. D.E. Vance and J.E. Vance, Biochemistry of Lipids, Lipoproteins, and Membranes (Elsevier, 1991).

  41. C.J.M. Van Rijn and M.C. Elwenspoek, Proceedings IEEE Micro Electro Mechanical Systems 83-87, (1995).

  42. P. Yeagle, The Structure Of Biological Membranes (CRC Press, 1992).

  43. D.L. Yudilevich, R. Deves, S. Peran, and Z.I. Cabantchik, Cell Membrane Transport (Experimental Approaches and Methodologies, Plenum Press, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, K.P., Rubinsky, B. An Analysis of Unicellular Mass Transfer Using a Microfabricated Experimental Technique. Biomedical Microdevices 2, 305–316 (2000). https://doi.org/10.1023/A:1009959323022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009959323022

Navigation